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Abstract. Next generation network nodes are required to function within
heterogeneous network environments, where new services and protocols are
rapidly deployed on demand. In such emerging environments, traditional node
architectures that offer a predetermined and preloaded set of services, are
increasingly incapable of coping with these new requirements. Accordingly,
there is a need for new node architectures that offer higher degrees of flexibility
measured by their capability to extend the functionality of the node and change
its behaviour on demand. This paper makes use of programmable and active
network technologies as developed during the FAIN projecti, to present a novel
secure active node architecture, called the FAIN node architecture, capable of
supporting virtual environments (VEs) for the allocation of the required amount
of resources in which new services are dynamically deployed together with
their entire execution environments (EEs). To this end, multiple VEs and
services run simultaneously and interact securely with the node resources and
mechanisms through open interfaces and the FAIN node management
framework. We also present the implementation of the FAIN node architecture
and two case studies that demonstrate its extensibility aspects and novel
features.

! The FAIN project is partially funded by the Commission of the European Union as IST
project 10561 (www.ist-fain.org).



1 Introduction

One of the biggest obstacles faced by the networking industry today is the difficulty
traditional network nodes and management stations have, in coping with increasing
degrees of heterogeneity. This heterogeneity is manifested in the form of different
types of networks, i.e. access, edge or core, hardware and software technologies, and
protocols. Accordingly, the goal for rapid and autonomous service creation,
deployment, activation and management becomes even more elusive, with detrimental
effects on the operator’s and service providers’ revenues and on their willingness to
upgrade their infrastructures and support innovation. Equally important is the type of
heterogeneity generated by the different communities of users and their varying
requirements. Services designed and engineered to address the needs of these
communities place different and, most notably, conflicting demands on the use of
network resources, the degree of quality of service, the levels of security etc.
Furthermore, these services must coexist with each other and evolve as their

corresponding user communities evolve.

Dealing with these different types of heterogeneity is a complex problem. Its solution
calls for services that are free to choose the software technology that is best suited for
the needs thereof and deployed at strategic places in the network for higher
performance and scalability gains. In contrast, networks must be capable of hosting
such technologies, sharing and allowing the open control of their resources by a
multitude of services. They must also provide the means of extending and updating
their functionality on demand, thereby adapting their behaviour according to real time
service/application requirements in present and future. Similar solutions are

advocated by emerging hardware technologies such as network processors [1],



research initiatives such as active and programmable networks [2][3][4][5] and

standardisation efforts such as IETF ForCES [6] and IEEE P1520 [7][8].

In this paper, we attempt to provide an elaborate answer to the question about the
characteristics and features of the next generation network architectures that support
the aforementioned network capabilities. Central to such network architectures is the
network node architecture the detailed description of which is used in order to
demonstrate how such design goals have been met. Section 2 starts with a summary
of the main concepts of the FAIN project [19]. In section 3, we present the FAIN
node architecture with its major architectural components, namely, the VE
management framework, the  Resource Control Framework, the
Demultiplexing/Multiplexing system, and the Security system. In section 4, we
describe the implementation of different types of EEs on FAIN nodes. Next, we
outline two case studies built as part of the FAIN project with initial performance
measurements. In section 6, we contrast FAIN concepts and innovation with related
work from the state of the art. Finally, our conclusions and future work are given in

section 7.

2  FAIN Overview

The FAIN node architecture heavily draws on the FAIN reference architecture and the
two main concepts of the FAIN project, namely, the Virtual Environment (VE) and
the component based EE (a particular type of EE). A detailed description may be
found in [9][10]. The FAIN reference architecture proposes a node that supports the

partitioning of its resources assigned to VEs. VEs act as containers in which multiple



EEs may be deployed. In turn, EEs act as hosts to the services running in them, and
consuming resources allocated to VEs. EEs also represent different implementations
(technologies), implying that services must be implemented in the same technology as
the EE, e.g. Java EE, in order to be deployed in the EE. Services may be distributed
across different EEs, which, in turn, may be interconnected with each other. The
interconnected EEs may reside in different operational planes, namely, control,
management and transport. This approach has also been recently adopted by the
ForCES model [11]. Finally, access to node resources and services is achieved
through open interfaces [12], which act as an interoperability layer among the
different implementations.

