
Supporting Window Switching With Spatially

Consistent Thumbnail Zones: Design and Evaluation

Susanne Tak1, Joey Scarr1, Carl Gutwin2, Andy Cockburn1

1 Computer Science and Software Engineering, University of Canterbury,

Private Bag 4800, Christchurch 8140, New Zealand

susanne.tak@pg.canterbury.ac.nz, jls129@student.canterbury.ac.nz,

andy@cosc.canterbury.ac.nz
2 Department of Computer Science, University of Saskatchewan,

110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada

gutwin@cs.usask.ca

Abstract. Computer users switch between applications and windows all day,

but finding the target window can be difficult, particularly when the total

number of windows is high. We describe the design and evaluation of a new

window switcher called SCOTZ (for Spatially Consistent Thumbnail Zones).

SCOTZ is a window switching interface which shows all windows grouped by

application and allocates more space to the most frequently revisited

applications. The two key design principles of SCOTZ are (1) predictability of

window locations, and (2) improved accessibility of recently and frequently

used windows. We describe the design and features of SCOTZ, and present the

findings from qualitative and empirical studies which demonstrate that SCOTZ

yields performance and preference benefits over existing window switching

tools.

Keywords: window switching, revisitation, spatial stability, predictability.

1 Introduction

Desktop computing involves constant window switching to navigate between various

applications and documents. Previous work has found that people have more than

eight windows open almost 80% of the time and that the average time between

window switches is only 20.9 seconds [1]

Several window switching tools are available in most operating systems, and there

are a large number of commercial and research tools that aim to enhance window

switching performance. Our previous work identified two problems with current

window switching interfaces [2]: first, many window switching interfaces lack spatial

stability, meaning that the location of controls for acquiring particular windows can

change over time, forcing users to rely on relatively slow visual search rather than

rapid spatial decisions; second, most common window switching interfaces provide

relatively weak support for strongly-exhibited patterns of window revisitation. We

proposed spatial constancy and size morphing as design solutions to these problems,

and our experiments using synthetic target acquisition tasks provided preliminary

evidence of their success [2].

In this paper we extend our prior findings with the design and evaluation of a new

window switcher called SCOTZ (Spatially Consistent Thumbnail Zones). SCOTZ

uses application zones arranged in a treemap visualization to provide a spatially-stable

and predictable window layout, and uses size morphing of the application zones to

facilitate revisitation. It also provides quick access to recently used windows.

SCOTZ’s design is validated through qualitative and quantitative evaluations.

We make three specific contributions:

- a thorough description of our new window switcher SCOTZ and the rationale for

its design choices;

- a summary of lessons learned from our qualitative study, which is useful for future

iterations of SCOTZ as well being potentially informative for the design of other

window switchers;

- an empirical study demonstrating the performance benefits of SCOTZ over two

major commercial window switching interfaces (the Windows 7 Taskbar and

Windows 7 Alt+Tab).

3 Related Work

3.1 Commercial Window Switching Interfaces

Three important commercial window switching applications are briefly reviewed

below: the Microsoft Windows 7 Taskbar, Alt+Tab, and Mac OS X Exposé.

The Microsoft Windows 7 Taskbar is a narrow strip at the bottom of the screen

which groups windows by application (see Fig. 1). Taskbar application icons can be

pinned to the Taskbar so they are always in the same location and remain visible on

the Taskbar even when there are no associated windows open. These pinned

application controls remain in stable locations across sessions. However, the Taskbar

provides no explicit support for switching to recent or frequently-used windows.

Fig. 1. The Microsoft Windows 7 Taskbar.

Microsoft Windows 7 Alt+Tab (sometimes referred to as Windows Flip) is a modal

window that is shown when the key combination Alt+Tab is pressed (see Fig. 2). The

Windows 7 Alt+Tab window shows thumbnail previews of all windows: first, the top

six windows in the z-order (see below), then a desktop preview, and then all

remaining windows sorted by application name. Z-ordering is the depth-ordering of

windows: a window that is placed in front of another window is relatively higher in

the z-ordering than the underlying windows. Z-ordering is similar to recency ordering,

but sorting windows by z-order is spatially unstable: the ordering of the window

representations will be different from switch to switch if the z-ordering of the

windows changes. Also, it is unclear how well users understand and can anticipate z-

order.

Fig. 2. Microsoft Windows 7 Alt+Tab.

