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Abstr act. Selective modeling is suggested as a technique that encourages 
designers to mix exploratory, analytical, and empirical design activities in 
interaction design. The co-development of models and prototypes of interactive 
systems is proposed to support a better balance between formal and explorative 
design approaches. Models serve to inform design decisions but also to analyze 
emerging alternatives of prototypical implementations.  
Task migratability is a usability design principle that describes how control for 
task execution is transferred between system and user. Refined flexible task 
allocation is rarely achievable through pure top-down decomposition as used in 
many model-based approaches. The paper shows at the example of HOPS 
models how selective modeling can be applied to develop prototypes in a 
deliberated evolutionary way by using models to express different viewpoints 
and to explore design options at different levels of granularity.  

Keywords: User-Centered Design, Model-Based Design of Interactive 
Systems, Exploratory Design, Tools for Design, Modeling, Prototyping, Design 
Rationale. 

1   Introduction 

Task migratability describes the ability of an interactive application to pass control 
for the execution of a task so that it becomes either internalized by the user or the 
application or shared between them [1]. The application of this usability principle to 
the design of interactive systems promotes the implementation of dynamic function 
allocation. Safety-critical systems such as the control of aircrafts, ships or chemical 
plants are complex and well-accepted examples for a need of dynamic function 
allocation. Throughout this paper a simple and mundane example is used for 
illustration. It allows for discussion without requiring specific domain knowledge.  

In order to shape an interactive artifact that supports task migration, designers1

                                                           
1 In this paper, the term designer refers to all active stakeholders in the design process.  

 
must develop a clear understanding about current tasks, artifacts, habits, and 



situations. They must create hypotheses about appropriate grades of automation in 
possible future situations and how to support them by corresponding user interfaces. 
They also need to understand the nature of transition processes: why and how do 
people change their current practices? One can consider task migratability as a 
principle that encourages designers to develop a differentiated picture of human 
activity and the role of artifacts. Of course, this has to be reflected in the design 
processes themselves. Task migratability is neither well supported by analytical 
approaches favoring a top-down refinement of models to implementations nor by 
approaches focusing mainly on the application of empirical means. 

The paper suggests selective modeling as a technique to intertwine exploratory, 
analytical, and empirical design activities in a more effective way. This technique can 
be considered as a deliberate change to assumptions and practices in model-based 
design to support the integration with other user-centered design approaches.  

In selective modeling, designers co-develop prototypical implementations of the 
interactive artifact and models describing different perspectives on it. For example, 
envisaged task models help to derive requirements of the interactive system under 
consideration. Or, exploratory prototypes are built and then empirically tested or 
analyzed in more depth by the creation of models. In the suggested approach, models 
and implementations are considered as fragmentary and “open” design representations 
which are used to shape interactive artifacts. Each representation evokes certain 
thoughts and actions. Their co-development helps designers to switch between 
different perspectives and to explore design alternatives in different contexts. It is 
acknowledged that design activities in a user-centered design process can happen in 
any order but must be linked by evaluation steps (e.g. [2]). 

In particular, the paper investigates how the co-development of models and proto-
types supports flexible task allocation. Models and prototypes have specific charac-
teristics and serve different purposes in the suggested approach. 

– Models describe selected aspects of current and envisaged tasks, artifacts and 
roles. 

– Models inform the development of prototypes and other models. 
– Models serve to analyze prototypes. 
– Prototypes are implementations of design ideas and can be tested for utility, 

usability and user experience. 
– Prototypes (and their use) inform the development of models to get a richer 

task understanding. 
– Prototypes and models are deliberately underspecified in their behavior. They 

are supplemented by other design representations to explore alternative design 
options. 

The general approach is “instantiated” in the paper by the use of Higher-Order 
Processes Specifications (HOPS), a universal specification formalism with high-level 
concepts for describing interaction from different viewpoints [3,4]. Tool support 
makes it possible to animate HOPS models and to map them to Java implementations. 
Selective modeling is supported by techniques such as model coupling, model-guided 
prototyping and deliberated underspecification. Throughout the paper the mastermind 
game serves as example to illustrate suggested ideas.  



