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Abstract. The early goals of Active Networking (AN) were to increase
the pace of network evolution and to facilitate application specific pro-
tocols. Our aim is to demonstrate that for a specific application domain,
Ad Hoc network routing, these goals have been substantially met. We
argue that Ad Hoc networking is a domain that is well suited for this
demonstration, due to its needs for both evolution and adaptation.

We support our claim by building a series of Ad Hoc routing pro-
tocols, based on both DSR and AODV, that demonstrate heavyweight
evolution, lightweight evolution, and routing adaptation. We based our
design and implementation on our Mobile Active Networking Environ-
ment (MANE). MANE is a direct descendant of PLAN/PLANet and,
as such, supports both Active Packets and Active Extensions as pro-
grammability mechanisms, thus giving us maximum flexibility in our
demonstrations.
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1 Introduction

The original goals of Active Networking (AN) were clear: First, to make it eas-
ier to deploy new protocols or alter existing protocols to allow the network to
evolve more readily; and, Second, to allow protocols to be customized to specific
application needs. AN attempts to meet these goals by adding programmability
to the network infrastructure. Although there have been a significant number of
AN systems proposed and implemented [1–5], there has been less work done to
show that these systems meet AN’s original goals. The purpose of this paper is
to show that, for a specific application domain, a mature, well-understood AN
system can meet these original goals.

For the AN system, our Mobile Active Network Environment (MANE) [6]
was the obvious choice. MANE is the most recent embodiment of our work on
PLAN [1, 7] and is a direct descendent of PLANet [8]. Like our earlier work,
MANE combines programmable Active Packets (APs) with downloadable node
resident Active Extensions (AEs), thus allowing us to explore both of the two
principle AN programmability approaches in the same context. In MANE, APs
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carry PLAN programs that execute as the packet moves through the network.
APs provide the programmable “glue” that binds the network together. AEs
form the basis of the node-resident programmable infrastructure by allowing
new functionality to be downloaded into the nodes, either to modify node be-
havior or to provide new services callable by APs. MANE goes further than any
of our PLANet implementations in its support for AEs since it provides not
just plug-in extensions, but also dynamic-update extensions [9, 6]. When used
in conjunction with plug-in extensions, APs can use new node-resident services
specialized to their needs if the standard services are not sufficient. Further,
dynamic-update extensions can update a system’s functionality while the node
remains operational and can affect the operation of existing functionality, even
if there has been no pre-planning to provide a plug-in interface. The distinction
between plug-in and update extensions is discussed in more detail in [9, 6].

As an application domain, we chose routing for mobile ad hoc networks
(MANETs) [10]. There are a number of reasons for this choice [11]. First, MANET
routing is a very active area of research and the potential protocols of interest
are still changing. Thus, if AN does facilitate evolution, it would be possible to
deploy existing routing algorithms with the expectation that they could be easily
replaced by better algorithms as they are developed. Second, MANET environ-
ments can vary greatly and the preferred routing algorithm can be different for
different environments. Thus, if AN does facilitate application specific protocols,
it should be possible to choose and dynamically deploy the best algorithm for the
environment at hand. Third, the conditions present in a MANET may change
so that the algorithm currently in use is no longer optimal. The ideal routing
protocol may need to change dynamically. AN offers the possibility of adapting
the algorithm dynamically as conditions change. Finally, because MANETs are
not widely deployed or standardized, it is quite possible that a node will not
have the desired algorithm present. It is even possible that a node will have
no available MANET routing algorithm. AN can provide us with the ability to
deploy the desired algorithm on-the-fly.

In this paper, we focus on two well-known MANET routing protocols, Dy-
namic Source Routing (DSR) and Ad-hoc On-demand Distance Vector routing
(AODV). We chose these protocols because they are perhaps the most widely
accepted and studied of the myriad of possible choices. Using these protocols, we
demonstrate implementations that realize the possibilities discussed above. First,
we show how a simple version of DSR could be deployed on a network where it
was not currently deployed and where perhaps no ad hoc routing protocol was
available. Second, we show how that simple version can be evolved dynamically
into a superior version even without changing the code resident on the nodes.
Third, we show how AN enables us to create a hybrid of DSR and AODV that
allows us to adapt to changing conditions in the network dynamically.

The remainder of this paper is organized as follows. Section 2 is an overview
of the two ad hoc routing protocols, DSR and AODV. In Section 3, we discuss
AN technologies and our AN platform. Section 4 presents our implementation of
a simple version of the DSR protocol. Section 5 demonstrates how we can deploy
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a new ad hoc routing protocol on a network where no ad hoc routing protocol is
available. In Section 6, we describe how to use active packet evolution to evolve
our simple version of DSR into a more efficient one without modifying node-
resident code. Section 7 presents a protocol that is a hybrid of DSR and AODV
that can adapt to changing network conditions. Finally, Section 8 concludes the
paper.

