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Abstract. The rise in the use of social network sites allows us to collect large 
amounts of user reported data on social structures and analysis of this data could 
provide useful insights for many of the social sciences. This analysis is typically 
the domain of Social Network Analysis, and visualization of these structures often 
proves invaluable in understanding them. However, currently available visual 
analysis tools are not very well suited to handle the massive scale of this network 
data, and often resolve to displaying small ego networks or heavily abstracted 
networks. In this paper, we present Honeycomb, a visualization tool that is able to 
deal with much larger scale data (with millions of connections), which we illus-
trate by using a large scale corporate social networking site as an example. Addi-
tionally, we introduce a new probability based network metric to guide users to 
potentially interesting or anomalous patterns and discuss lessons learned during 
design and implementation.  

1 Introduction 

Social networks are structures that model the interconnections between people. Analyz-
ing these social networks provides insight into complex phenomena such as organiza-
tional behavior, social organization, and remote collaboration. Typically, social network 
analysts use a combination of metrics and visualizations to determine central actors, 
important ties and clusters in relatively small networks of at most a few hundred nodes. 
With the advent of social network sites on the internet, we now have access to user gen-
erated networks that are orders of magnitude larger. For example, Facebook.com cur-
rently claims over 100 million active users, which generate billions of network connec-
tions. Traditional methods of social network analysis would break down at a fraction of 
this scale. Non-visual approaches have been proposed to address this problem of scale 
for general network analysis, such as (hierarchical) clustering, sampling, modeling or 
approximation. All of these methods reduce the amount of data by creating abstractions 
of the network. Although these abstractions might give us partial insight into higher 
level structures, many of these approaches abstract the data to the point where it is very 
hard to relate high level features to real world phenomena. Another complimentary tool 
in social network analysis is visualization, which uses interactive graphics to depict the 
structure of the social network. These diagrams can help scientists understand the over 
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Fig. 1. Social network visualizations. (a) A node link representation of a very simple 8 node 
network (b) An adjacency matrix representation of the same network, note that the number of 
grey cells is equal to the number of links in (a) 

all structure of a particular network and expose patterns that they might not have been 
aware of previously, or might not have even considered as a possibility. In effect, visu-
alization allows users to perform exploratory analysis on the network and quickly gen-
erate and verify hypotheses. One of the strengths of visualizing social networks in par-
ticular is that it supports hypothesis generation about an organization’s structure and 
interactions, something of great interest to the organizational behavior and CSCW 
communities [14]. But typical graph visualizations are limited in their ability to support 
end users in interpretation of the information and the sheer scale of the networks makes 
a visual mapping challenging. Social scientists have noted that “…it would seem useful 
for management to map the social capital ties that are relevant to the various tasks the 
organization faces. This mapping poses a considerable challenge: from a purely techni-
cal point of view it is far easier to map a small number of ego networks than to generate 
an intelligible sociocentric, whole-network map of a large, complex organisation" [2]. In 
this paper we present a matrix based tool for exploring very large social networks in 
their entirety. In contrast with other existing tools, it has the following capabilities: 
 

- scalability: Although the social applications we analyzed are accessible to company 
employees only, and their size pales in comparison to the many millions of mem-
bers of some online sites, the network we are dealing with in this paper has over 
37,000 users and over 400,000 connections. Our tool handles up to a million con-
nections with ease and we have been able to navigate synthetic datasets of up to a 
few million edges. 

- ability to perform temporal analysis: Social network analysis is often challeng-
ing, but grasping the changes in a social network over time is especially difficult. 
These dynamic aspects may give us insight in the spread of a network over time and 
allow us to create better network models and predictions. 

- displaying information that is absent: While most traditional information visuali-
zation tools can show individual information elements and the patterns emanating 
from them, it is much harder to show the absence of information where it was ex-
pected. Concretely, in social network analysis it might be desirable to see between 
which groups connections are absent or very minimal.  



 
The main contribution of this paper is to illustrate how we can use a matrix based visu-
alization in combination with algorithmic metrics to help social scientists grasp large 
social network datasets and potentially guide them to interesting features. We illustrate 
the usefulness of this approach by providing real world samples. In the next section we 
describe related work in this area. We then give a brief description of our sample data-
set, followed by an outline of the visualization method. The main part of this paper 
describes the visualization and edge metrics as well as some of the insights we have 
gained in applying them. Finally, we discuss implications for the design of these types 
of tools. 