The FAIN node provides additional support for the component-based type of EE,
being one of the most flexible programming environments for service deployment. Its
existence implies that services must be designed and developed along the lines of the
component-based approach in order to exploit the EE’s capabilities. According to this
approach, complex services are composed of simpler ones, which are then connected
together to form specific structures representative of the service. In this way, services
become extensible, their lifecycle management is simplified, and they can be readily
introduced in the network. VEs are part of a virtual network owned by a provider. The
provider uses the virtual network and consequently the VEs to deploy customer
services and control the allocated resources according to its policies. As services may
require the presence of specific EEs, these EEs must also be deployed. Each node
must then make sure that the allocated resources are solely used by the owner of the
virtual network and charged only to the appropriate services running in it. In other
words, a VE provides a place where services together with their execution

environments may be instantiated and used by a community of users or groups of



applications while remaining isolated from others residing in different VEs. In the
next section we describe the FAIN node architecture specified according to these

design principles.

3 FAIN Node architecture
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Fig. 1. FAIN active node architecture and its components

Fig. 1 depicts the FAIN node architecture with its major components, and its
interaction with the management node that includes the Active Service Provisioning
(ASP) and Policy Based Management System (PBNM) [13]. When the FAIN node
boots up, a Privileged VE (pVE), with its VE manager (VEM) component, is
automatically instantiated. The VE manager implements the VE management
framework that offers access to a number of node services necessary to configure,
setup and manage the node. Four major operations may be carried out: a) deployment
and instantiation of VEs, b) deployment and instantiation of a number of EEs, c)
deployment, instantiation and interconnection of service components with an EE, and
d) control and management of a service component or a resource by means of open
interfaces, leading to the interconnection of EEs residing in different operational

planes (see Fig. 1). The VEM interacts with the Security component that offers a set of



security services and enforces node policies, the Resource control component
responsible for implementing the FAIN resource control framework (RCF) and the
demultiplexing/multiplexing component which is configured to deliver packets to the
right VE and EE when the latter has been deployed. In the subsequent sections, we

describe each one of these components.

3.1 The FAIN VE Management Framework

The purpose of the VE management framework is to manage virtual environments
and their allocated resources as well as the services installed therein. According to
this framework, services and resources are both represented as components, which all
offer a specific set of ports. Ports are used to inter-connect components and to make a
component’s particular functionality available to the outside. In the case of a resource
component, it also represents a certain share of the available computation, storage, or
communication capacity of the node. Components may be combined in various
formations creating in this way more complex resources and services from simpler

ones.
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Fig. 2. Inheritance Hierarchy of Component Types



Fig. 2 depicts the inheritance hierarchy of the component model. At the root of the
hierarchy of component types we find the Basic Component. It abstracts common
functionality necessary for every type of component such as, discovery of the ports
provided by the component, access control to ports based on policies defined in an
individual security context, unique identification, and defined ownership. The
Configurable Component adds to this the possibility to get and set the current internal
configuration of the component in the form of a list of name-value pairs. It also offers
operations to set up and manage connections between its own ports and the ports of
other components. Using these operations of the Configurable Component, one can
create services out of a set of available components by interconnecting and

configuring them appropriately.

Components of a certain type need to be discovered, instantiated, linked with other
components, and deleted when not in use. This is the job of the Component Manager.
Since components may represent resources in the node we have extended the
component manager with the Resource Manager that manages resources according to
their allocated resource quotas. These resource instances represent a certain resource
share for which the current usage can be monitored and callbacks can be registered

for notifications when specific thresholds are reached.

As mentioned earlier, resources are allocated to specific VEs and services are
deployed together with their entire EEs within VEs. Accordingly, the component
model has been enhanced with a number of specific component types and managers in
order to adhere to the FAIN design principles. They consist of management of VEs
and EEs, security, traffic, and packet dispatching. More specifically, the VE Manager

is acting as a factory and finder for VEs. It will allocate requested resource shares



using other basic managers during the creation of a new VE and monitor the overall
resource usage during its lifetime. Various technology specific EE Managers take
care of the management of EEs providing the runtime environments for component
instances, e.g. a Java virtual machine. The Channel Manager is used to create
channels which forward packets from the network to connected component instances
based on a set of rules and also send packets coming from component instances to the
network. The Traffic Manager partitions the node’s available bandwidth into shares
and allows to assign packet flows to them. The Security Manager is used to set up and
manage the individual security contexts which are assigned to each component

instance during its creation and used to control the access to the instance’s ports.