2 Ad Hoc Routing Background

Understanding the examples we present requires some basic knowledge of how
the routing protocols we have chosen work. The two protocols, DSR and AODV,
are both reactive (or on-demand) protocols. This means that rather than always
maintaining a route to all destinations (proactive routing) they find a route on-
demand when it is actually needed. When a packet needs to be sent and a route
is not already known, both protocols find routes by flooding the network with
a route request packet. When the destination is found, a route reply packet is
sent, which sets up the needed data structures for each protocol to actually send
the packet. The protocols differ in the exact nature of this discovery process, in
the nature of the routes, and in many details of the basic process.

2.1 Dynamic Source Routing

The DSR protocol [12] uses data packets that carry source routes that specify
each next-hop node directly in the packet. It is composed of Route Discovery
and Route Maintenance operations. In the Route Discovery phase, when a route
is needed, a source node (S) attempts to obtain a source route (the sequence
of nodes that the packet should visit) to a destination node (D) by flooding
route request packets throughout the network. The request packets collect
route information as they are propagated through the network. The first route
request packet to reach the destination returns a route reply packet with the
sequence of nodes it visited. When the route reply packet reaches the source,
the source route it contains is used to send the data packet. In order to reduce
routing overhead and make the best possible use of route information, each node
maintains a route cache into which the new route is also entered. As described
in Section 6, in more highly optimized versions of the protocol, this route cache
can be used to short-cut route requests. In the Route Maintenance phase, S is
notified of the link failures, if any, by nodes adjacent to the broken link. Then, S
will initiate another route discovery operation by generating a new route request
packet.

2.2 Ad-hoc On-Demand Distance Vector

The AODV routing protocol [13] is the on-demand version of the Destination Se-
quenced Distance Vector routing protocol [14]. Unlike DSR, AODV data packets
carry only a destination address; next-hop addresses are maintained in routing
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tables on the intermediate nodes. However, AODV still has the same basic Route
Discovery structure as DSR, the route reply packets simply must set up the in-
termediate nodes’ routing table while returning to the source. AODV also uses
sequence numbers to discern stale routes and maintain route freshness. AODV
also has a Route Maintenance aspect, which is similar to DSR’s. All of this
means that the basic implementation structure of AODV is similar to DSR, but
many of the key details are different.

In spite of their similarities, it has been shown that the two protocols perform
differently under various network conditions, especially the degree of network
mobility [15, 16]. It appears that DSR may be more sensitive to mobility than
AODV. Under lower mobility, since there are relatively few link changes, DSR’s
aggressive caching strategy is effective in achieving better performance than
AODV. However, in high mobility cases, AODV seems to do better than DSR
because of more conservative routing management [16].

3 Active Networking and MANE

AN provides adaptability to facilitate application-specific customization and
speedy network service evolution [17]. In this section, we describe the pro-
grammability mechanisms of AN and the modifications we made to MANE to
support ad hoc networking.

3.1 Programmability Mechanisms

There are two basic mechanisms for adaptability in AN: Active Packets and
Active Extensions [17]. APs carry programs that execute as they pass through the
nodes. Packet execution can perform management actions on the nodes, affect
their own routing, or form the basic distributed computational framework of
larger protocols. Since packet programs can accomplish protocol implementation
on-the-fly, they are a quick and effective way of deploying new services in existing
networks. Also, packet-by-packet adaptivity enables the network to adjust agilely
to changing environments.

Complementary to APs are AEs, which form the basis of the node-resident
programmable infrastructure by providing the services callable by APs. AE’s can
be dynamically downloaded to modify a nodes behavior [18, 6]. When used in
conjunction with plug-in extensions, packet programs can use new node-resident
services specialized to their needs if standard services are not sufficient. Further,
update extensions can update a system’s functionality while the node remains
operational. Update extensions can affect the operation of existing functionality,
even if there has been no pre-planning to provide a plug-in interface.

The flexibility of these two mechanisms together makes AN a good choice
for environments that require a high degree of adaptivity, such as MANETs. In
MANETs, as the nodes move, link conditions may change frequently; thus the
routing protocol needs to cope with those variations nimbly. Moreover, because
ad hoc networks can occur without prior planning, it is entirely possible that
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the ideal routing algorithm may not be known in advance and may change as
the network is in use. To overcome such routing heterogeneity, it is desirable to
promptly conform to a unified protocol. AN’s ability to implement a protocol
on-the-fly makes it possible to agilely evolve and adapt routing protocols.