When activated, Mac OS X Exposé smoothly shrinks all windows so that they can

be simultaneously viewed on the screen. The spatial location of each window in the

overview is influenced by its most recent location on the screen. While this relative

positioning may assist users in visually seeking windows in the overview, the

locations are not spatially stable between invocations if the locations of the windows

change, and consequently the locations are unpredictable.

3.2 Task-Based Window Switching Interfaces

Early studies of everyday computing [3] observed that computer users frequently

switch between tasks such as writing a paper or programming. Many window

switching interfaces have been developed to support task management by grouping

windows by task. For example, a “writing a paper” task might contain a spreadsheet

window, a statistical analysis package window, and a word-processing document into

which the results are typed.

The Rooms system [4] is an early example of a window desktop management

system that allows users to manually partition space for different tasks. Examples of

task-based window managers that require manual grouping of windows into tasks are

GroupBar [5], Activity-Based Computing [6], Scalable Fabric [7] and Task Gallery

[8]. GroupBar and Activity-Based Computing use interfaces similar to the Windows

Taskbar. With Scalable Fabric users can place groups of related windows in the

periphery of the screen and switch to these groups of windows at once. Task Gallery

uses a 3D visualization of task groups. The primary limitation of manual creation of

task groups is that users must carry out explicit actions to gain potential benefits and it

creates additional cognitive overhead for the user [9, 10].

Some window switching interfaces automatically identify tasks. SWISH [11] is an

algorithm to automatically group windows into tasks based on their temporal and

semantic relatedness. RelAltTab [12] modifies the Alt-Tab list to incorporate a

system-generated list of related windows, similar to SWISH. Push-and-pull switching

[13] automatically identifies window groups based on window overlap. The primary

limitations of automatically-adaptive systems are that they can incorrectly predict the

user’s intention and that users can fail to understand or anticipate the system’s

adaptation [14]. When this happens users must resort to time-consuming visual search

of candidate targets.

WindowScape [15] uses a combination of automatic grouping by taking snapshots

of the desktop (which can then later be revisited) as well as manual configuration of

window miniatures on the desktop.

Another issue related to task-based grouping of windows is whether or not

windows can be associated with multiple tasks at the same time. Some windows may

not be ‘task-specific’ at all. For example, generic applications, such as a web browser

or an e-mail client are likely to be used across tasks, rather than in one specific task. If

a task-based window switcher only allows for exclusive grouping (i.e., a window can

only be associated with one task, e.g. [5, 6, 8]) the user is forced to make ‘impossible’

choices about where a window should belong, or open multiple windows for these

applications, which some users find unnatural or difficult (as one user stated, “[I’m]

still trying to get used to having multiple internet windows open” [5], p. 40). Using

Activity-Based Computing [6], windows can be classified under more than one task,

although the authors report on problems with achieving this in “a simple manner.”

Last, another problem associated with task-based grouping of windows is that

some windows might not be associated with any task at all. This is reported in [6]:

“The worst thing? Well [...] if you have to put everything into activities, then you need

to constantly consider ‘where does this one belong'. In many situations something just

appears quickly and then you start up some application and do some things in it. [...]”

(p. 219).

Taskposé [16] uses a fuzzy approach to defining tasks, using spatial proximity to

illuminate task-based window relationships – windows that are often temporally

adjacent drift closer to one another and those that are temporally distant drift apart.

3.3 Studies of Window Switching

In this section, we provide an overview of studies related to window switching

behaviour and window switching tools.

Window Switching Behaviour. Very early studies [17] of window switching showed

that window switching is much more common that window creation, deletion and

geometry management such as moving and resizing. Recent studies have showed the

same: Hutchings et al. [18] found that the average time a window is active is only

20.9 seconds. In terms of how people switch between windows, previous work has

found a relationship between monitor setup and window switching methods, with dual

monitor users more likely to use a direct click on a window and less likely to use the

Windows Taskbar, than single monitor users [2, 18]. In terms of which windows

people switch to, previous work [2] has found that window switching follows an

inverse exponential distribution, with 80% of window switches involving only 35% of

windows.

Window Switching Interfaces. Analysis of the efficiency and effectiveness of

current commercial methods for switching between windows is often anecdotal and

sometimes conflicting. For example, some previous work labels the ordering of

windows in Alt+Tab as “very effective” [19], but Alt+Tabbing is also labelled as

“tedious” [20]. There are very few studies that evaluate the use, efficiency and/or

effectiveness of the common commercially available window switching interfaces in

a formal manner. Alt+Tab is found to be relatively fast when the number of windows

is small [21], but performance decreases as the number of windows increases. Users

make more errors when using the Windows Taskbar than when using Mac's Exposé,

which may be due to the smaller target sizes on the Windows Taskbar [21].