The paper is structured as follows. In the next section, task migratability is 
considered in depth and examples are given. Sect. 3 discusses different design 
approaches in HCI and their underlying understandings of tasks and human activity in 
general. Selective modeling is introduced in Sect. 4. It applies a more liberal task 
understanding on design activities themselves and suggests adaptations to current 
model-based design practices because flexible task allocation in systems is rarely 
achievable by pure top-down refinements of task models to implementations. Sect. 5 
instantiates the general approach. The HOPS formalism and tool support is applied to 
the example problem to demonstrate a co-evolution of models and prototypes in order 
to explore task control options at different levels of granularity. The paper closes with 
a summary and future work. 

2   Task Migratability 

Although almost a truism, proper task allocation is still one of the most important 
aspects of human-computer interaction. Task migratability is a usability principle that 
supports dynamic task allocation. It “concerns the transfer of control for execution of 
task between system and user. It should be possible for the user or system to pass 
control of a task over to the other or promote the task from a completely internalized 
one to a shared and cooperative venture” [1]. Systems that allow dynamic allocation 
of tasks make possible more adequate responses to actual conditions. On the one 
hand, task migratability is based on task conformance describing the degree to which 
a system covers the users’ tasks and represents their task understanding [1]. On the 
other hand, designers need to acquire a deeper understanding of what the tasks of the 
users might be in certain situations and how to support their achievement.  

 
Fig. 1. A tender specifications created by the principal and priced by a bidder. 

User interfaces of applications that offer different task allocation options 
(configurations) are typically more complex. This not only concerns the represen-
tation of the functionality of each configuration and the representation of relevant 
information for the users to achieve their actual goals. It also concerns the represen-
tation of the actual and of possible configurations and the design of control transfer. 

Sometimes a poor representation of a certain configuration may easily cause 
problems. Sometimes, subtle modifications to the user interface may already be 
sufficient to support different configurations. For example, an interactive application 
for managing tender specifications as depicted in Fig. 1 may support different modes 



for calculating bids. In one mode the application calculates the sum of the total prices 
of each position in the specifications automatically. In another mode the sum is 
calculated as well but can be modified by the user. In the first mode the bid entry may 
be implemented as output field, in the second as input/output field.  

2.1   Cur rent and Envisaged Wor lds  

“Design requires two models of the world: a current one and a future one. Design is a 
goal-directed activity involving deliberated changes intended to improve the current 
world, so the need to model the future in design is unquestionable. In practice, models 
of possible future worlds need to be based on models of the current world” [5].  

No matter how simple design problems may appear at first glance, a deeper 
analysis of current practices may reveal more subtle issues. To illustrate this point, let 
us go back to the example of tender specifications as they are e.g. used in the building 
sector (see Fig. 1). In order to find a builder, a principal creates the specifications for 
the project. Bidders fill in unit prices, total prices and the bid. Then, the principal 
organizes a submission where the bids are made public to all bidders. Afterwards he 
checks the details of each bid for calculation errors and makes a decision. Let us 
assume that a computer artifact has to replace paper work. It seems to be obvious that 
the calculation of the total prices and the bid should be done by a computer. However, 
it was not uncommon that bidders miscalculate with intention in order to cover their 
real bids in the public submission. Against this background the design problem 
appears in a different light. Even if not all will be implemented, different task 
allocation options should be considered at least. A design process which is guided by 
the principle of task migratability increases the sensitivity of the designers to possible 
effects of allocation decisions at different levels of granularity on the resulting 
interactive artifact (in particular, on its user interface) and on the behavior of the 
users.  

Dearden et al. [6] point out that allocation is not a ‘zero-sum game’. It rather 
should be considered as a transformation of work that the human must perform and 
that does not necessarily result in a reduction of workload. Unintended, in some cases 
even undesired practices can emerge. An example is given in [7] where a captain of a 
modern airliner is cited with the words “You never know exactly what will be the 
result of flipping a switch or setting in a new parameter, so we don’t interact with [the 
automation] during automatic landing. We simply don’t know what it will do.”  

Fortunately, it is not possible to fully predict the future and sometimes concerns 
about design effects are overdone. For example, the introduction of software systems 
to manage tender specifications may result in a decline of intended miscalculations by 
bidders regardless whether these programs allow a manipulation of bids or not. 
However, this does not release designers from their responsibility for future practices.  