After the creation of the requested resource shares the VE Manager will attach them
to the new VE so they are available to service components which will be installed and
instantiated inside the VE later. In order to install components we introduced the
notion of a Template Manager. A template is identified by a name and a version
number and includes a particular implementation of a component type together with
its corresponding component manager type. Both VEs and EEs are Template
Managers and thus support the installation and management of component types.
While an EE provides a concrete technology dependent runtime environment for
component instances the VE abstracts from this. During the installation of a template
the VE will try to find an appropriate EE in the list of attached EEs and forward the
installation request to the EE. The EE is then responsible to carry out the technology

dependent steps to make the new component type available.

The generic component framework serves as a starting point for new services or

resource abstractions (see upper left part of Fig. 2). A developer would implement



specific component types by deriving from the basic or configurable component types
and simply add the implementation for the service specific ports, if any. For service
components the developer would derive a manager type from the generic component
manager type while for resource components the resource manager type would be

used.

3.2 The FAIN Resource Control Framework (RCF), Demultiplexor
(De/MUX), and Security

In the design of the FAIN node, major attention was given to the management of the
node resources and their sharing among the various users of the node. The part of the
node responsible for this task is called Resource Control Framework (RCF). An
overview of the RCF is given here. Detail descriptions of the RCF can be found at
[30][32]. The RCF is considered very important as it supports one of the major design
goals of the FAIN project: the partitioning of resources (capacities) among VEs and
their residing services. Through resource partitioning, supported by the RCF, the
various VEs are kept isolated from each other and allowed to consume only the
allocated amount of resources. In a similar manner, VEs are enabled to further
allocate, manage and control their own (virtual) resources according to the VE’s own
policies and logic, customised according to the type of services that are running in

them.

As a FAIN node supports multiple VEs with multiple EEs running in them, arriving
packets must be delivered in a secure way to the right entity inside the node. The
functional entity responsible for delivering packets is the

Demultiplexing/Multiplexing (De/MUX) component. An overview of the De/MUX



architecture is presented here. For details readers should refer to [30][31]. The design
of the De/MUX is also influenced by and built according to the component model
principles, thereby making use of the VE management framework and its abstractions.
The main components of the De/MUX are the Channel Manager and the Channel
components. The Channel Manager is responsible for creating and deleting the
Channel object. The Channel object is created for each VE. The specific types of
Channels correspond to different types of flow packets arriving at the node: namely
active and non-active (data) packets but these may be extended to new types of
packets by introducing new Channels and deploying them through the VE
management framework mechanisms. Furthermore, the De/MUX also interfaces with
the Security architecture, which provides a safety framework to protect against
unauthorised active packet processing. When the Channel Manager receives the active
packets, it calls a security interface to execute security check, the result of which
determines whether the Channel Manager forwards or discards the active packets. For
outgoing active packets, the Channel Manager calls the security interface to insert
security information into them, used for executing the security checks at the next

active node.

Active networking raises a number of different security issues, and FAIN designed
and implemented a complete security architecture to address these issues. As this
security architecture is thoroughly explained by another paper [27] we only discuss
here the functionality and aspects relevant to the VE management framework. To this
end, we distinguish between two different categories of facilities the security
functionality offers: a) Communication security facilities are set of services, protocols

and mechanisms that provide at system level data origin authentication and integrity



services for packets exchanged in between nodes. Combination of per hop protection,
which uses symmetric cryptography, and protection regarding the originator, which
uses asymmetric cryptography, were used to protect active packets data tackling the
issue that parts of the packets (i.e. the packets’ payload) may be changed in the
network, whilst certain parts of the packets (i.e. static executable codes) should
remain unmodified; b) System security facilities are set of services and mechanisms
that provide authorization and policy enforcement on a node, system integrity, code

verification and accountability of system operation.