2 Related Work 

The analysis of social networks with statistical and graph theoretical means has had a 
major influence on social sciences ever since it was first proposed [7]. From the begin-
ning, sociograms and sociomatrices were used as representations of the analyzed social 
networks. Sociomatrices cross-tabulate a particular connection metric over a number of 
actors (nodes on the network) and sociograms are traditional node-link representations 
of the network. Both of these representations have been used as a basis for interactive 
analysis tools. 

The node-link representations in sociograms (Fig. 1a) have been echoed in many 
social network visualization tools from different research communities. From social 
network analysis, tools like UCINET/Netdraw and Krackplot [13] offer support for 
advanced metrics and offer basic node-link visualizations. From the graph drawing 
community, tools like Visone [4] offer a combination of metrics and advanced layout 
algorithms. From the visualization/HCI community tools like Vizster [9], the more ad-
vanced SocialAction [17] allows users to interactively examine visual representations of 
(social) networks. All of the above approaches can generate very readable diagrams of 
social networks of a few thousand nodes at most but have the disadvantage that they 
cannot display very large networks, especially if these networks are dense. Among the 
most advanced workbenches for performing social network analysis on large networks 
are Netminer and Pajek [3] which both offer a large selection of analysis algorithms as 
well as matrix and node-link visualizations. Users can use the supplied algorithms to 
extract and visualize meaningful subgraphs from a large network. However, integrating 
these different views on the network in a single mental model can be a daunting task. 

Alternatively, sociomatrices can very easily be transformed into adjacency matri-
ces, where each cell (i,j) stores the strength of the connection between actors i and j. We 
can then render this matrix by coloring a cell if there is a connection present and, op-
tionally, visually mapping the strength of the connection (Fig. 1b). Note that any colored 
cells on the diagonal indicate connections of nodes to themselves. Reorderable matrices 
have been used as an analysis tool since the early 80’s and have a number of distinct 
advantages over node link diagrams, especially if the network is dense [8]. They are 
impervious to clutter and overlap, scale much better and allow quick verification of the 
existence of a connection. When the columns are reordered properly [16] they can also 
be used to identify clusters in the network. On the downside, matrices are not great at 



visualizing paths between multiple nodes and are not nearly as intuitive as node-link 
diagrams, which may explain why they are currently underrepresented in social network 
analysis. Recently, interactive adjacency matrices have been advocated for medium 
scale social network visualization in [10] and a sophisticated hybrid approach has been 
proposed in [11]. 

Outside the social networks analysis community, matrix visualizations have been 
used to analyze different types of networks, however the problem of scalability remains. 
One potential solution is to group the nodes in the network into clusters and render the 
aggregated network instead. This can then be repeated at multiple levels of scale, de-
pending on the size of the input graph. This hierarchical grouping can then be used to 
create a single interactive visualization that allows the user to browse the network at 
different levels of scale [18, 1, 6]. The major problem with these prior approaches is 
that, without methods of automatically highlighting potentially interesting or anomalous 
data points, the user can spend a significant amount of time browsing these representa-
tions at multiple levels of scale without learning anything new.  

3 Data 

Our main data set is taken from a social network site running internally at a large multi-
national company. The site is an opt-in site that people use for connecting with other 
employees, through the sharing of photos, lists and events [5]. Part of the process of 
connecting is to directly link to other employees, as is typical on any social network site. 
When a user on the site adds someone as a connection, the other user is not required to 
reciprocate the connection, so employees can connect to anyone inside the company, 
without the need for the other person to join the site first or reciprocate back afterwards. 
The data set we use as a sample is a snapshot that was taken mid-July 2008. At that 
time, 37,000 employees had joined the site and they had formed approximately 300,000 
connections.  