3.2 MANE

Our Mobile Active Network Environment (MANE) [6] implements the Switch-
Ware architecture [1] and is the descendant of our previous AN testbed, PLANet [8].
Active packets are written in the Packet Language for Active Networks (PLAN) [7]
and service functions are written in Popcorn [19], which is a C-like type-safe
language based on TAL (Typed Assembly Language) [20]. Here we describe the
modifications of MANE needed to support ad hoc networking in general and
in particular to support on-demand routing protocols. Note that the first two
modifications are really to our underlaying emulation, in a “real” network they
would not be needed. The last two modifications would be needed in real net-
works and in Section 5 we discuss how they could be achieved dynamically using
our AN mechanisms.

Addressing Like an IP address, MANE addresses are globally unique and
hierarchical. A node is identified by a network number and a host number.
The hierarchy is based on sub-nets of nodes and each node on a sub-net can
broadcast to all other nodes. Communication with nodes on other networks
must be mediated by routers. Based on this hierarchy, MANE supports Mobile-
IP-like mobility by utilizing AN’s evolution techniques [6]. For ad hoc networks,
where each node works as a router, we modified MANE to use a flat addressing
scheme, where host numbers are used as a unique address.

Mobility Emulation MANE emulates broadcast networks by keeping track of
which nodes are on a particular sub-net and using UDP to communicate between
neighbors. Broadcast is achieved by repeatedly unicasting to every neighbor1.
This also supports emulation of physical node mobility, allowing a node to leave
a sub-net and to join new sub-nets. Even though this emulation is transparent
to higher-level protocols, MANE needed to inject special APs to disconnect and
connect a node [6].

For ad hoc networks, we need a more scalable and distributed way of emu-
lating physical mobility. Therefore, we adopted a method similar to that used
by ns-2 for wireless network simulations [21]. There is a pre-generated mobil-
ity file describing the physical movement. Also, there is a virtual master node
with a global “bird’s eye” view, whose role is to update neighbor information
by sending neighbor information packets periodically to every node. The virtual

1 It should be clear from this description that the goal of MANE is to allow flexible
experimentation with models and functionality, not to provide a high performance
AN implementation.
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master obtains neighbor information from the mobility file. Neighbor informa-
tion is used only in emulating physical mobility and wireless link broadcasting,
not in network-layer routing.

Routing Buffer in the Network Layer Since we are experimenting with
reactive ad hoc routing protocols, there needs to be a buffer – the routing buffer
– to hold the packets during route discovery. When a route is discovered, the
corresponding packets are released from the routing buffer and pushed into the
lower layer queue for transmission. To support reactive routing protocols, MANE
implements the routing buffer in the network layer. If there is no route informa-
tion for a packet, a sender saves the packet in the routing buffer and initiates
route discovery. Route reply packets cause the sender to free the packet from
the routing buffer and resume the transmission of the packet.

Link Layer Acknowledgements Any link can be broken due to either node
movements or channel deterioration and ad hoc routing protocols need to be able
to discover these failures. For route maintenance and detecting link breakage,
we added link-layer acknowledgements to MANE. After transmitting a packet,
the link layer saves the packet in the interface queue and waits for acknowledge-
ment. If there is no acknowledgement during a timeout period or if a negative
acknowledgement is received, the link layer retransmits the packet. When a cer-
tain number of trials fail, the node recognizes it as link breakage.

4 A Simple Version of DSR

We first present a simple version of the DSR protocol2, which we will later show
how to deploy and evolve. In our initial simple version, no use of the route cache
is made at the intermediate nodes. All intermediate nodes simply re-broadcast
the first instance of a route request received after appending their own address,
and route reply packets are generated only by the destination.

In MANE, a protocol is implemented in two levels; active extensions and ac-
tive packets. AE’s are node-resident and implement the service functions needed
for the protocol, while APs serve to glue together the AE functionality and ac-
tualize the protocol. We first present the services needed for DSR, followed by
the AP’s that are used by the protocol.