   
It can be regarded as common ground in user-centered design that the development 

of interactive artifacts has to be embedded in processes of understanding current 
working practices and envisaging/designing future practices and that such processes 
are supported by the creation and use of external representations. However, Sect. 3 



will show that design approaches can differ in their underlying assumptions about 
tasks and human activity, about models and how to use them, about modeling 
techniques and their combination with other design techniques.   

2.2   The Example Problem  

 
Fig. 2. a) Mastermind as board game with the hidden code in front of the picture, b) code-

breaker making a guess, c) unintended use of the board. 

Mastermind is a logic game for two players in the roles of the codemaker and the 
codebreaker. At the beginning the codemaker sets a code (a hidden combination of 
colored pegs) which the codebreaker has to discover. Each guess of the codebreaker is 
marked by the codemaker. Usually, a black marking peg is used to indicate that a peg 
has the right color and the right position, a white peg tells the codebreaker that one 
peg is of a color which is in the solution, but it is in the wrong position. The game 
board in Fig. 2 gives the codebreaker a maximum of seven trials to solve the puzzle.  

 
Fig. 3. Online versions of the game2

Mastermind is a simple but still popular game. There are a number of online 
versions available (see Fig. 3). In most of them, the computer acts as codemaker and 
the user as codebreaker. The example problem we will use throughout the paper is 
about how to support flexible task allocation in an interactive version of the game. It 
is used to play with the idea of selective modeling as a technique to combine different 
means such as fragmentary models and prototypical implementations in a deliberate 

. 

                                                           
2 http://rezepte.nit.at/online_spiele/mastermind/mastermind.html 
http://www.mathsisfun.com/games/mastermind-game.html 
http://www.gamesbasis.com/mastermind.html  (last accessed January 2011) 



way in order to get a refined and situated understanding about work and to shape 
interactive artifacts accordingly. It is also used in the next section to illustrate 
common ideas in HCI which form the basis for the suggested approach.    

3   Roots of Selective Modeling 

Typical descriptions about the “history” of HCI describe the 1980s and early 1990s as 
a formative period with emphasis on cognitive aspects of single user’s tasks. Since the 
1990s, the focus has changed to supporting cooperation and communication between 
users (e.g. [8]). This shift has been accompanied by changes in the understanding of 
goal-directed human activity. In the following, task-based and resource-based 
conceptions of human-computer interaction are reviewed. 

3.1   Task-Based Conceptions  

In task-based approaches to HCI, tasks are the unit of analysis and design to describe 
work in current and envisaged work systems. A task is seen as a mechanism by which 
intended changes in application domains are achieved. It is assumed that people 
possess and recruit knowledge about tasks they have previously learned and 
performed in a given domain. It is furthermore assumed that task knowledge can be 
analyzed, modeled and predicted [9]. Cognitive approaches such as HTA [10], GOMS 
[11] or TKS [9] describe task knowledge in terms of hierarchical task decomposition, 
goals, actions, plans, task domain objects etc. Task analysis refers to the process of 
identifying and examining the tasks that must be performed by users when they 
interact with systems. It is used in HCI to provide an idealized, normative model of 
tasks that should be supported by computer artifacts. In task design, models are used 
to develop hypotheses of future tasks and their execution.  

To illustrate common ways to notate and use task models, Fig. 4 shows a simple 
analysis model of making a guess in mastermind. The task is hierarchically 
decomposed and temporal relations are added to describe in which order sub-tasks 
have to be executed. Let us assume that the model is the result of observing some 
games that were played with the board of Fig. 1. The codebreakers placed pegs on the 
board but sometimes removed them again. The codemakers were observed to set 
marking pegs only. The example may be sufficient to point out that analysis models 
can only describe small parts of behavior [5]. The presented view depends on who 
produced the model and for what purposes. For example, the model in Fig. 4 could 
have been produced to inform the design of an interactive version and the designers 
may have found it sufficient to look at observable behavior. The gray areas in the 
figure indicate possible design decisions. First, action sequences <Remove peg, Set 
peg> as observed in the current task situation are replaced by the operation ‘Replace 
peg’ (as e.g. in the version of Fig. 3b). Second, the computer takes the role of the 
codemaker. However, the task model in Fig. 4 could also be useful for evaluation. If it 
is used to reflect available user actions in the game version of Fig. 3a) it can reveal 
that users are not supported in removing pegs from the board.  