4 SCOTZ

In this section, we introduce our new window switcher SCOTZ (Spatially Consistent

Thumbnail Zones)1. SCOTZ is designed to satisfy two main goals:

1. Predictability of window locations. Comprehensibility and predictability are

important attributes of a user interface [14]. If a window switcher places window

representations in predictable locations the user will able to correctly anticipate

where a window representation is (or will be) placed, reducing the need for a

costly visual search.

2. Improved accessibility of frequently/recently used applications and windows.

Previous work [2] has identified strong revisitation patterns to applications and

windows, so window switching interfaces should support rapid acquisition of

recent or frequent targets.

Fig. 3. Abstraction of the design of SCOTZ with nine application zones, labelled A to I: (a)

before size morphing, (b) after several iterations of size morphing; applications A and B have

been switched to frequently, and are therefore allocated more space, while keeping all

application zones in relatively stable positions.

SCOTZ is a modal interface which groups windows by application in so-called

application zones. Size morphing is applied to allocate more space to the most

frequently switched-to applications. The basic concept behind SCOTZ is shown in

1 A fully functional version of SCOTZ is available for download at

http://www.cosc.canterbury.ac.nz/scotz

Fig. 3, and Fig. 4 shows an actual SCOTZ window in full-screen mode with eight

application zones and six windows. SCOTZ retains application zones’ size and

position even when the computer has been restarted.

The following sections describe the design of SCOTZ and explain how its features

fulfil the two main goals above. Also, we describe four additional properties of the

system: support for different display sizes, support for keyboard and mouse input,

support for application launching, and options for personalization.

Fig. 4. SCOTZ in full-screen mode showing eight application zones and six windows.

4.1 Predictable Window Locations

SCOTZ groups windows by application in application zones, which remain in stable

locations. This results in comprehensible and predictable window locations. SCOTZ

offers three different layouts for the application zones: two treemap layouts, where

size morphing is applied, and a grid layout where no size morphing is allowed (see

Fig. 5). A treemap is a space-filling layout that recursively divides the screen in

rectangles, sized relative to some underlying data attribute [22]. In SCOTZ, the size

of the application zone reflects how often an application has been switched to.

Various algorithms for generating treemaps exist, each offering advantages for

specific contexts. For example, some treemaps are designed to keep items in

relatively stable positions as the underlying data changes. An example of such a

treemap is the spiral treemap [23] (see Fig. 5a), which preserves the ordering of the

items and results in treemaps with relatively high stability – that is, item locations do

not change a great deal when the underlying data changes. A squarified treemap [24]

(see Fig. 5b) arranges items from top-left to bottom-right sorted by value, and creates

a layout with items with very low aspect ratios. Low aspect ratios are not only

attractive from an aesthetic point of view, but treemaps where the items have low

aspect ratios can also be expected to lead to lower Fitts’ Law targeting times than

treemaps that have items that are long and narrow. However, the squarified treemap

can be unstable in very early stages of use or when application revisitation patterns

change a lot over time. Because of their favourable performance in terms of stability

and aspect ratio, the spiral and squarified treemaps are good candidates to be used in

SCOTZ.

Fig. 5. Abstraction of the three layout options for application zones in SCOTZ: (a) spiral

treemap, where applications are (arbitrarily) sorted once and this ordering is retained forever,

and where zones are laid out in order in a clockwise spiral from top left; (b) squarified treemap,

where application zones are sorted by size and laid out from top left to bottom right; (c) grid,

where all application zones are of equal size and are laid out in a grid pattern.

Even though previous work has demonstrated that the slight instability of the

layout caused by size morphing (i.e., items unavoidably move as they grow/shrink)

does not harm user performance [2], SCOTZ also offers a grid layout (see Fig. 5c)

where no size morphing is applied, and is therefore very stable.

The ordering of the window representations is either alphabetic by window title, by

frecency (a combination of frequency and recency), or by the order in which the

respective windows were opened, using a row-major order. Alphabetic ordering is

very predictable and understandable; sorting by frecency supports window

revisitation; and sorting the representations by the order in which the respective

windows were opened is very stable when additional application windows are opened.

4.2 Improved Accessibility of Frequently Used Windows

SCOTZ allocates more space to the most frequently switched-to applications, which

reduces the Fitts's Law [25] targeting time of these application zones, as well as

making them easier to find [26].