4 Visualization 

Given the scale of our target dataset rendering a single 37,000 by 37,000 matrix is im-
practical from both a resource and user interaction perspective. We therefore follow the 
approach taken by [18] and use a hierarchy on the nodeset to reduce the size of the adja-
cency matrix. Fig. 2 shows how we can collapse an 8 by 8 to a 3 by 3 matrix by using a 
predefined hierarchy to aggregate cells. The resulting collapsed matrix color codes the 
total number of edges for each submatrix below (darker colors indicating more edges) 
and still maintains many of the features of the original network. For example from Fig. 
2b we can still easily see that there are no connections from groups J and K to group I 
and that there are relatively many connection among nodes in group I. As a final step, 
we normalize the cell sizes so that we can repeat the same process with the collapsed 
matrix. Note that, even though the relative difference in cell sizes in Fig. 2b accurately 



portrays the difference in the number of leaf nodes, we found adjacency matrices with 
irregular cell sizes much harder to comprehend when they grow larger, especially when  

  
(a) (b) (c) 

Fig. 2. Collapsing an 8 by 8 adjacency matrix to a smaller 3 by 3 matrix (a) original matrix with 
node hierarchy on both sides (b) collapsed version of the matrix with lowest level of the hierarchy 
eliminated and edge counts aggregated (c) This collapsed version itself forms a small section of a 
higher level adjacency matrix. 

 
the difference in cell sizes is large. For that reason we will use a regular subdivision in 
the samples in this paper, even though our visualization tool allows users to choose 
either option. The actual hierarchy used to drive the above process is variable and de-
pends on the interest of the users of the visualization. In the samples in this paper we 
have used two distinct hierarchies. One uses the management hierarchy to correlate 
connection behavior with organizational structure, while the other one uses a geographi-
cal hierarchy based on the user’s working location (i.e. continent - country - state - city - 
building) to correlate connection behavior with geographical location. In practice, we 
can also use different hierarchies or construct a hierarchy ourselves by using other node 
attribute information. 

In terms of interactivity our tool is very similar to its predecessor described in [18] 
but it is more memory efficient and allows for pluggable metrics. The user is initially 
presented with an adjacency matrix that displays connections at the highest level of 
abstraction (e.g. in the case of the geographical hierarchy connections between employ-
ees in different continents). By left clicking on a cell (X,Y) the user can indicate he or 
she wants to examine that particular connection in more detail and the visualization then 
displays the matrix that shows the connections between the direct children of X and Y. A 
simple right click brings the user back to the cell he or she came from. The transition 
between these two matrices is animated to help the user understand the relationship 
between the two representations. Dynamic labels help the user understand what relation 
they are looking at and a popup menu provides details on demand. 

To deal with the issue of visual scalability we have used the hierarchy to reduce the 
matrix to a more manageable size. Computational scalability is obtained by using a 
semi-external memory approach, that is, we keep the entire nodeset and the hierarchy of 
the network in RAM while a relational database stores the actual connections between 
the nodes in the network. When a user requests a higher level view of the network, ag-
gregation of edges in the database is done on the fly using a fast lookup algorithm. Our 
current prototype is implemented in Java and uses OpenGL for graphics output. We 



have successfully loaded and navigated synthetic graphs up to 5 million edges using 
only 200MB of RAM. 

 
Fig. 3. Schematic representation of the network (grey nodes and curved connections) and the 
aggregation hierarchy. By numbering the nodes in the aggregation hierarchy in a depth first man-
ner (dotted line) and keeping track of the minimum and maximum values encountered during this 
traversal we can determine the number of edges connecting groups (6-8) and (9-12) by running 
the query: SELECT COUNT * FROM EDGES WHERE 6  ‘From‘  8 AND 9  ‘To‘  12; 

5 Metrics 

Since every edge in the network is represented by a cell in the matrix, we can use the 
space in this cell to communicate information about the connection it represents. Al-
though some structural edge metrics exist [15] they are mainly focused at identifying 
individual edges that connect different communities and rarely take edge weights into 
account. This means that although they are able to identify communities at the level of 
individual actors, running them on aggregated data produces less reliable results and in 
some cases might be too computationally expensive. Previous approaches [18, 1] have 
exclusively mapped the number of aggregated edges, or the connection count. We can 
express the connection count CC for an edge (X,Y) as:  
 