 
Fig. 4. A hierarchical task model describing observed behavior for a guess in mastermind.  

Gray areas indicate the transformation to a design model.  

3.2   Resource-Based Conceptions  

Above mentioned approaches put much emphasis on mental representations that 
people develop and employ to achieve desired states in the world. However, the world 
should not be seen as “a largely stable collection of objects and events to be observed 
and manipulated according to the internal mental states of the individual” [12]. 
Resource-based conceptions of human activity such as ‘situated actions’ [13], 
Distributed Cognition [14], or Activity Theory [15] give far more attention to the 
interplay between actors and artifacts. It is assumed that the resources which are 
available in an actual situation shape the actors’ behaviors. People experience their 
environment as activity spaces and change them deliberately according to their goals. 
The deeper their understanding of the environment the more fine-tuned are their inter-
ventions in order to trigger certain behaviors. As a consequence, plans (e.g. task 
models) are seen as one resource among others. They can guide but not fully control 
behavior.  

Analysis and design activities that are guided by this attitude acknowledge the deep 
interplay between internal and external artifacts and the variety of ‘control flows’. Of 
course, this also supports a deeper reflection of task migratability of interactive 
systems. To give an example, let us look back at Fig. 2. In picture b), the codebreaker 
uses his fingers to mark some pegs in order to make the next guess. Although the 
mastermind game was introduced as a logical game in Sect. 2.2 (and so it is perceived 
by many people indeed3

                                                           
3 On the webpage of the version depicted in Fig. 3b): “Try different color combinations and use 

your brain to figure it out”. 

), players use besides cognitive skills a variety of external 
means in order to succeed. They position pegs with certain colors near the board. 
Sometimes two or more people are the codebreaker and they exchange their thoughts 



about the right code. When the codebreaker is a novice to the game, the codemaker 
may help and so on. An interactive mastermind game could enable a single person to 
play or could allow people in different locations to play with each other. However, 
designers should also think about the fine-grained details in order to support different 
usage situations? In [16] human-computer interaction is analyzed as distributed 
cognition and six different types of information structures are identified that 
interactive artifacts can represent to users as possible resources for action: plans, 
goals, possibilities, history, action-effect relations, and states.  

Resource-based approaches give more plausible explanations of effects such as 
appropriation and unintended use of artifacts because they take a more liberal view on 
goal-directed behavior than task-based conceptions. The latter term refers to situations 
where people use artifacts in ways which were not intended by the designers. An 
example is given in Fig. 2c). The two years old child has no idea about the goal of the 
game but tries to place pegs on the holes on the board at all. It is more a matter of 
dexterity. What one can (re-)learn from the child is that there is no need not to use 
holes in ‘free rows’ on the board. The analysis of phenomena such unintended use can 
help to broaden the view on current activity spaces and prevent designers from 
introducing unnecessary constraints on future activity spaces. As it turned out in the 
analysis of the mastermind game there are in fact people who use free rows as a 
resource for holding pegs which they believe are part of the solution. Many available 
interactive versions such as those in Fig. 3 do not give the users (codebreakers) access 
to free rows. A more fine-grained transfer of control would be more convenient. 
Allocation of function is considered as a resource allocation problem in [6]. 

3.3   Related User -Centered Design Approaches 

In User-Centered Design (UCD), many approaches follow a more task-based concep-
tion of work. For example, formal task models and top-down refinement are used in 
most model-based design approaches to derive user interface specifications and 
prototypes by applying techniques from software engineering [17, 18]. In addition, 
there is often no distinction between task analysis models and task design models. 
Consequently, modeling activities easily become specification-driven as we have 
shown in [3]. In contrast, Scenario-Based Design [19] or Contextual Design [20] 
encourage designers to ground their design in discussions of different, even 
conflicting perspectives on current working practices. These approaches rather 
support resource-based ideas. 

Design approaches can furthermore differ in their acceptance and use of 
formal/semi-formal/informal descriptions and in their assumptions about complete-
ness and correctness of models. They favor analytical over empirical techniques or 
vice versa. They support design rationale or not, and generally, put different emphasis 
on different types of design activities. For example, in iterative design empirical 
techniques such as prototyping, usability tests and iterative development in the field 
are preferred because it is assumed that the effects of most design choices and 
emerging artifacts cannot be predicted well enough by analytical means [21,22].  