4.3 Improved Accessibility of Recently Used Windows

When SCOTZ is bound to Alt+Tab, pressing Alt+Tab will bring up the SCOTZ

interface as normal, but repeated presses of Tab will cycle through the windows

according to z-order, similar to the implementation of Microsoft Windows Alt+Tab

(see Fig. 6). This provides quick and easy access to recently used windows.

Fig. 6. SCOTZ Using Alt+Tab to cycle through the windows in SCOTZ by z-order. A pulsating

red border indicates the currently selected window (indicated by a red arrow in this figure).

4.4 Support for Various Display Sizes

Modern display sizes range from very small (netbooks) to very large or multi-monitor

setups. To accommodate this wide range of display sizes, SCOTZ can either be a full

screen window (see Fig. 4), a smaller window in the centre of the screen, or a smaller

window positioned under the mouse cursor (see Fig. 7). As the design of SCOTZ is

aimed at keeping the application zones in spatially stable locations, positioning the

SCOTZ interface relative to the mouse cursor means that a target can always be

acquired with the same mouse gesture. Previous work has shown that despite some

difficulties in the learning/training phase, mouse gestures can be very efficient and

accurate [27].

Fig. 7. SCOTZ in a smaller display mode, positioned under the mouse cursor.

4.5 Support for Keyboard and Mouse Input

Previous work has shown that while most users prefer mouse-based methods for

window switching, such as the Windows Taskbar, there is a small but significant

subset of users who prefer keyboard-based methods, such as Alt+Tab [2]. Therefore,

SCOTZ has rich options for both keyboard and mouse input.

4.6 Support for Application Launching

SCOTZ provides a single interface mechanism for both window switching and

application launching. After having used SCOTZ for a long period of time, we expect

users to be familiar with the locations of application zones, and if an application has

no open windows associated with it, the application zone is still visible in SCOTZ (for

example, see the Skype, Thunderbird and Window Media Player zones in Fig. 4).

Therefore, it makes sense for these zones to double as efficient application launchers.

Clicking on an empty application zone launches the application.

4.7 Options for Personalization

Personalization of an interface is driven by a variety of motivations [28], such as the

personal goals of the user, accommodation for individual differences, or personal

preference. Users can make several functional personalizations in SCOTZ to

accommodate their personal goals (in addition to choices about layout and input

methods, as presented in previous sections): for example, users can include or exclude

certain applications in SCOTZ, and can customize the rate of growth for application

zones. The appearance of SCOTZ is also customizable: users can change the font size

and type to accommodate various levels of visual acuity, and the colour scheme to

accommodate for various types of colour blindness as well as personal taste and

preference. Also, users can adjust the opacity of SCOTZ (see Fig. 8).

Fig. 8. Different opacity levels of the SCOTZ window, from (a) opaque to (b) almost

transparent.

5 Qualitative Study

A beta version of SCOTZ was given to five volunteers, who were asked to use it for

at least several days. Next, they were given a questionnaire and were interviewed.

Based on the results, we identified five main observations:

1. People did not notice the slight location changes of application zones when

using the spiral treemap layout. Participants commented on never noticing any

location changes of the application zones when the spiral treemap layout was

used, even though gradual changes will have occurred as zones grew and shrunk.

2. No clear preference for either the spiral or the squarified treemap layout. The

spiral layout was the default layout for SCOTZ, but some participants did

(temporarily) switch to the squarified layout. However, there is no consensus on

which layout is preferred. Some participants regarded the squarified layout as

being too unstable (i.e., the application zones move too much), while others really

liked the squarified layout and clearly preferred it over the spiral layout.

3. Even users that mainly used Alt+Tab appreciated the size morphing of the
application zones. Though the size morphing of the application zones does not

seem to have direct benefits for people that mainly use Alt+Tab for switching

between windows, participants commented that it helped them to guide their

attention towards the application they were aiming for.

4. The application launching functionality was only used by some participants,

but it did not bother those who did not use it. The option to use SCOTZ as an

application launcher was only used by some users, yet this functionality did not

bother non-users. If anything, retaining the application zones whilst no windows

are open enhances the spatial stability of SCOTZ's layout.

5. Overriding existing mappings such as Alt+Tab is useful, but risky. Because

SCOTZ was bound to Alt+Tab by default and SCOTZ retained Alt+Tab’s (z-

order) functionality, SCOTZ could be used without any additional learning.