4 EE Implementation

The implementations of EEs may differ in the employed technology and the way
deployed service components are executed. Two different types of EE were
implemented in FAIN: a) the Java EE, and b) the Active SNMP EE. The Java EE type
is used for the installation and execution of components implemented in Java. It also
serves as the EE for the node’s management layer described in section 3.1. For the
management of templates (i.e. component types) a Java class loader is employed. At
the operating system level, the Java EE is mapped as a separate process executing a
Java virtual machine (JVM) charged to the VE it belongs to. The CPU and memory
usage of all Java EE processes are monitored by the Java EE manager and will be
temporarily suspended when the previously agreed resources are overused for a
certain amount of time. Although the underlying component model allows
connections between component ports using arbitrary protocols, the Java EE
implements component ports as CORBA interfaces. Consequently, the

communication inside the management layer is based on CORBA. The enforcement



of access control policies for those ports is realised with CORBA portable object
adaptors and interceptors interacting closely with the respective component’s security
context. The implementation of access control enforcement also supports delegation
so that a chain of calls via a series of interfaces can be checked against policies. The
Active SNMP EE [14][17][29] extends the functionality of Safe and Nimble Active
Packet (SNAP) active packet protocol [15] through exploitation of the SNMP
protocol. SNAP packets essential contain a series of byte code instructions. It is
claimed to be light-weight, efficient, safe and practical. The discussion of SNAP is
beyond the scope of this paper. For details of SNAP, readers should refer to [15]. It is
a management EE we have built in FAIN and is used in the Diffserv scenario
presented in the next section and in [30]. Other examples of management EE are for
instance the Smart Environment for Network Control, Monitoring and Management
(SENCOMM) [33]. The FAIN management EE consists of two components: a) the
SNAP Activator: consisting of the SNAP Sender/Receiver and the snapd (snap
daemon), and b) the ANEP-SNAP Packet Engine (ASPE). The SNAP Sender is
responsible for generating SNAP packets and injecting them into the network. The
snapd is extended to include SNMP functionalities and is responsible for the
execution of SNAP active packets. The ASPE is responsible for providing ANEP
encapsulation/de-encapsulation for SNAP packets, and co-ordinates Active SNMP EE
operations with De/MUX and SEC for transmitting active packets and for securing

active packets during-transit across the network, respectively [14][17].



5 Case Studies

The Diffserv scenario [16][30] demonstrates the deployment of heferogeneous
technologies (EEs) on different planes (i.e. control / management planes) for
enhancing flexibility and extensibility in the FAIN architecture; this is demonstrated
through the co-existence of multiple heterogeneous EEs within a VE, and
subsequently a generic approach for infer-EE communications. In addition, the
dynamic deployment of service components (i.e. a DiffservController) within an EE to
support new services through interactions between various FAIN components was
also demonstrated. The full Diffserv scenario was presented in [30]. The WebTV
scenario was proposed in order to demonstrate the deployment of a service
component together with its corresponding EE. According to it, a WebTV Service
Provider requests the creation of a VE in order to use the node resources for
transmitting video to his customers. A new customer that wants to get this service is
not capable of receiving the stream in the transmitting format. For this reason the
Service Provider (SP) dynamically downloads to a nearby node a service component
in the form of a transcoder that is compatible with the customer’s system. This
component adheres to the definition of the component model which makes it possible
to seamlessly deploy it using the VEM. The service component is instantiated in a
Java EE and the flow is rerouted to be processed by the new component [13] [16],
which sends the TV stream in the correct format. In contrast with the Diffserv
scenario, the WebTV scenario deploys an EE in the transport plane wherein packet
receive additional processing through the newly deployed service component. This
component may be further configured e.g. changing the value of the transcoder to a

new one, by another EE that resides in the control or management plane.



5.1 Performance Trials

Performance trails for the Diffserv scenario were carried out with the objective of
evaluating the viability of the features of the FAIN active node; namely the VEM
bootup time (i.e. node instantiation time and manager installation time), and service
deployment time. A PC with an Intel 746MHz Pentium III CPU and 512MB memory
was used to measure the VEM bootup time. Note that the bootup sequence of VEM
on a FAIN active node involves two steps: node initialisation and managers
installation. The average total time for node initialisation is 313.8 ms. This is the
average time to initialise an ORB (4.6 ms), a pEE (94.1 ms) and a pVE (165.2 ms).
The average manager installation time for installing the VE manager is 389.6 ms, 72
ms for the Java EE manager, 2146.5 ms for the channel manager, 76.7 ms for SEC
manager, 75.9 ms for traffic manager, 23.1 ms for Diffserv manager, 28 ms for Active
SNMP EE manager. An addition 6.1 ms for finishing the boot sequence. Thus the
average total time for booting up VEM on a FAIN active node is 3031.9 ms. Note that
different times for installing different managers mainly depend on the individual size
and numbers of classes to be loaded. The channel manager also has to load an
external library for connecting to Linux netfilter. For service deployment performance
measurement, a PC with an Intel 995MHz Pentium III CPU and 112MB RAM was

used. The average active packet processing time in the Active SNMP EE is 19.3 ms.