 



HCI is described as multidisciplinary but also fragmented field [8]. Of course, this 
fragmentation must have effects on researchers and practitioners. On the one hand, 
isolation “from some portion of the field’s foundations” is often to be found among 
them as a coping strategy [8]. On the other hand, the need for amalgamating different 
UCD methods and techniques is well-accepted. To give just two examples: in a 
warning about iterative design in [1] it is written that “the ideal model of iterative 
design, in which a rapid prototype is designed, evaluated and modified until the best 
possible design is achieved…is appealing” but it is also important to be able to 
overcome bad initial design decisions or to understand the reasons behind usability 
problems and not just detect the symptoms. It is recommended to use iterative design 
“in conjunction with other, more principled approaches to interactive system design.” 
Fischer et al. [23] point out that in Design Rationale “argumentation has been 
considered in isolation from the activity of solution construction” but that 
construction and argumentation have to be unified.  

Although UCD practices have been refined over the years (e.g. [24]) the question 
of how to feed back results of evaluation steps into design in an effective way still 
remains. In this paper, we explore how deliberate changes to assumptions and 
practices in model-based design support a move towards a resourced-based 
conception of human-computer interaction and the integration with other empirical 
and analytic design practices in order to develop more flexible interactive systems.  

4   Selective Modeling – Main Ideas 

We suggest the term selective modeling to describe design practices where designers 
use models as resources for developing interactive artifacts. In other words, we see 
the design process itself through the glasses of a resourced-based conception of work. 
Designers deliberately shape their view on the design space by creating different 
types of representations about tasks, actors or artifacts. They help to develop an 
understanding about current practices and about possible future usage situations of the 
system under design that emerges as a “side effect” of the co-evolution of models. 

If we apply this view on model-based design the overly dominant role of 
(envisaged) task models on the creation of systems specifications and prototypes is 
challenged. Additionally, the understanding of models as selective and fragmentary 
descriptions of phenomena from certain points of view is more emphasized. Task 
models describe how to act in the world to achieve a certain goal. Artifact models 
describe domain objects in terms of attributes and actions serving different purposes 
in different contexts. Dialog models, in particular, may describe possible usage 
scenarios of interactive artifacts in terms of visible information and enabled action 
sequences. A prototype represents concrete human-computer interactions. It is 
represented by code in a programming language and is experienced in a different way 
than abstract models. Every representation can be considered as a design artifact 
which evokes certain responses.  



 

Fig. 5. a) Modified Star Life Cycle [2], b) co-development of design representations. 

While diagrams such as the one depicted in Fig. 5a) illustrate the interleaving of 
design activities and the central role of empirical and analytic evaluation steps in 
UCD, Fig. 5b) focuses on the co-evolution of design artifacts that must be achieved. 
The selection and use of models by the designers depend on the objectives and the 
constraints of the actual design situation. For example, models of tasks, artifacts and 
roles can be coupled with dialog models in order to explore resource allocation 
options and to refine the dialog models. A formal systems specification can be 
evaluated by a corresponding prototype. Models can be used or developed for the 
assessment of emerging implementations. Changes to these models then can feed 
back into later design steps and so on. Selective modeling supports the intertwinement 
of different design activities by encouraging designers to use representations in a 
focused way. 

– Design representations (e.g. formal models and prototypes) describe selected 
aspects of the design problem from different perspectives and at different 
levels of granularity. 

– Representations are deliberately underspecified in order to avoid premature 
design commitments, e.g. a premature allocation of resources. 

– Different representations are partially coupled to explore design alternatives, 
to inform design decisions and to enable testing and reflection of implemen-
tations. Such couplings drive the co-evolution of representations. 

The next section explores these ideas further by using the HOPS formalism. 

5   Selective Modeling with HOPS 

HOPS (Higher-Order Processes Specification) is a universal specification formalism 
with tool support for describing interaction from different viewpoints and at different 
levels of abstraction. A short introduction to HOPS is given in Sect. 5.1. For more 
details see [3,4,25]. Sect. 5.2 explains how HOPS supports selective modeling 
techniques. In particular, model coupling, model-guided prototyping and deliberated 
underspecification are demonstrated at the example of designing an interactive 
mastermind game. 