However, cycling to the correct application using SCOTZ (instead of clicking on

the zones/thumbnails with the mouse) can be confusing, because it is harder to

keep track of the selected item (also see Fig. 6). Possible solutions are (1) mapping

SCOTZ under another key combination, (2) not retaining the z-ordering, but

picking an ordering that matches the layout of SCOTZ better, or (3) providing

better feedback on the z-ordering (e.g., with a small strip at the bottom of the

screen showing the full order).

6 Lab Study

We performed a lab study to empirically compare the performance of SCOTZ, the

Microsoft Windows 7 Taskbar, and Alt+Tab in a controlled environment. We chose

the Taskbar and Alt+Tab for comparison because (1) Microsoft Windows is the most

commonly used operating system, and therefore a comparison with the tools available

in Windows 7 is relevant, and (2) these two tools present a challenging condition to

compare SCOTZ against in terms of the key design principles of SCOTZ. The

Windows 7 Taskbar places application icons in stable locations (unless a program is

closed and re-opened), and Windows Alt+Tab provides explicit support for switching

back to recently used windows because it places (the first six) window representations

by their place in the z-ordering of windows, which is very similar to a recency

ordering. We considered including Mac Os X Exposé as another comparison point,

but excluded it because (although beautiful) its target acquisition time necessarily

includes visual search time. In Exposé items do not appear in spatially stable

locations; Exposé’s representation of available windows is altered whenever windows

are moved, opened, or closed, so users can never be certain where their target

windows will appear. Several previous studies (including [2]) demonstrate that this

type of spatial instability reduces target acquisition performance.

6.1 Method

In the experiment, participants were presented with a set of windows in Microsoft

Windows 7, such as a word processor with several documents open, an e-mail

application, a game, a video player, etc. Participants completed a series of tasks in

which they had to switch to a particular window using the Windows 7 Taskbar,

Windows 7 Alt+Tab, or SCOTZ in a successive series of tasks (see Fig. 9). In each

condition, participants were instructed to use one particular switching tool exclusively.

Some windows were prompted often, while others were hardly ever prompted,

following the findings reported in [2]: 80% of switches were to 35% of windows.

Fig. 9. The experimental interface: all windows are on the primary screen on the left, and the

current task is on the secondary screen on the right.

6.2 Design

Switching time and errors (switching to a non-target window) were measured across

three levels of the independent variable interface (Taskbar, Alt+Tab and SCOTZ),

and analysed using a one-way repeated-measures ANOVA. The experiment used a

within-subject design and the order in which the conditions were presented to the

participants was counterbalanced.

6.3 Procedure

At the start of each condition participants were given a verbal explanation and a demo

of the window switching tool used in that particular condition. Participants then

performed a series of 20 practice tasks with the window switcher before starting the

experimental tasks.

At the start of each task, all windows were temporarily hidden from view and the

user was prompted to press a 'Next' button at the centre of the secondary screen.

Pressing this button revealed the next target window on the secondary screen (by

showing the application icon, the window title and a window preview thumbnail of

the target). Next, participants were prompted to click a 'Start' button in the centre of

the primary screen, after which all the windows were unhidden, and participants then

had to switch to the target window. If the participant switched to the incorrect window

nothing happened. In total, participants performed 80 tasks in each condition

(excluding the practice tasks).

After each condition, the participant filled out a short questionnaire regarding the

window switching tool that had just been used.

6.4 Software and Hardware

All the content of the windows used in the experiment was non-modifiable to

minimize distraction, to prevent accidental interaction with the windows, and to allow

for consistent window previews in the window switching tools throughout the tasks.

To prevent learning effects across conditions, three different window sets were

generated, all with unique applications and windows. The window sets were

counterbalanced across the three conditions. Each window set contained 8

applications and 15 windows. For example, one of the window sets contained a PDF

reader (with 4 windows open), a photo editor (3 windows), a presentation editor (2

windows), an HTML editor (2 windows), a music player, an email application, a

command prompt, and a card game.

No window icons that are already in use by well-known applications were used, to

ensure that all participants started off with equal knowledge about the application

icons. This is particularly important for the evaluation of the Windows 7 Taskbar,

which shows only application icons.

The full-screen version of SCOTZ using the squarified treemap algorithm was

used. All application zones in SCOTZ were fixed (i.e., did not change during the

experiment) and were pre-set to reflect the various frequencies with which

applications/windows were switched to during the experiment.

A mouse with an extra side button was used in the experiment, and this side button

was used to invoke SCOTZ.