 
  

with desc(X) indicating the set of descendant leaves of a node in the hierarchy. To be 
able to compute connection counts between groups efficiently we employ a special 
numbering scheme on the nodes in the network. We traverse the hierarchy on the nodes 
in the network in a depth first traversal starting at the root, and incrementally number 
the encountered nodes. For each node in the hierarchy we keep track of the minimum 
and maximum value encountered for that node. We can then use these Depth First 
Search numbers to query the edgelist stored in a database whenever we need the total 
number of connections between two groups (see Fig. 3 for details).  
Combined with caching of the top level matrices this keeps our tool memory-efficient 
and fast. Alternatively, a solution where all edge counts are precomputed and stored in a 
disk based index can be used [6], although this makes it harder to switch between multi-
ple hierarchies. 



Although the connection count is probably the most straightforward metric one can 
think of, it has a number of drawbacks. Firstly, at higher abstraction levels the adjacency 
matrices grow increasingly dense, making it harder to detect patterns based on the pres-
ence of connections. The use of a color scale to indicate the number of connections 

 
Fig. 4. shows the difference between incoming and outgoing connections, with India showing up 
as an outlier. The horizontal red band and vertical blue bands indicate there are many unrecipro-
cated connections from Indian employees. The inset shows a zoomed view of the outlined cell 
with the connections between Asia and Europe, the red horizontal band represents connections 
from mobile employees (with location OTHER) in India to people in Europe. 

might help somewhat, but the large number of connections on the diagonal in social 
networks often drown out subtler off-diagonal patterns.  

Finally, one key problem in all previous matrix-oriented visualization approaches is 
that it is very hard for a user to identify what connection patterns are potentially interest-
ing to examine further. In many instances the user is simply presented with a matrix of 
aggregated connection counts and is expected to identify anomalous patterns by interac-
tively browsing the data. Although the user can now potentially look at interesting pat-
terns, this ability is useless if the user has to spend a large amount of time inspecting 
abstract matrices at different levels of detail to find these interesting patterns. There is a 
definitive need for edge-oriented metrics that go beyond simple edge counts, yet can 
still be computed efficiently. In the next two sections we will propose two of these met-
rics and use our sample dataset to highlight their usefulness. 



5.1 Asymmetry 

Since connection behavior does not need to be reciprocated (i.e. X can connect to Y but 
Y does not have to connect back to X) it might be interesting to look for patterns that 
involve asymmetric connections. For example, for each edge (X,Y) we can define the 
asymmetry as  
 

 
Fig. 4 shows the asymmetry in connections, using the geographical hierarchy to aggre-
gate. Small imbalances in asymmetries can distract from detecting large imbalances, so 
we only plot asymmetry values above a small cutoff. One pattern that immediately 
emerges from this image is the large horizontal (red) and vertical (blue) bars in the row 
and column representing India. This indicates India overall has more connections going 
out to another country than it has coming back. The team that had developed the social 
networking application was aware of the fact that a lot of US users were getting friend 
requests from users in India they did not know personally, but did not know that this 
pattern persisted over different countries. To determine where this behavior was coming 
from, we drilled down on the connections from India to Europe (inset) and observed that 
most of the people responsible for these asymmetric connections report their work loca-
tion as ’OTHER’, which in practice means ’non-traditional office’. Employees working 
in non-traditional offices (typically drop-in stations or from home) may be using the 
social network site with a particular focus on meeting new people, because they do not 
have regular face-to-face contact with coworkers. 

In a separate survey of 2000 users of this social network service, we asked about 
different reasons why they were motivated to use the site. Comparing the responses 
between countries, users in India reported to a significantly higher degree than other 
countries that they were using the site for getting to know people they would not other-
wise meet at the company, using the site to find experts and using the site to discover 
people with similar interests. All three of these activities involve reaching out and con-
necting across organizational and cultural boundaries, and these motivations offer a 
partial explanation of why this particular cluster of outward links may exist. Asymme-
try-type metrics can also be useful in wider contexts, especially if the connection’s 
weights can be significantly different for each direction. Examples of such networks 
include trade, financial networks or communication networks. 