5.1   Introduction to HOPS 

In HOPS, systems are considered as compositions of interacting sub-systems. They 
are specified by processes. The structure of a process is determined by components, 
operations and sub-processes. Operations refer to the smallest units of behavior that 
are of interest in the actual modeling context. The behavior of a process is defined by 
a set of sequences of operations. Sub-processes of a process P refer to partial 
behaviors of P. They are useful for creating structures (e.g. task hierarchies) or 
behavioral variants. Sub-processes can also be used to specify states of components. 
Components as instances of previously defined processes describe sub-systems. 
Processes without components are called basic processes. Their operations are 
defined by names only. Processes with components are called higher-order processes. 
An operation of a higher-order process describes either new emerging behavior or it is 
an abstraction of a sequence of operations of components. By using higher-level 
operations and sub-processes, a process can partially control the otherwise in-
dependent behavior of its components.  

Basic Processes and Process Animation. The basic process Guess_peg given below 
is defined by three operations (lines 3-5) and three sub-processes Option1-3. Each 
sub-process describes a variant for placing a peg in the mastermind game. The first 
two options correspond to the variants in Fig.4. 
 1  PROCESS Guess_peg 
 2  OPS 
 3    setPeg(s: string), 
 4    removePeg, 
 5    replacePeg(s: string), 
 6  SUB PROCESSES 
 7    Option1 IS setPeg(?) ; (removePeg ; setPeg(?))*, 
 8    Option2 IS setPeg(?) ; replacePeg(?)*, 
 9    Option3 IS setPeg(?); ((removePeg ; setPeg(?)) [] replacePeg(?))*, 
10  END PROCESS 

The behavior of (sub-)processes is specified by partial equations. Temporal 
operators - as known e.g. from CCT [17] - are used to describe constraints on 
operation sequences (lines 7-9). 
Temporal operators in HOPS:  ; sequence   #n n-fold iteration 

 [] alternative  […] option 
 ||| concurrency  |> disabling 
 */+ iteration   [> interruption 

The HOPS tool offers interactive model animation. At each step of an animation 
run, the user can choose to execute one of the enabled HOPS operations (presented by 
buttons in Fig. 6 that are attached to the actual state/node in the animation tree). Each 
path of the animation tree represents the prefix of a valid operation sequence of the 
model. The user can “jump” between nodes of the tree to further explore specified 
behavior.   



     
Fig. 6. Interactive animation trees for sub-processes Option1 and Option2 of Guess_peg. 

Mapping between HOPS Models and Object-Or iented Implementations. The 
HOPS tool enables an automated mapping of HOPS process instances to Java objects. 
If an operation is executed during model animation the corresponding Java method 
calls are executed as well (see Fig. 7). In the example given below, instances of 
process Peg_hole are linked to Java objects of class PegHole, HOPS operation init is 
mapped to the constructor method, operation setState to method setState and so on. 
The process describes peg holes on a mastermind board. It has a local variable (line 2) 
to hold the state: holes are empty or contain a peg of a specific color.  
 1  PROCESS Peg_hole 
 2  VAR state: string, 
 3  OPS 
 4    init IS objId.fCall(new,[this],["PegHole","empty"]), 
 5    setState(s: string) IS void.fCall(setState,[this],[s]), 
 6    getState IS state.fCall(getState,[this],[ ]), 
 7    quit, 
 8  SUB PROCESSES 
 9    Peg_hole IS init ; (setState(?) [] getState)* [> quit,   
10  END PROCESS 

 

Fig. 7. The animation of operation sequence 〈init, setState(“green”), setState(“yellow”), 
setState(“empty”), getState, quit〉 controls the associated Java implementation of a peg hole. 

Higher -Order  Processes contain components that are themselves process instances. 
In Fig. 8, process Peg_dialog contains two components: sm is an instance of process 
Peg_hole - embedded in a test frame, tm is an instance of Guess_peg that behaves like 
its sub-process Option2 (encircled 3 in Fig. 8). The bottom panel of the animator tool 
in the figure visualizes the hierarchical component structure (component tree). Sub-
processes and operations of higher-order processes describe the interaction of their 
components. Higher-level operations describe new emerging behavior or conflate 
sequences of components’ operations into new atomic behavioral units to increase the 
level of abstraction in a description. Operation replacePeg in Fig. 8 (encircled 1) is 
e.g. an abstraction of sequence 〈tm.replacePeg, sm.setState〉.  