6.5 Questionnaire

We used the NASA Task Load Index (NASA-TLX)2 to assess perceived workload in

each of the conditions. Two more questions were added to assess the perceived ease

of learning to operate the window switcher (operation) and the perceived ease of

learning window locations (location learning) in the window switcher. Also,

participants were asked to rank the three window switching interfaces from most to

least preferred.

2 http://humansystems.arc.nasa.gov/groups/TLX/downloads/TLX.pdf

6.6 Participants

Twelve people, all university students, participated in the experiment. Age ranged

from 20 to 35 years old (mean 27); two participants were female. All participants

were experienced computer users: computer use was at least 30 hours per week for

each of the participants. Participants were reimbursed with a shopping voucher. The

experiment took approximately 40 minutes to complete.

6.7 Results

Selection Times. We analysed the mean time to switch to a window for each of the

methods (see Fig. 10). The results for the Windows 7 Taskbar are split by Taskbar

button (for applications with only one associated window) and Taskbar thumbnail (for

applications with more than one associated window, where the user first has to select

the application icon and then the window in the fanned out sub-menu, see Fig. 1).

Fig. 10. Window selection times for the various methods. Error bars denote the 95% within-

subject CI [29].

Mean window switching times when using a Taskbar button, a Taskbar thumbnail,

Alt+Tab and SCOTZ are 1.1s, 2.1s, 2.1s and 1.2s, respectively, giving a significant

effect of interface: (F3,33=53.3, p<.001). Post hoc analysis (Bonferroni correction,

α=.05) reveals pairwise differences between all tools (all p <.001) except the Taskbar

button and SCOTZ, and the Taskbar thumbnail and Alt+Tab.

By design, some of the target windows in the experiment were high up in the

Alt+Tab ordering, and others further down, following a nearly uniform distribution

across all possible positions. A detailed analysis of window switching times when

Alt+Tab is used is shown in Fig. 11, which shows the selection times for Alt+Tab

ranked by position of the target window in the Alt+Tab ordering, and split by input

method (using the keyboard to sequentially step through the list of thumbnails, or

using the mouse to click on the target thumbnail). Three observations are apparent

from Fig. 11: (1) window selection time when using Alt+Tab with mouse input is

relatively constant across positions of the target thumbnail, (2) window selection time

when using Alt+Tab with keyboard input increases linearly as the position of the

target thumbnail in the list of windows becomes higher (r=.963, p<.01), and (3)

Alt+Tab with keyboard input is very efficient for switching back to the previously

used window (position 1 in the ordering); the mean window switching time is 0.9

seconds for this particular type of window switch, which is shorter than the mean

switching times for both the Taskbar and SCOTZ. However, this performance benefit

quickly disappears when the target window is further down the list of windows.

Fig. 11. Window selection times for Alt+Tab sorted by position of the target window in

Alt+Tab and split by mouse and keyboard input. Participants almost never used the keyboard to

select a window further than position 5 in the Alt+Tab ordering, hence there is no (reliable)

data for this value.

Errors. Mean error rates for Taskbar button, Taskbar thumbnail, Alt+Tab and

SCOTZ are 0.8%, 5.8%, 2.8% and 2.7%, respectively. The difference between these

switching times is significant (F3,33=5.2, p<.01). Post hoc analysis (Bonferroni

correction, α=.05) reveals a pairwise difference between the Taskbar button and

Taskbar thumbnail (p< .05).

Subjective Measures. The NASA-TLX worksheet results showed significantly

different ratings for mental demand, effort, location learning, frustration (Friedman

test, all p<.001), and operation (p<.01), also see Fig. 12. Post hoc pairwise

comparisons (Bonferroni correction, α=.05) reveal significant differences between

Alt+Tab and SCOTZ on all five aforementioned factors, between the Taskbar and

Alt+Tab on all these factors except frustration, and between the Taskbar and SCOTZ

on the mental demand and location learning factors. All participants preferred

SCOTZ the most, and 9 out of 12 participants preferred Alt+Tab the least (i.e., 3 out

of 12 participants preferred the Taskbar the least).

Fig. 12. Questionnaire results; lower ratings are better. * Difference is significant, p<.01. **

Difference is significant, p<.001.

6.8 Discussion

Window Switching Times. SCOTZ was faster than Taskbar thumbnails and

Alt+Tab. Although there was no significant difference between SCOTZ and Taskbar

buttons, Taskbar buttons are not available when there is more than one window

associated with the application (forcing users to resort to Taskbar thumbnails).

Subjective Measures. All participants ranked SCOTZ as the most preferred tool.