4.1 An Active Extension for DSR

Table 1 shows node resident services needed by DSR. Get ID() generates a
unique identification number for a new route request. There are two functions,
LookUp RouteCache() and SaveIn RouteCache(), for managing the Route Cache.
To filter out duplicate requests, Mark Dup Request() and Check Dup Request()
are used to manage the Duplicate Request Check List.
2 In referring to the DSR protocol, we mean the basic idea of DSR, not literally the

DSR standard.
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Table 1. Service Functions for DSR

Functions Types

Get ID() null =⇒ int

LookUp RouteCache(dest) host =⇒ host list

SaveIn RouteCache(dest, srcRoute) host*(host list) =⇒ null

Mark Dup Request(source, ID) host*int =⇒ null

Check Dup Request(source, ID) host*int =⇒ bool

4.2 Active Packets for Basic Route Discovery

Figure 1 shows the pseudocode for route discovery, while Figure 2 shows the
PLAN implementation. The pseudocode shows that as the packet executes at
each node duplicates are discarded. Then, if the packet is at the destination a
route reply is sent and the route is saved, anticipating the possibility of data
being sent back to the source. If the packet is not at the destination, the current
address is simply added to the route and the packet is reflooded.

In addition to the service functions above, the PLAN code uses a number of
PLAN core services and language constructs. thisHostIs() returns a boolean
value indicating whether the given network address matches the address of the
current node. getSrcDev() returns the interface on which the packet arrived,
and thisHostOf() returns the network address corresponding to the given de-
vice. Using these functions and the list operator for concatenation, ::, the route
request packet can obtain the source route as it is propagated through the net-
work (Lines 9–13). OnNeighbor() is a network primitive that generates a child
AP executing on a neighbor of the current node. getRB() returns the amount
of resource bound available in the packet.

The actual implementation corresponds closely to the pseudocode. In Line
2 route discovery starts by checking for duplicate requests. If the request has
been already seen, this packet is discarded (Line 15). If not, it will save the
tuple <source address, request id> in the Duplicate Request Check List (Line
3). If the request has arrived at the destination, D saves the source route to S
and generates a route reply packet (Lines 4–7). Based on the assumption that
links are bi-directional, the source route is reversed to be used as a route for the
route reply. If this is an intermediate node, the nodes address is prepended to
the current source route and OnNeighbor is used to broadcast the request to all
the 1-hop neighbors (Lines 8–14).

Figure 3 shows the pseudocode for route reply, while Figure 4 shows the
PLAN implementation. The pseudocode shows that a packet is simply forwarded
at intermediate nodes, while at the source the route is saved in the cache and
then any data destined for the destination is sent.

Again, the PLAN code corresponds closely to the pseudocode. If the reply
has arrived at the source, the route is saved and route discovery exits, triggering
(implicitly) the data packets to be sent. Lines 7–11 show how the reverse source
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1: INPUT: destination address D, list of hosts R
2: if this is a duplicate request then
3: discard this packet
4: else
5: if arrived at D then
6: send Route Reply with R
7: save R in route cache
8: else
9: append my address to R

10: flood this request to all neighbors
11: end if
12: end if

Fig. 1. Pseudocode for Basic Route Discovery

1: fun routeDiscovery(src, dst, id, srtRecord) =

2: if(not Check Dup Request(src, id)) then (

3: Mark Dup Request(src, id);

4: if(thisHostIs(dst)) then (

5: SaveIn RouteCache(src, srtRecord);

6: routeReply(src, dst, srtRecord, reverse(srtRecord))

7: )

8: else ( (* intermediate nodes *)

9: let val myAddr = thisHostOf(getSrcDev())

10: in

11: OnNeighbor(|routeDiscovery|(src, dst, id, myAddr::srtRecord),

12: broadcast, getRB(), getSrcDev())

13: end

14: )

15: else () (* dup req. discard *)

Fig. 2. PLAN for Basic DSR Route Discovery

route is used at an intermediate node. In Line 7 the nextHop is read from the
front of the list and in Line 8 it is removed from the list. In Line 9–10 OnNeighbor
is used to send the reply to the next hop, along with the truncated route.

5 Deploying DSR

Given the varied environments faced by MANETs, it is quite possible that the
most appropriate routing algorithm will not already be deployed on all the nodes.
In fact, given that MANETs are a new technology, it is possible that no routing
algorithm of any kind is deployed. This is exactly the sort of problem that AN
was designed to solve. In particular, let us consider how we could deploy our
simple version of DSR.

Our DSR implementation has two components, the AE making up the service
routines and the APs that use these routines. Since the APs carry their own code
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1: INPUT: source address S, list of hosts R
2: if arrived at S then
3: save R in cache
4: exit route discovery
5: send data using R
6: else
7: forward this packet to S
8: end if

Fig. 3. Pseudocode for Basic DSR Route Reply

1: fun routeReply(src, dst, srcRoute, routing) =

2: if(thisHostIs(src)) then (

3: SaveIn RouteCache(dst, srcRoute);

4: exitRouteDiscovery()

5: )

6: else (

7: let val nexthop = hd(routing)

8: val routing = tl(routing)

9: in OnNeighbor(|routeReply|(src, dst, srcRoute, routing),

10: nexthop, getRB(), getSrcDev())

11: end

12: )

Fig. 4. PLAN for Basic DSR Route Reply

with them, deploying them is trivial, we simply inject the required APs into the
network. Deploying the AE is only slightly more complex.