Note that in a real-life scenario, the VEM is expected to be brought up once only
when a FAIN active node boots up. Consequently, a service EE deployed in a VE is
brought up only when there is a new service request. Thus neither node instantiation
nor manager installation is frequent. Moreover, VEM will operate for a long period of

time commensurate with the lifetime of the SP virtual network. Although service (i.e.



EE) deployment is comparatively more frequent, it should be noted that dynamic
service creation on networks through service EE deployment is much more efficient
than manually configuring each node to enable new services. Given that the enhanced
level of flexibility of the FAIN active node architecture, the results of these feasibility
trials are encouraging, and are proving the feasibility of deploying FAIN active nodes

in a real network.

Another test was run in order to get an assessment of the scalability of the Java based
EE and thus the implementation of the FAIN active node’s management layer. For
this test a PC with an Intel 746MHz Pentium III CPU and 512MB was used. After the
boot-up of the privileged VE eight separate VEs with attached Java EEs were created
(average of 8 seconds per VE/Java EE). Using a local test client a Java based test
service was installed in each of the eight VEs (average of 366 milliseconds per
installation) and for each VE 1000 instances were created and configured. As an
example for user-space packet processing the test service connects itself to the
respective VE’s packet dispatching channel during configuration which requires also
interaction with the privileged VE where the dispatching channels are managed. For
the test security was enabled, i.e. the communication between the test client, the
privileged VE and the particular VE was secured and access to the involved
components was controlled by the security manager. Fig. 3 shows the times in
milliseconds for the creation and configuration of instances versus the number of
instances for each VE. For the first few instances the minimal time is decreasing due
to already loaded classes in the Java EEs. After that the average time is increasing
constantly with the number of instances already created. The sporadic peaks are most

probably due to garbage collection inside the Java EEs. The average time for service



creation is still below 500 milliseconds for 1000 service instances per VE.
Considering the non-trivial service configuration which requires interaction with the
packet dispatcher inside the privileged VE plus the control of all interactions by the
security manager we argue that this figure is acceptable and the Java based

implementation of the FAIN active node’s management layer scales well.
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Fig. 3. Service creation in 8 VEs with attached Java EEs

6 Related Work

The definition of EEs was defined by DARPA. EEs can be treated as the runtime
environment of a process or a process itself [20], or toolkits for building active
applications (services) [18], or a programming environment characterised by the
implementation language, like Java [4] [21]. EEs have also been proposed as
extensions of the Node OS [22] whereas in [23] [24] EEs are characterised not by the
choice of technologies but rather by the services they offer and the architectural plane

they operate at, namely, control, management, and transport. In other cases, EEs are



treated as VEs acting as the principal abstraction for authentication, authorisation and
resource control [21] [22]. As a result the reference architecture proposed in [21]
makes it very difficult to support inter-EE communication either within the same node
or in different ones. All this ambiguity has an impact on defining a systematic
approach around a consistent model that facilitates the dynamic deployment of new
services taking into consideration the de-facto heterogeneity found in the network in

the form of hardware and software technologies, protocols etc

In contrast, FAIN attempted to deal with the problem of service deployment in
heterogeneous networks by defining a reference architecture [9] based on a clear
separation between VEs and EEs. Another approach to isolating active services from
each other was described in [34], [35], [36].To this end, we have used the same
approach in defining and using VEs as in  [12], while EEs are distinguished between
EE type (the programming environment and programming methodology) and EE
instance (the specific implementation of the EE type) [9]. The benefit of using these
two concepts as distinct entities enables us to build virtual networks that are service
specific (e.g. service overlays). The VE abstraction allows for the allocation, control
and charging of resources whereas EEs allows us to deploy services in nodes together
with the whole implementation environment. We have demonstrated this in the
Diffserv scenario where we deployed a Java control EE and a management EE using
SNMP and SNAP (the latter was developed by the Switchware team). In the same
way, using the VEM framework other EEs developed by third parties, e.g. ANTS may
be deployed and combined with EEs already present in the node. Note that during the
ANEP encapsulation process at the ASPE, static contents of a SNAP packet program