Users perceived SCOTZ as less mentally demanding, costing less effort, and less

frustrating than Alt+Tab, as well as finding it easier to learn to operate and to learn

item locations in SCOTZ compared to Alt+Tab. Also, window locations in SCOTZ

were perceived as easier to learn that those on Taskbar, and SCOTZ was perceived as

less mentally demanding than the Taskbar. These two factors are likely related:

SCOTZ is less mentally demanding because it is easier to learn locations, thereby

reducing the cognitive burden for users. It is interesting that users found locations in

SCOTZ easier to learn than locations of items on the Taskbar, as in both cases these

were completely stable in the current study.

Alt+Tab. Overall, Alt+Tab was unpopular, with 75% of participants ranking it as

least preferred. Alt+Tab was also judged to be more mentally demanding and costing

more effort than the Windows Taskbar. Last, users found it harder to learn to operate

and learn item locations in Alt+Tab than with the Taskbar. One participant

commented that he/she “hated how Alt+Tab icons moved around”. However, these

results for Alt+Tab might have been negatively influenced by the fact that users had

to use Alt+Tab for all window switches in the experiment. Our results show that

Alt+Tab is very efficient for switching back to the most recently used window, with

this particular type of switch outperforming both the Taskbar and SCOTZ. One

participant commented “I use Alt+Tab to switch between the most recent windows,

and other methods for older windows.” Such a 'mixed approach', i.e. using Alt+Tab to

switch back to the most recently used window, but another method for other types of

window switches might lead to higher user satisfaction than the 'enforced' use of

Alt+Tab for all window switches that was the case in the experiment.

Comparison to other window switching tools. Our experiment compared user

performance with SCOTZ against that with the Windows 7 Taskbar and Alt+Tab.

Further work is needed to compare SCOTZ performance with that of the wide range

of research and commercial tools reviewed in Section 2. However, we believe

SCOTZ’s key design goals – supporting spatially stable means for acquiring windows

and applications, and providing support for rapidly retrieving frequently and recently

retrieved windows – are important for enabling high performance window acquisition.

In particular, inconstant spatial locations are likely to force users to resort to time

consuming visual search (to seek a target) or decision making (to calculate the effect

of an algorithm, for example).

7 Conclusions and Future Work

While previous work has found that window revisitation is very common, no tools

developed so far explicitly support this revisitation. We used this finding to inform

the design of a new window switcher called SCOTZ, which supports window

revisitation by increasing the size of the most switched-to applications, and keeping

them in positions that are as stable as possible.

Our lab study demonstrates the performance benefits of SCOTZ over two common

window switching tools: the Microsoft Windows 7 Taskbar and Alt+Tab. This study

also generated valuable insights regarding the most recent window switching tools

available in Microsoft Windows 7.

More research into the suitability of SCOTZ for Alt+Tab users could shed more

light on how these users can best be supported in their window switching activities.

Interestingly, even Alt+Tab users reported benefits from the size morphing of the

application zones in SCOTZ, but retaining the Alt+Tab order in SCOTZ did confuse

these users. Ideally, SCOTZ should retain the rapid back-and-forth switching between

two windows that Alt+Tab offers (see results of the lab study) while also assisting

users in finding items further down the Alt+Tab ordering.

Finally, we are developing a new treemap algorithm to better suit SCOTZ than

existing algorithms, in terms of enhanced spatial stability of the application zones.

References

1. Hutchings, D.R., Stasko, J.: Revisiting display space management: understanding current

practice to inform next-generation design. In: Proc. of GI ’04. pp. 127–134. Canadian

Human-Computer Communications Society (2004)

2. Tak, S., Cockburn, A., Humm, K., Ahlström, D., Gutwin, C., Scarr, J.: Improving window

switching interfaces. In: Proc. of INTERACT ’09. pp. 187–200 (2009)

3. Bannon, L., Cypher, A., Greenspan, S., Monty, M.L.: Evaluation and analysis of users’

activity organization. In: Proc. of CHI ’83. pp. 54–57. ACM Press (1983)

4. Henderson, D.A., Card, S.: Rooms: the use of multiple virtual workspaces to reduce space

contention in a window-based graphical user interface. ACM Trans. Graph. 5(3), 211–243

(1986)

5. Smith, G., Baudisch, P., Robertson, G., Czerwinski, M., Meyers, B., Robbins, D., Horvitz,

E., Andrews, D.: Groupbar: The taskbar evolved. In: Proc. of OzCHI ’03. pp. 34–43 (2003)

6. Bardram, J., Bunde-Pedersen, J., Soegaard, M.: Support for activity-based computing in a

personal computing operating system. In: Proc. of CHI ’06. pp. 211–220. ACM Press

(2006)

7. Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P., Hutchings, D., Meyers, B.,

Robbins, D., Smith, G.: Scalable fabric: Flexible task management. In: Proc. of AVI’04. pp.