5.2 Deviation from expected 

One of the major disadvantages of rendering absolute metrics, whether they are absolute 
connection counts or the absolute number of unreciprocated connections, is that groups 
with the largest number of users are very likely to have the highest number of connec-
tions. Indeed absolute connection counts allow us to make observations such as ’Users 
in the US have 3024 connections to users in India’ but there is no way to estimate how 
valuable that observation actually is. Is 3024 connections a lot, given the characteristics 
of the network and the size of the two countries, or did we expect to see more?  



One way of estimating the usefulness of an observation is to try and determine what 
part of this observation might be explained by pure chance. In other words, if we had 
distributed the E edges in the graph completely arbitrarily, how many edges can we 
expect to fall between the US and India?  This problem is similar to a chi-square analy-
sis of a set of observations, using the matrix M of connection counts as the contingency 
matrix. Note that the total number of connections in a row X of M is equal to the total 
number of edges Xout that have their startpoint in X, and the total number of connections 
in a column Y of M  is equal to the number of edges Yin that have their endpoint in Y. 
The probability of having an edge connecting X and Y if the data were randomly distrib-
uted (i.e. the choice of start and endpoint of an edge are independent) is then equal to 

 with expectation: 
 

 
 

We can then compute the chi square metric for the total adjacency matrix, which tells us 
if there are significant correlations between the clusters we have defined on the nodeset. 
If that is the case (and in our particular case it was) we can look at the value of the indi-
vidual cells and try to establish where these correlations might originate from. 

As an alternative derivation, we can look at the problem of obtaining a graph with 
exactly E edges, of which k connect nodes X and Y as a discrete probability problem: 
Suppose we have a 2 dimensional R by C grid M (our adjacency matrix) in which we 
have to assign edges to cells. In order to be able to generate all possible assignments we 
have a jar of R×C–W black and W white edges. White edges are to be placed in a spe-
cially designated subgrid of M of size X by Y. Black edges have to be placed outside of 
this subgrid. If we sample E edges from the jar without replacement and the probability 
of pulling a white edge from the jar is P(X,Y) as defined above, what is the probability 
that exactly k edges will be white?  This problem can be modeled as a hypergeometric 
distribution which has the same expectation value  and 
variance:  

 

 
 

The remaining free variables in the above expression are the values for R and C. These 
determine in relation to what part of the matrix we compute the variance and expec-
tancy. Typically R×C=N2 if we want to look at the distribution of the edges over the 
whole graph, but we can also compute the expected values given the characteristics of a 
particular subcell (typically an ancestor of the cell we are looking at) in the matrix. The 
metric outlined above is in effect a more advanced version of a basic density metric,  

which estimates  the number of expected  edges in a matrix  cell solely based on cell 
size, i.e.  The above metric instead uses the in- and out degree 
distribution of the graph under consideration to estimate the number of expected edges, 
similar to the p1 network model [12]. 

A good test case for our deviation metric would be to see if we can correlate the 
company’s business units to their respective geographies. As an example, we would 
expect employees of the German business unit to have most of their contacts with em-



ployees in Germany. Other business units span different geographies however, and our 
metric should also point this out. Although up to now we have only shown matrices that 
use the same hierarchy on both sides, the visualization can also support different hierar-
chies on the two sides of the matrix. Fig. 5a shows part of the matrix that displays the 
links from the managerial hierarchy (rows) to the geographical hierarchy (columns) with 
manual annotations. Color represents the deviation from the expected value with blue 
cells indicating fewer connections than expected and red cells indicating more connec-
tions than expected. The size of the glyph in each cell gives an indication of the 
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Fig. 5. Mapping the difference between the observed number of connections and the number of 
connections we would expect if the distribution of the edges were random. Red cells indicate a 
higher number of connections than expected, blue cells indicate a less than expected number of 
connections. The size of each square indicates the significance of the deviation. (a) connections 
between divisions and countries (b) connections among different European countries. (c) same 
view as (b) but using the connection count metric. (d) filesharing activity between different Euro-
pean countries. 

 
significance of the deviation from the expected number as cells that deviate only in a 
small amount from the expected value are within the bounds of normality and should 
not be visually highlighted. The expected patterns show up very clearly, but we also 
observed connections that might not have been so obvious initially, with employees in 



research connecting to employees in Switzerland. This is most likely due to a large 
corporate research laboratory in Switzerland, but the ability to isolate this fact is encour-
aging. 