In MANE, code for an AE can be dynamically linked into a running node [9].
During this linking process, the AE can define new services that can be called
from PLAN. Once this has been done the APs that use those services will be able
to function. Now the only question is how to discover which nodes need to have
the AE installed and how to transport the code to those nodes. There are many
possible approaches, for example, we could imagine an ANTS-like [2] system
where APs implicitly discover whether the needed code is node-resident and
then download it from predecessor nodes or perhaps from some global repository.
Another possibility is that AEs could be downloaded from a central repository,
perhaps on demand.

For illustrative purposes and implementation simplicity, our implementation
uses a simpler approach. The route request packet carries the extension in the
packet itself and tests to see if it needs to be loaded as it floods the network.
Figure 5 shows the pseudocode for this simple solution. In Line 2, the packet
checks if the extension it needs is present. If not, it will dynamically load and
install the extension on the node before executing route discovery. This simple
use of plug-in evolution [6] allows us to deploy the DSR protocol dynamically
and in a timely manner. Although simple and elegant, it does seem likely that
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1: INPUT: destination address D, list of hosts R, Extension E
2: if DSR Service Not Present then
3: Load DSR Extension From This Packet
4: end if
5: DSR Route Discovery

Fig. 5. Dynamic DSR Deployment

space and security considerations may make this approach less desirable in real
systems.

We have swept one potentially important point under the rug. Most of the
changes we made to MANE that were described in Section 3.2 were really con-
cerned with improving our emulation of mobility and would not be needed for a
real network. However, some of the changes would actually need to be made to
support DSR or AODV. In particular, the proactive routing algorithms typically
used in wired networks have no need to potentially queue packets when a route
does not exist, they simply drop those packets. Adding this queue is not simply
a matter of plugging in a new PLAN callable service function, it requires more
fundamental changes to the node implementation.

This is an excellent example of where MANE’s support for “update exten-
sions” comes into play. Using dynamic updating technology [9], we can load an
extension that makes significant changes to the node implementation, including
inserting the new queuing mechanism. Similarly, we could used update exten-
sions to add the link-level acknowledgements needed to support route repair.

6 Evolving DSR

The ability to deploy a new protocol on-the-fly using AEs is a powerful mech-
anism for evolving the network. However, it is also a heavyweight mechanism,
requiring that code be dynamically linked into a running node. Using update
evolution is even heavier weight, since it enables almost arbitrary changes to be
made to a node.

It seems likely that only a few network users will be trusted to make these
kinds of heavyweight changes to running network nodes. Does this mean that
only those privileged users will be able to evolve or customize the network?

In this section, we show that significant protocol evolution can be achieved
without resorting to making permanent changes to the node. The key mechanism
is, of course, packet programmability. If there is a need to evolve or customize a
routing protocol, APs can implement the new one without modifying the services
of the nodes in the network. This kind of Active Packet evolution [6] enables the
network to promptly evolve with the help of common and reusable AE’s. PLAN
plays an important role here, because its strong safety and security guarantees
allow unprivileged, third party user to safely program the network.
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1: INPUT: source address S, destination address D, list of hosts R
2: if this is a duplicate request then
3: discard this packet
4: else
5: save R in cache for S
6: if arrived at D then
7: send Route Reply with R
8: else
9: if route found in route cache then

10: send Route Reply with R and found route
11: else
12: append my address to R
13: flood this request to all neighbors
14: end if
15: end if
16: end if

Fig. 6. Pseudocode for Optimized Route Request

1: INPUT: source address S, destination address D, list of hosts R
2: save R in cache for D
3: if arrived at S then
4: exit route discovery
5: send data using R
6: else
7: forward this packet to S
8: end if

Fig. 7. Pseudocode for Optimized Route Reply

6.1 Active Packets for Optimized DSR

Our initial DSR implementation is quite simple and does not take advantage of
many of the optimizations that are possible. In particular, intermediate nodes
simply implement flooding, despite having route caches that might contain the
route that we are searching for. To utilize route control packets efficiently and
to reduce routing overhead, the protocol needs to be optimized by allowing
intermediate nodes to aggressively participate in routing. Specifically, request-
broadcasting nodes can obtain a source route to S, and reply-forwarding nodes
can acquire a source route to D. They keep those route information in their route
caches for later use. Before re-broadcasting the request, intermediate nodes can
search their route cache. If there is a valid entry, they can respond without
re-broadcasting the request further. Most importantly, we can implement this
optimized DSR by only re-programming APs, and we do not need to modify the
DSR services in a node-resident AE.