85–89. ACM Press (2004)

8. Robertson, G., van Dantzich, M., Czerwinski, M., Hinckley, K., Thiel, D., Robbins, D.,

Risden, K., Gorokhovsky, V.: The task gallery: A 3D window manager. In: Proc. of CHI

’00. pp. 494–501 (2000)

9. Kaptelinin, V.: Umea: translating interaction histories into project contexts. In: Proc. of

CHI ’03. pp. 353–360. ACM, New York, NY, USA (2003)

10. Dragunov, A.N., Dietterich, T.G., Johnsrude, K., McLaughlin, M., Li, L., Herlocker, J.L.:

Tasktracer: a desktop environment to support multi-tasking knowledge workers. In: Proc.

of IUI ’05. pp. 75–82. ACM (2005)

11. Oliver, N., Smith, G., Thakkar, C., Surendran, A.: Swish: Semantic analysis of window

titles and switching history. In: Proc. of IUI ’06. pp. 194–201. ACM Press (2006)

12. Oliver, N., Czerwinski, M., Smith, G., Roomp, K.: Relalttab: assisting users in switching

windows. In: Proc. of IUI ’08. pp. 385–388. ACM (2008)

13. Xu, Q., Casiez, G.: Push-and-pull switching: window switching based on window

overlapping. In: Proc. of CHI ’10. pp. 1335–1338. ACM (2010)

14. Shneiderman, B.: Direct manipulation for comprehensible, predictable and controllable user

interfaces. In: Proc. of IUI ’97. pp. 33–39. ACM, New York, NY, USA (1997)

15. Tashman, C.: Windowscape: A task oriented window manager. In: Proc. of UIST ’06. pp.

77–80. ACM Press (2006)

16. Bernstein, M., Shrager, J., Winograd, T.: Taskposé: exploring fluid boundaries in an

associative window visualization. In: Proc. of UIST ’08. pp. 231–234. ACM (2008)

17. Gaylin, K.B.: How are windows used? Some notes on creating an empirically-based

windowing benchmark task. In: Proc. of CHI ’86. pp. 96–100 (1986)

18. Hutchings, D., Smith, G., Meyers, B., Czerwinski, M., Robertson, G.: Display space usage

and window management operation comparisons between single monitor and multiple

monitor users. In: Proc. of AVI’04. pp. 32–39. ACM Press (2004)

19. de Chiara, R., Erra, U., Scarano, V.: A visual adaptive interface to file systems. In: Proc. of

AVI ’04. pp. 366–369. ACM (2004)

20. Grudin, J.: Partitioning digital worlds: Focal and peripheral awareness in multiple monitor

use. In: Proc. of CHI ’01. pp. 458–465 (2001)

21. Kumar, M., Paepcke, A., Winograd, T.: Eyeexpose: Switching applications with your eyes.

Tech. rep. (2007)

22. Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM

Trans. Graph. 11(1), 92–99 (1992)

23. Tu, Y., Shen, H.: Visualizing changes of hierarchical data using treemaps. In: IEEE

Transactions on Visualization and Computer Graphics. pp. 1286–1293 (2007)

24. Bruls, M., Huizing, K., Wijk, J.v.: Squarified treemaps. In: Proceedings of Joint

Eurographics and IEEE. pp. 33–42. IEEE Press (2000)

25. Fitts, P.M.: The information capacity of the human motor system in controlling the

amplitude of movement. Journal of Experimental Psychology 47, 381–391 (1954)

26. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and

how do they do it? Nature Reviews Neuroscience 5(6), 495–501 (2004)

27. Dulberg, M.S., Amant, R., Zettlemoyer, L.: An imprecise mouse gesture for the fast

activation of controls. In: Proc. of INTERACT ’99. pp. 375–382 (1999)

28. Blom, J.: Personalization: a taxonomy. In: Proc. of CHI ’00 extended abstracts. pp. 313–

314. ACM (2000)

29. Masson, M.E.J., Loftus, G.R.: Using confidence intervals for graphically based data

interpretation. Canadian Journal of Experimental Psychology 57(3), 203–220 (2003)