We also applied the same metric to look at connections within Europe (Fig. 5b) and 
found a number of interesting patterns. One fairly obvious one is the tendency to con-
nect to people in the same country, indicated by the bright red diagonal. Other observed 
patterns have to do with language and geographical proximity (for example, Switzerland 
connects more than expected to Germany, Austria and France) or with organizational 
structures (Sweden, Norway, Finland and Denmark are all part of a single organizational 
structure). One pattern we did not expect to find were the larger than expected number 
of connections between Austria and many of the countries in Eastern Europe. We were 
subsequently able to verify that the company, like many other multi-national firms, 
handles a significant part of its Eastern European business from Vienna. 

As a second check on the validity of these observations we explored a different set 
of connections. The company also uses internal online document sharing services where 
people can upload a single document and share it with multiple colleagues, which saves 
the user from having to mass-mail the document. We visualized a set of 75,000 docu-
ment sharing relationships, where two actors are related if one of them has shared a 
document with the other. Fig. 5d shows document sharing relationships over different 
countries in Europe. Again, Austria appears to connect significantly more to Eastern 
Europe than other countries. The asymmetry is expected since sharing a file is an activ-
ity that is usually not reciprocated by the receiving user. Still, the rough similarities 
between the images in Fig. 5b and Fig. 5d verify that the patterns seen in both the social 
network service and the file-sharing service reflect meaningful organizational patterns in 
the company. 

The practice of computing statistics for different network decompositions is an es-
tablished procedure in the social network analysis community. However, the results are 
often displayed in simple statistical tables, which makes interpretation not very intuitive. 
The added value here is that we can display the resulting deviations from the expected 
values in context, use a comprehensive display to look for patterns and easily compare 
them with other network metrics at different levels of granularity to investigate. Within 
the context of a corporation, social network analysis is often touted as a mechanism for 
revealing the invisible power structures outside of the management hierarchy. One of 
the unique strengths of the visualization is that the structure of the social network is 
overlaid onto the formal hierarchy of the company (divisional or geographical) allowing 
comparison of the formal and informal hierarchies in the company.  

5.3 Time varying Networks 

Another distinct advantage that matrix based visualizations have over node link based 
ones is their ability to deal with data that varies over time. Many other approaches have 
used animated node-link diagrams to display changing networks but this approach has a 
major drawback. If node positions are kept static over time, the topology of the network 
will not accurately reflect the data at that point in time. Yet if we animate the node posi-
tions over time, the user is confronted with an animation that both changes the geometry 



and the connectivity pattern simultaneously, which in practice is very hard to under-
stand. In matrix visualizations, each edge (whether realized or not) is already allocated a 
section of screen space, which allows us to animate the growth of connections in a sta-
ble visual representation. Depending on user interest we could for example choose to 
display the cumulative edge count over time, a heatmap of the new connections made in 
the last month or highlight the most volatile connections. In our prototype we have im-
plemented a slider that lets us visualize any time interval between the launch of the site 
and the date of the snapshot and apply any of the metrics to the connections that were 
made in that time interval. 

6 Lessons learned 

In this paper we have shown that interactive adjacency matrices are a viable alternative 
and, in many cases, preferable to node-link diagrams when it comes to analyzing large 
scale social networks. Large scale formal evaluation on these types of tools is difficult 
because exploratory analysis inherently involves tasks which are ill-defined. That is, the 
user does not know what they are looking for exactly (yet). We have illustrated their 
usefulness by performing exploratory analysis on real-world large social networks ob-
tained from an internal company research project. This section discusses some lessons 
learned during design and implementation.  