Figure 6 and Figure 7 show the pseudocode for optimized DSR route dis-
covery. The underlined portions indicate the parts that have been added to our
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initial simple implementation. We have not included our PLAN code, as with
the simple DSR implementation, it mirrors the pseudocode closely.

At intermediate nodes, route discovery changes in two basic ways. First, in
addition to flooding the route discovery packet, the packet also saves the partial
route in its cache (Line 5), thus increasing its knowledge of possible routes at
essentially no cost. Second, the packet looks in the intermediate node’s cache for
a route to the destination (Line 9). If the route exists, then the node returns the
packet’s route record concatenated with the cached route (Line 10), thus short-
cutting the route discovery process. Route reply adds a single optimization,
replies also add routes to the route caches on intermediate nodes (Line 2).

Although in this example, new APs are used to perform a general optimiza-
tion, they can also be used to perform application-specific customizations as well.
For example, in the current protocol, if no route reply short cutting occurs, the
route that is chosen is the one taken by the first route request packet to arrive
at the destination. An application might desire to use a different metric, say
the route that has the largest bottleneck bandwidth. Assuming we had service
routines that could tell us link bandwidths, then we could easily program a route
request packet that would measure the bottleneck bandwidth and return a route
reply for any route request that arrived at the destination with a better value
than previous route requests.

7 A Hybrid Routing Protocol

We have seen how AN can be used to deploy new, improved, or customized pro-
tocols in a MANET environment. These examples show that AN’s adaptability
can help to accommodate the wide variety of environments MANETs face. Be-
cause of their dynamic nature, not only do we expect MANETs to be used with
widely varying network conditions, but we also would expect that those condi-
tions may well change while a network is operational, perhaps rapidly. In this
section, we show that AN can be used to adapt to such changing conditions.

In Section 2, we presented some background information on both DSR and
AODV. A key point is that AODV appears to work better when levels of mobility
are high, while DSR appears to work best when mobility is low. Thus, even if
the preferred protocol is in use, it is entirely possible that the level of mobility
may shift, making it desirable to change protocols.

Our approach is to build a hybrid protocol that can easily switch between
AODV and DSR as mobility levels change. The possible design space for such
hybrid protocols is immense and it is important to keep in mind that our goal
is to demonstrate that AN has achieved its goals with respect to adaptability,
not to explore this design space or to propose the “best” protocol. By showing
a fairly simple example, it should be clear that AN techniques will facilitate the
implementation, development, and exploration of a wide variety of such adaptive
protocols.
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Table 2. Service Functions for Hybrid Protocol

Functions Types

LookUp RIB string*host

(routing protocol, dest) ⇒ host*int*int

or ⇒ host list

SaveIn RIB(dest, destSeq, host*int*int*host

hopCount, nextHop) or host*(host list)

or (dest, source route) =⇒ null

Get RREQ ID() null =⇒ int

Mark Dup Request host*int =⇒ null

(source, RREQ ID)

Check Dup Request host*int =⇒ bool

(source, RREQ ID)

Get SrcSeq() null =⇒ int

Get DestSeq(dest) host =⇒ int

7.1 An Active Extension for the Hybrid Protocol

The key to creating a hybrid protocol that can switch rapidly between differ-
ing algorithms is to create a set of generic AE services that can be used by all
algorithms. Once this is done, we can then accomplish the actual switching be-
tween protocols quite easily using APs. This general idea is an important aspect
of AN, by providing generic, reusable, composable node resident components,
we can then use packet programs to create many different protocols and enable
switching between protocols easily.

Here, we take this idea only so far by creating generic services common
to both DSR and AODV as shown in Table 2. The most important of these,
LookUp RIB() and SaveIn RIB(), manipulate a generic Route Information Base
(RIB), which is a combined form of DSR route cache and AODV route ta-
ble. Notice that we have used parametric polymorphism so that these functions
can take arguments and return values that are appropriate to either DSR or
AODV. The next three services, Get RREQ ID(), Mark Dup Request(), and
Check Dup Request(), are concerned with duplicate elimination during flood-
ing. These are good examples of general services that we might expect to see
reused by many different protocols and in fact, they have already appeared
in our simple DSR implementation. The final two services, Get SrcSeq() and
Get DestSeq(), are concerned with manipulating sequence numbers. Although
here they are specific to the AODV aspect of our protocol, we can certainly imag-
ine that with more experience, we could define a general set of sequence number
manipulation services that would be reusable across a variety of protocols.
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7.2 An Active Packet for the Hybrid Protocol

Using the services above, we can now program an AP that can adapt to changing
conditions. If we actually wished to deploy an adaptable protocol, a key question
would be when to adapt. However, our goals is to show that adaptation is feasible,
not to research how best to do it. Thus we assume there exists some global policy
module that monitors mobility and informs us as to when to adapt. That AN
makes such a adaptive protocol feasible means that it would be interesting future
work to explore how to build such a monitor.

