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Abstract. Electroencephalography (EEG) is an important physiological index 
of cognitive workload. While previous research has employed high-end EEG 
devices, this work investigates the feasibility of measuring cognitive workload 
with a low-cost EEG system. In our experiment, EEG signals are recorded from 
subjects performing silent reading tasks under different difficulty levels. 
Experimental results demonstrate the effectiveness of cognitive workload 
evaluation even with low-cost EEG equipment. 
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1   Introduction 

In recent years, research efforts have been geared towards measuring human mental 
states such as cognitive workload and task engagement. Cognitive workload refers to 
the amount of mental demand imposed by a particular task on a person [3]. Measuring 
cognitive workload is an important issue in various research and application areas of 
human-computer interaction, as it can be utilized to evaluate the efficacy of interfaces 
and build adaptive interaction systems. With the advance of modern sensing 
technologies, a variety of physiological measures have been developed for the 
assessment of cognitive workload. Among these techniques, electroencephalography 
(EEG) has become a popular physiological index that allows continuous monitoring 
of subjects’ cognitive workload in a convenient way. 

Previous research has demonstrated that EEG signals are sensitive to cognitive 
load changes in various tasks [1]. Gevins and Smith [5] demonstrated that spectral 
features of the theta and alpha frequency bands correlate with task difficulty levels in 
simulated flight tasks and n-back tests. Fitzgibbon et al. [4] also found that the power 
of gamma band could be augmented by various cognitive tasks. Berka et al. [2] 
employed discriminant function analysis on spectral features for monitoring cognitive 
workload and task engagement in different tasks including digit span, mental 
arithmetic, image learning and memory tests. Grimes et al. [6] and Zarjam et al. [9] 
investigated EEG based classification and evaluation of subjects’ working memory 



load. A feature selection scheme based on mutual information was proposed in [6] to 
deal with physiological drift. EEG has also been used to monitor cognitive workload 
in various military tasks under complex environments [8]. 

Although EEG is a promising tool for continuous measurement of cognitive 
workload, most previous research has employed high-end EEG systems costing more 
than $15,000 (e.g. see www.biosemi.com), which limits their widespread usage in 
human-computer interfaces. On the other hand, low-cost (under $1000) EEG headsets 
have become accessible for HCI research in recent years [7]. This work takes an 
initial step in exploring the feasibility of cognitive workload evaluation using a low-
cost multi-channel EEG system. 

2   Experiment 

Sixteen students and employees (16-46 years old, 4 females) were invited to perform 
silent reading tasks. Brain waves from each subject were recorded with a low-cost 
EEG device originally designed for gaming interfaces (Emotiv EPOC, a 14 channel 
128Hz neuro-signal acquisition and processing wireless neuroheadset [10], see Figure 
1). Channel names based on the International 10-20 locations are: AF3, F7, F3, FC5, 
T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4. During the experiment, each subject was 
asked to silently read the text displayed on-screen, with a viewing distance of 70cm 
(see Figure 2). Similar to [9], different task difficulty levels were employed to 
manipulate cognitive workload during the experiment. 

  

Fig. 1. A low-cost EEG device (Eomtiv EPOC neuroheadset [10]) and layout of EEG channels. 

There were three levels of task difficulty in total: low (level 1), medium (level 2) 
and high (level 3). For each difficulty level, 4 text pages were sequentially displayed 
on the screen, with each page appearing for 30 seconds. In the low level task, the 
subject was required to press the left mouse button when he encountered any 3 letter 
word during silent reading. In the medium level task, the subject was required to press 
the left or middle button respectively, each time he encountered either a 3 or a 4 letter 
word. Likewise, in the high level task, the subject was required to press the either the 



left, middle, or right button when he saw a 3, 4, or 5 letter word respectively. The task 
difficulty levels were administered in a randomized fashion. There was a 30 second 
resting period after the task for each difficulty level. One minute baseline data (with 
the subject looking at a blank screen) was recorded at both the beginning and the end 
of the whole experiment for each subject. The subject was asked to refrain from eye 
blinking and to stay as still as possible during the baseline period and task period. 
However, the subject was free to blink and move their head naturally during each rest 
period. 
 

 

Fig. 2. Experiment setup. 

3   Analysis 

The EEG signals were first divided into segments of 1.5 seconds in length. Statistical 
features including mean, variance, root mean square (RMS), spectral powers of theta 
(3-7 Hz), alpha (8-12 Hz), beta (13-29 Hz), and gamma (30+ Hz) frequency bands 
were then calculated for each data segment. 

 

Fig. 3. Box plot of normalized RMS values (sample minimum, lower quartile, median, upper 
quartile, and maximum) from nodes F3 and F4 at different task difficulty levels. 

Among the features obtained from different EEG channels, RMS from nodes F3 
and F4 exhibit significant correlation with task difficulty (F > 38, p < 0.01 in 
ANOVA test). This finding is consistent with previous research indicating that the 
brain frontal lobes play an important role in cognitive tasks associated with attention 



and mental effort [5]. Figure 3 plots the distribution of normalized RMS acquired 
from the two frontal channels at different workload levels for all the subjects. It can 
be seen that the feature value consistently increases when the task difficulty level is 
increased. 

Moreover, the spectral power of gamma frequency band at nodes AF3 and AF4 
shows a statistically significant difference between the baseline condition and task 
condition (F > 28, p < 0.01 in ANOVA test), which is consistent with previous study 
on gamma activation of EEG during cognitive tasks [4]. There is an increase in 
average gamma power with each rise in task difficulty. However, the difference 
between task levels is not statistically significant (p > 0.05). 

4   Conclusion 

This work investigates the feasibility of cognitive workload evaluation using a low-
cost EEG system. It is demonstrated that cognitive workload could be effectively 
measured even with low-cost electroencephalograph. The experimental results are 
consistent with previous research on cognitive workload. We hope that this work will 
promote the application of EEG-based physiological measures in various HCI areas 
involving cognitive workload evaluation. 
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