6.1 Integrate multiple metrics in a single mental model 

Scientists in the area of social network analysis have come up with a number of useful 
metrics to analyze the connection patterns in social networks. However, understanding 
the structure of a social network requires analysts to understand how the different met-
rics in the social networks interrelate. Many existing tools allow the user to run an 
analysis and then visualize the results [3] but integrating all these separate perspectives 
into a single, coherent mental model is often left up to the user. Having a single consis-
tent mental model of a complex data structure allows user to incrementally build up 
knowledge by allowing easier correlation of newly observed facts with previously ob-
served facts. As an example, we observed that Austria has strong ties to other Eastern 
European countries. When we looked to verify this observation using a different net-
work of the same individuals, we could easily identify a similar pattern because connec-
tions from Austria were visualization in the same row and formed the same horizontal 
pattern. Had we tried to do this analysis with node-link diagrams the layouts of the two 
networks would have varied wildly, making direct comparison much harder.  

6.2 Use concrete hierarchies to drive the analysis 

One of the prerequisites of this visualization technique is a suitable hierarchy on the set 
of nodes in the network. Here, we have used readily available hierarchical decomposi-
tions such as the management hierarchy. This allows us to interpret connections between 



higher level aggregations directly, because they relate to a concrete and meaningful 
grouping. Previous approaches [1, 6] have used network clustering or matching algo-
rithms to automatically generate a hierarchy on a network when none was available. 
Although these approaches offer the similar scalability and corresponding interaction 
model, interpretation of the resulting visualization is often problematic because it is 
much harder to put a meaningful label on an individual cluster. Recursive clustering 
algorithms are more problematic as we do not know what the common attributes of 
nodes in a group might be. This makes it much harder to ground the interpretation of the 
resulting structure in existing knowledge. If no natural hierarchy is available for the 
network under consideration we recommend using ordinal node attributes to create a 
hierarchical partitioning if the number of categories. That is, we can recursively aggre-
gate nodes in the network by grouping them if they have the same value for a particular 
attribute. This approach is in a sense a hierarchical version of the idea behind Pivot-
Graph [19].  

6.3 Absent data is also information 

One of the chief advantages matrices have over node-link diagrams is their ability to 
highlight missing connections. For denser networks, the absence of a connection where 
one was expected might be just as informative as the presence of a connection where it 
was not expected. Matrix views explicitly represent absent connections as an empty cell, 
which allows us to look for patterns that involve empty cells. Sample patterns may in-
clude sparsely filled rows or columns in an otherwise dense matrix or (almost) empty 
aggregate cells. Similarly, computing the difference between a statistically expected 
value and the observed value allows us to examine a higher order of absence: given a 
suitable baseline model we can determine how many connections we would have ex-
pected and highlight the difference. Many current information techniques only focus on 
highlighting patterns that are present, often neglecting patterns that are notably absent.  

7 Conclusions and future work 

We have shown how matrix based visualization tools have significant advantages over 
node link diagrams when it comes to analyzing very large networks in general and large 
social networks in specific. They deal better with denser networks, offer ample screen-
space to display metrics for each edge and can more easily display change over time. 
We have also shown how we can use statistical measures to estimate the usefulness of a 
particular observation. The one major disadvantage that matrices have over traditional 
node-link diagrams is that they are unable to display structural features such as shortest 
or multi-segments paths in the network in an intuitive manner. However, aggregating 
networks greatly increases their density and in most cases the high level overviews 
generated here are too dense to display in node-link form. 

The approach outlined here opens up a number of viable routes for further work. 
Having a common, consistent ’data space’ available may offer possibilities for collabo-
rative analytics where multiple users analyze a potentially large network dataset. One 



can think of highlighting areas that have already been examined to guide users to previ-
ously unexplored sections of the matrix or allowing users to collaboratively annotate the 
visualization for example. In terms of metrics, our expectancy metric provides promis-
ing initial results, but still overemphasizes the tendency of actors to connect within their 
own community. Better random network models that take this into account may provide 
a better assessment of what datapoints (e.g. connections) are interesting and which are 
not. Alternatively, secondary network data (for example, obtained from email exchanges 
or other known organizational patterns) might be overlaid to see where users’ connec-
tions deviate. In terms of visualization one could imagine implementing a flexible hier-
archy based on node attributes, where users can quickly try out partitions to see where 
correlations with structure might lie. Also, our current visualization does not allow users 
to view connections between groups at different levels in the hierarchy simultaneously 
and asymmetric zooming might be helpful here. Finally, application of this type of visu-
alization techniques to graphs from different application areas may give researchers 
insight in much larger networks than previously possible.  
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