Figure 8 shows the PLAN program for hybrid routing request. The AP
for the hybrid route request contains three functions: routeRequestAtSrc(),
dsrRREQ(), and aodvRREQ(). The source, S, evaluates routeRequestAtSrc()
and decides which protocol to use. At low mobility, S injects a DSR route re-
quest packet by calling an OnNeighbor() that evaluates dsrRREQ() on all the
neighbor nodes (Lines 2–4). At high mobility, S spawns a child AP that executes
aodvRREQ() with the appropriate sequence numbers and a hop counter (Lines
5–7). The two functions, dsrRREQ() and aodvRREQ(), contain the algorithm for
the route request of the corresponding routing protocol.

In the interest of space, Figure 8 shows only our functions for the route re-
quest. The complete AP would include the route reply functions as well. When
there is valid information for the request (on intermediate nodes or the destina-
tion node), a reply packet is generated by the function call, dsrRREP() (Lines
14 & 20) or aodvRREP() (Lines 34 & 43). The optimized DSR protocol allows
intermediate nodes to reply to the request (Lines 19–22). In replying with cached
information, the reply-generating node needs to concatenate the route record and
cached information (Lines 20–21). In AODV, the destination sequence number
is compared to validate freshness of the cached information (Line 39)3.

7.3 Discussion

Our results show that it is not difficult to take two protocols that are similar
in structure, but which differ in many key details and essentially combine them.
But what if the protocols differ significantly in their basic structure? An obvi-
ous example would be our current reactive algorithms compared to proactive
algorithms which always maintain routes to all destinations. Designing a system
that adapted between reactive and proactive would be more challenging than our
current approach. However, the key point is that if, such a hybrid was designed,
AN would make it easier to deploy and evolve. However, it is important to be
clear that AN is just an implementation and deployment approach, it offers no
silver bullet for making hard design problems easier.

7.4 Simulation of the Hybrid Protocol

One significant limitation of our MANE based implementation is that it is diffi-
cult to generate meaningful performance results. This is because MANE nodes
3 In PLAN, #n returns the n-th element of a tuple. In Figure 8, #3 of rt entry is a

destination sequence number and #4 is a hop count.
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1: fun routeRequestAtSrc(src, dst) =

2: if(mobility = 0) then

3: OnNeighbor(|dsrRREQ|(src, dst, Get RREQ ID(), [ ]),

4: broadcast, getRB(), getSrcDev())

5: else

6: OnNeighbor(|aodvRREQ|(src, dst, Get RREQ ID(), Get SrcSeq(),

7: Get DestSeq(dst), 0), broadcast, getRB(), getSrcDev())

8:

9: fun dsrRREQ(src, dst, id, srtRecord) =

10: if(not Check Dup Request(src, id)) then (

11: Mark Dup Request(src, id);

12: SaveIn RIB(src, srtRecord);

13: if(thisHostIs(dst)) then

14: dsrRREP(src, dst, srtRecord, reverse(srtRecord))

15: else ( (* intermediate nodes *)

16: let val myAddr = thisHostOf(getSrcDev())

17: val newSrtRecord = myAddr::srtRecord

18: in ( try (

19: let val srcRt:(host) list = LookUp_RIB("DSR", dst)

20: in dsrRREP(src, dst, listcon(reverse(srcRt),

21: newSrtRecord), reverse(srtRecord))

22: end )

23: handle NotFound => (

24: OnNeighbor(|dsrRREQ|(src, dst, id, newSrtRecord),

25: broadcast, getRB(), getSrcDev())

26: ) ) end ) )

27: else () (* dup req. discard *)

28:

29: fun aodvRREQ(src, dst, id, srcSeq, dstSeq, hopCount) =

30: if(not Check Dup Request(src, id)) then (

31: Mark Dup Request(src, id);

32: SaveIn RouteCache(src, srcSeq, hopCount+1, getSrc());

33: if(thisHostIs(dst)) then

34: aodvRREP(src, dst, dstSeq, 0)

35: else ( (* intermediate nodes *)