 
Fig. 8. Specification of higher-order process Peg_dialog (bottom right) and screenshot of 

the HOPS-animator after animating sequence 〈init, setPeg(“green”), replacePeg(“red”)〉. 

The HOPS notation makes it possible to describe a system from different view-
points and to couple these views by using higher-order processes. In Fig. 8, 
component tm reflects a task perspective while component sm describes a part of an 
artifact. HOPS supports both bottom-up as well as top-down thinking. On the one 
hand, the behavior of a process is determined by its components. On the other hand, it 
has partial control over the components. Partly redundant models can be used to 
enable description of emerging constraints and of distributed control (see e.g. [4]). For 
example, higher-level operation replacePeg in Fig. 8 is only enabled in an animation 
run if operations replacePeg and setState are enabled in the components tm and sm. 
Additionally, higher-order processes focus on and control only some operations of 
their components. The control of operation getState remains, for example, in 
component sm. This is also to be seen in the bottom left part of Fig. 8 (encircled 2) 
where getState is enabled in node sm of the component tree. In other words, the 
behavior of a higher-order process P is defined by a set of sequences of operations 
which are either defined by P itself or which are defined by components but not 
controlled by P. 

5.2   Selective Modeling Techniques Suppor ted by HOPS 

Model coupling, model-guided prototyping and deliberated underspecification are 
selective modeling techniques that support resource-based design ideas, the applica-
tion of analytic and empirical means, the co-evolution of design representations and 
the exploration of design options. Higher-order processes implement model coupling. 



Mappings between HOPS processes and Java classes as explained in the previous 
section can be used for model-guided prototyping. Deliberated underspecification is 
facilitated by partly redundant descriptions with distributed control in HOPS. The 
ideas are illustrated by considering aspects the example problem at different levels of 
granularity: the design of an interactive peg hole, of an interactive peg row, and of the 
whole mastermind board.  

Peg Holes – Exploration of Design Options by Model Coupling Higher-order 
process Peg_dialog in Fig. 8 couples a task model describing how to place a peg and 
a model of an interactive peg hole with few constraints on its behavior. Peg_dialog 
integrates both views but describes less constrained behavior than the task model 
component tm itself. Hence, tm fully controls the use of the peg hole (component sm): 
a peg can be set, and then it can be replaced arbitrary often. However, two other 
variants of a task model were given in the definition of process Guess_peg (sub-
processes Option1, Option3). Fig. 9 illustrates effects on the behavior of Peg_dialog 
if the behavior of component tm is switched to these options. In this way, different 
alternatives for refining the behavior of interactive peg holes can be explored. 

 
Fig. 9. Different options of the task model are coupled with the underspecified model of an 

interactive peg hole to explore possible refinements of its behavior in animation runs.  

A selected integration of different, but overlapping views on the design space 
supports resource-based thinking rather than task-based thinking because task models 
do not play the dominant role anymore. The focus of attention is reflected in the root 
process of the actual process composition. Its type is not restricted to task models. In a 
further step it is shown how prototypes and models about roles, artifacts and tasks can 
be used to explore different resource allocations. 

Peg Rows - Model-Guided Prototyping Model-guided prototyping in HOPS is a 
technique where Java implementations and HOPS models are loosely mapped to each 
other. Models describe only those aspects that are the actual focus of analysis. During 
animation they partially control the prototypes. This provides an analytical means for 
designers while, at the same time, prototypes can be tested empirically to a certain 
extent. In the example in Fig. 10, a prototypical implementation of rows of peg holes 
is given. In this case, the implementation of peg holes was refined according to 
Option3 in Fig. 9. Users can replace pegs but they can also remove pegs from holes. 



This is very important for the experience of the game. The basic HOPS process does 
not model single peg movements anymore but is focused on enabling/disabling of a 
row and on setting/getting the whole code. Otherwise, users can interact directly with 
the prototype as indicated in the bottom of the figure.  