(e.g. the byte codes) are determined by the ASPE and are encapsulated into ANEP



Payload. The entire SNAP packet program (which includes both the static and the
dynamic contents of SNAP) is kept in one of the ANEP Option fields. The static
contents of SNAP packet can be easily determined since SNAP clearly defines its
static contents to be its byte codes stored on its stack. The static contents of SNAP
packet that are kept in ANEP Payload are protected by a signature related to the
principal. The signing process is performed at SEC. Note that ASPE is independent of
SEC. ASPE is in fact developed as part of the SNAP package. Integrating ASPE into
the SNAP package is currently undergoing. It is the responsible for the ASPE to
recognised the packet format of SNAP and to determine which parts of the SNAP
packet are static. Whereas the ANEP Option that keeps the SNAP packet program
(which includes both the static and dynamic contents of SNAP) is protected by hop
protection again at SEC. Symmetric cryptography techniques are used for hop-
protection, a solution that is similar to deploying the Authentication Header in IPSec
[16] [17] in a per-hop fashion. The advantage of keeping the entire SNAP packet in
an ANEP Option is that no packet marshalling at the Active SNMP EE is needed: the
entire SNAP packet is put into the ANEP Option. This is in contrast with existing
authentication methods such as SANTS (Secure ANTS) [28] where static and
dynamic contents of an active packet are actually spl/it and encapsulated into
corresponding ANEP fields. When encapsulating ANTS packets in ANEP in the
SANTS approach, it was said that “The variable area of our (ANEP) packet includes
the variable fields of the EE header (of ANTS) and the variable portions of the data
payload (of ANTS)” [28]. This implies certain (variable) parts of ANTS packets must
be extracted and placed in the variable area of ANEP packet. This incurs overhead on
packet marshalling at each node. By avoiding packet splitting the overall efficiency of

the security processing on FAIN architecture is improved. Also, unlike the SANTS



approach in which a modified ANEP format is used to keep active packets, the
standard ANEP format is used in FAIN to avoid interoperability problems. Full
explanation on the functionalities of the ASPE can be found in [17] [29]. The process
of integrating the ASPE functionalities into the SNAP package is currently

undergoing.

The component-based approach heavily draws on the Netscript and the IEEE P1520.
We have generalised it to treat also node resources as components that can
dynamically be deployed upon request and accessed via open control interfaces.
These control interfaces may be instantiated on demand in any EE irrespective of its
implementation. In this way services are enabled to control their allocated resources

from their specific implementation environment.

In FAIN we have also built a high-performance EE [25] residing in the Linux kernel-
space in order to deploy service components with time restrictions. This EE is
deployed using the same toolset offered by VEM and controlled by control EEs
implemented in Java residing in the user-space. Furthermore, we have used the
reference model of the architecture to automate the process of service provisioning in
the network. This is achieved through the network Active Service Provisioning
system [26] which uses VEM to enforce the deployment decisions taken at the

network level.

7  Conclusions

In this paper we have presented the FAIN Active Node architecture, capable of

combining and coordinating different Execution Environments that represent different



technologies which are then used to host service components and interact with each
other as part of the overall service operation. To this end, the FAIN node may change
or extend its functionality and seamlessly operate in a heterogeneous network. This
has been achieved through the definition of the VE management framework that

combines EEs, VEs, and service components.

The VE management framework is realised through a number of classes with methods
that allow EEs to be deployed in VEs, in turn, service components to be deployed and
linked with existing services in EEs, and exports control interfaces of these
components for their configuration. The operation of the EEs, and of the services
running in them, is regulated by the FAIN resource control framework. This
framework is based on the VE abstraction, which is used as a principal for accounting
and resource allocation and partition. Moreover, all the operations take place in a
secure environment founded on the flexible FAIN security architecture, which
provides authentication, authorisation of the use of resources and verification of
packets. The FAIN node architecture and its components have been implemented, and
a number of different EEs residing in different operational planes and interworking
with each other have been created. Their functionality and mechanisms achieve the
design goals. The JavaEE, residing in the management plane, binds together all the
FAIN node components as well as the other EEs. Finally, the flexibility of the FAIN
node and its new features has been demonstrated through two case studies, namely,

Diffserv and WebTV deployment.
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