36: try (

37: let val rt_entry:(host*dev*int*int) = LookUp_RIB("AODV", dst)

38: in (

39: if(dstSeq > #3 rt_entry) then (

40: OnNeighbor(|aodvRREQ|(src, dst, id, srcSeq, dstSeq,

41: hopCount+1), broadcast, getRB(), getSrcDev()))

42: else

43: aodvRREP(src, dst, #3 rt_entry, #4 rt_entry)

44: ) end )

45: handle NotFound => (

46: OnNeighbor(|aodvRREQ|(src, dst, id, srcSeq, dstSeq, hopCount+1),

47: broadcast, getRB(), getSrcDev()) ) ) )

48: else () (* dup req. discard *)

Fig. 8. PLAN for Hybrid Route Request
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are virtualized and typically run many instances on each real node and because
the physical network is emulated by using unicast UDP transmission. Thus it is
impossible for us to usefully quantitate the overheads imposed by our approach.
Despite this, and despite our goal not being primarily to explore the design of
hybrid routing algorithms, we still wanted to see if we could show that such an
algorithm could indeed result in improved performance when faced with chang-
ing mobility. To explore this question we simulated our algorithm as well as DSR
and AODV.

Experimental Setup As a simulator, we used ns-2, which is a discrete event
simulator widely used in networking research [21]. As a measure of performance,
we used the Packet Delivery Ratio (PDR). PDR is the ratio of the number of
packets received to the number of packets transmitted and larger numbers are
better. For a direct comparison, we used CBR traffic rather than TCP traffic
because congestion control and flow control offer different loads according to net-
work conditions for TCP. Each node moves according to the “random waypoint”
model [12], in which the nodes repeatedly move and then pause. In this model,
the pause time and the movement speed characterize the mobility of the net-
work. In each simulation, the same scenarios of movements and traffic are used
for DSR, AODV, and the hybrid protocol. The reported values are averages
taken from ten simulations under different movements and traffic scenarios.

The packet size is 512 bytes, and 4 packets are generated per second. The
number of CBR sources is 25 out of 50 total nodes. For each simulation, 50
nodes move around in a 1000 m × 1000 m square space for 1500 seconds. To
simulate changing mobility, we divided the simulation time into 3 parts of 500
seconds each. In the first part (0–500 seconds), there is no movement and the
network is stationary. In the second part (500–1000 seconds), all the nodes move
at a maximum speed of 10 m/s with a pause time randomly selected between 0
and 250 seconds. In the last 500 seconds, the maximum speed is 20 m/s and the
pause time is 0 seconds. For the hybrid protocol, initially DSR is used and as the
mobility increases the nodes switch to AODV. Specifically, during the first half
of the simulation, route control packets follow DSR semantics and data packets
are routed using DSR. After 750 sec., the interface for the routing protocol is
changed to AODV and route control packets follow AODV semantics. For the
simulation of DSR and AODV, we used the existing ns versions developed by
the Monarch project [22].

Results The simulation results are shown in Figure 9. The x-axis is simulation
time and the y-axis is the PDR. We observe that in general as mobility increases,
the PDR decreases because of more frequent link failures or changes. However,
DSR and AODV have different rates of decrease and there is a crossing point
where which is superior changes. In particular, while DSR’s is better than that of
AODV under low mobility, DSR shows more degradation as mobility increases.
On the other hand, AODV is relatively robust to changes in mobility.
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Fig. 9. PDR over time for DSR, AODV, and Hybrid

Not surprisingly, since the hybrid protocol switches between DSR and AODV,
its performance basically follows the better protocol in the whole range of mobil-
ity. At low mobility, the hybrid protocol adopts DSR’s aggressive route discov-
ery and caching scheme and it performs similarly to DSR. However, as mobility
increases, it works like AODV and becomes robust to increased mobility. The
region from 500 to 750 seconds is the only exception, because during that period,
we have not switched away from DSR. From the simulation results, we see that
the hybrid protocol is adaptive to network mobility and suitable for networks
under varying mobility environments.

8 Conclusion

In this work, we have demonstrated how AN can be used to deploy, evolve, and
adapt ad hoc routing protocols. In some cases, this has used both heavyweight
AE programmability and lightweight AP programmability. However, we have
also seen that if the right generic services can be provided, lightweight AP pro-
grammability can be a powerful tool by itself. These demonstrations argue that
AN has achieved its initial goals of facilitating network evolution and customiza-
tion, at least in this domain. Further we believe these demonstrations show than
AN can play a significant role in building MANETs that are easy to deploy, ex-
periment with, and which can respond to the challenges of the diverse MANET
environment.
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