 
Fig. 10. Top: mapping between HOPS operations and the implementation for rows of peg 

holes (mastermind), bottom: test of the prototype, partially controlled by the HOPS process.    

Mastermind Board - Explor ation of Resource Allocations by Deliberated Under -
specifications A co-evolution of representations is assumed to better ground design 
ideas in existing practices. It can drive the production of systems specifications or 
prototypes but it can also “slow down” the design process by re-considering current 
activities and describing them in more depth. It was shown in Sect. 3 that task 
migratability can only be achieved in systems if designers acquire a deep 
understanding about possible usage situations and how they could be resourced by 
artifacts. Task-based design approaches may easily result in artifacts that 
unnecessarily constrain the users’ activities. For example, an interactive mastermind 
board may be too restrictive if the peg holes of free rows cannot be accessed or if the 
computer immediately starts to mark the codebreakers’ guesses after they placed the 
last peg. In [6], (Dynamic) Task allocation is considered as task transformation and as 
resource allocation problem. It is important to understand existing transfer and control 
mechanisms in the interplay between different actors and (internal and external) 
artifacts in order to adapt them.  

Fig. 11 illustrates a coupling of HOPS models that can be used to explore the design 
space of a mastermind board. The components describe assumptions about the actors 
in a mastermind game and about resources that are supplied by the interactive 
prototype. The computer acts as codebreaker and a human as codemaker in the 
specified situation (HOPS components cb and cm). The model of the activity 
Break_code is depicted in the right top corner. Take note that this model describes the 



codemaker signaling that the marking is finished. Although people give also such 
signals when they play together (e.g. by leaning back in their chair) this was not 
considered in the task description of Fig. 4.    

 
Fig. 11. The underspecified prototype of an interactive mastermind board (mainly described 

by components g[1..3], e[1..3], see Fig.10) is examined and explored for situations with the 
computer as codebreaker and the user as codemaker.  

An essential idea of selective modeling is that designers deliberately underspecify 
representations which are in the actual focus. They are coupled with complementary 
design representations to develop assumptions about possible usage situations and to 
reflect design options. In Fig. 11, the models of actors and of the code-breaking 
activity help to put constraints on the prototype of an interactive mastermind board 
and to test variants of its refined behavior in model-guided animation runs. In the 
interaction scenario at the bottom of the figure, the computer made a guess and the 
peg row was disabled. Then, the user marked the guess (indicated by HOPS operation 
setPegs) and signaled the end of this process (operation finish). This caused a 
disabling of this marking space. The prototype has to generate a new guess now.  

Other models could assume e.g. a shared evaluation of guesses. There are two 
human players but the computer could check whether the markings are correct. This 
could be useful in situations where the codebreaker is a beginner and the codemaker 
is more concentrated on giving explanations than on marking. The co-evolution of 
models helps to develop a more fine-grained understanding of resource allocations 
and informs design decisions. 



6   Summary  

 “Design are hypotheses about how artefacts shape cognition and collaboration.”  (D. Woods) 

Task migratability is a usability principle that encourages designers to develop a deep 
understanding about possible usage situations of an interactive artifact. Refined 
flexible task allocation is rarely achievable through pure top-down decomposition of 
tasks. Resource-based conceptions of human activity seem to be more appropriate 
than task-based ones to face complex design problems. 

Selective modeling has been proposed as a technique to adapt some of the 
assumptions and practices in model-based design. Designers are encouraged to co-
evolve different representations which describe the problem space from different 
viewpoints. They are partially coupled. Sometimes they are deliberately under-
specified to allow for reflection and exploration by other models. The interactive 
artifact under design “emerges” from these descriptions. Selective modeling is a 
model-guided but not a model-driven process. The designers need to be aware of the 
actual design situation. 

Design reflects what we consider as important in the current world but also what 
we don’t see or too late. The co-evolution of different design representations is often 
recommended in UCD in order to ground system design in current work practices. 
However, an effective coupling is still not easy to achieve. The general approach of 
selective modeling has been demonstrated in the paper at the example of the HOPS 
formalism and prototypes in Java. The examples given in this paper demonstrate the 
practicality of the method. Further work aims to improve mapping mechanisms 
between models, to improve tool support and to explore a broader range of examples. 
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