
The Three-level Approaches for Differentiated
Service in Clustering Web Server?

Myung-Sub Lee and Chang-Hyeon Park

School of Computer Science and Electrical Engineering, Yeungnam University
Kyungsan, Kyungbuk 712-749, Republic of Korea

{skydream, park}@yu.ac.kr

Abstract. This paper presents three-level approaches for the differen-
tiated Web QoS. A kernel-level approach adds a realtime scheduler to
the operating system kernel to keep the priority of the user requests
determined by the scheduler in the Web server. An application-level ap-
proach which uses IP-level masquerading and tunneling technology im-
proves the reliability and response speed of the Web services. A dynamic
load-balancing approach uses the parameters related to the MIB-II of
SNMP and the parameters related to the load of the system resources
such as memory and CPU to perform load balancing dynamically. These
approaches proposed in this paper are implemented using a Linux kernel
2.4.7 and tested in three different situations. The result of tests shows
that the appraches support the differentiated services in clustering web
server environment.

Keywords: Differentiated QoS, Dynamic load balancing, SNMP, MIB-II,
Realtime scheduler

1 Introduction

Recently the technologies related to Web QoS(Quality of Service) which guar-
antees the quality of Web services are becoming more important[1,2,3]. Partic-
ularly for the differentiated quality of Web services, Web servers are required
to be able to classify contents depending on the importance of the information
and the priority of the customer and perform scheduling among the classified
contents. However, most Web servers currently provide best effort services on a
FIFO(First In First Out) basis only. This means that, when they are overloaded,
the servers cannot provide the appropriate services for the premium users[4,5].

Hence, a new server model is needed so that it may guarantee the quality
of services by classifying services according to specific criteria and providing
differentiated services. Despite the rapid expansion in Web use, the capacity of
current Web servers is unable to satisfy the increasing demands. Consequently,

? This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

even if a Web server providing differentiated services is developed, it cannot
guarantee perfect service.

As a resolution for Web QoS, Web server technologies employing load bal-
ancing have been proposed. However, the exiting load balancing technologies
for Web servers still have some problems, such as incompatibility between dif-
ferent client application programs[6], inability to process overloaded servers[7],
overload when processing HTTP requests/replies[8, 9, 10, 11], packet conversion
overheads[12, 13], and etc.

This paper proposes three-level approaches for implementing load balancing
Web servers that can guarantee differentiated Web QoS. In the first approach,
a scheduling module is added to Web server, which assigns a priority to a client
request according to its importance, and a realtime scheduler is inserted into
the OS kernel so that the assigned priority can be kept in the OS, and thereby
more efficient differentiated service is provided. In the second approach, the load
balancing Web server is configured using masquerading and tunneling technolo-
gies to distribute the load by class, thereby the reliability and response time of
the Web services are improved. The third approach uses the parameters related
to the MIB-II of SNMP and the parameters related to the load of the system
resources such as memory and CPU to perform load balancing dynamically.

2 A Differentiated Web Service System

The proposed system uses three-level approaches: kernel-level approach, application-
level approach, and load-balancing approach.

2.1 Kernel-level approach

For the client requests, this approach maintains their priority order determined
by the Web server in the OS kernel. This approach is implemented by mapping
the scheduling processes in the Apache Web server to the realtime scheduling
processes in the OS kernel.

When the client requests come through a Network Interface Card(NIC), the
Web server receives them from port 80 in the TCP listening buffer, classifies
them by connection according to specific classification policies(client IP, URL,
file name, directory, user authentication, etc.), assigns the proper priority, then
inserts them into the corresponding queues. Thereafter, at the same time the
requests are being scheduled, the scheduling processes in the Web server are
mapped one-to-one to the processes in the realtime scheduler(Montavista in this
paper) in the Linux OS kernel.

2.2 Application-level Approach

The load balancing Web server proposed in this paper has a high performance
and expansibility by enhancing the packet transmission rate and by resolving the
bottleneck in the load balancer through the use of IP-level masquerading and

tunneling. In the proposed system, a single load-balancer distributes the requests
to several real servers, which share a common IP address, using a masquerading
technique so that they look like a single server from the outside. IP masquerading
hides the real servers behind a virtual server that acts as a gateway to external
networks.

2.3 Dynamic load balancing Approach

The load balancer analyzes the load of the actual server, by analyzing the uti-
lization of the ethernet and the rate of systemic load, after processing the MIB-II
value that is related to the load of SNMPv2.

The systemic load analysis proposed in this paper is the value in which the
utilization of the system is added to all the utilization of the ethernet. The
equation (1) for load analysis is as follows:

Total load = Ethernet Utilization + Sys Utilization (1)

The ethernet utilization, given equation (2), means all the traffic amount
of input and output of the load balancer. In other words, the sum of all the
bit number of packets that transmitted from the sending side and all the bit
number that the receiving side received is divided by the whole bandwidth of
the network. The variables used to measure the utilization of the ethernet in this
paper are listed in table 1.

Ethernet Utilization = (total bit sent + total bit received)/bandwidth (2)

Table 1. The variables of ethernet utilization

Item Explanation

x Previous polling time
T Polling interval
ifInOctets The number of received octets
ifOutOctets The number of transmitted octets
sysUpTime System boot time
ifSpeed Current network bandwidth

In order to determine the utilization of an ethernet network, the input and
output traffic must be added, and then the sum is to be divided by the maximum
transmission speed. The ethernet traffic analysis equation is given by equation
(3).

(ifInOctets(x+t)−ifInOctets(x)+ifOutOctets(x+t)−ifOutOctets(x))×8

(sysUpT ime(x+t) − sysUpT ime(x))× ifSpeed× 10
×100 (3)

The utilization of the system is the sum of memory utilization, CPU average
utilization, and disc utilization, as shown in equation (4). The variables used to
measure the utilization of the system in this paper are listed in table 2.

Sys Utilization = memSwapLoad + laLoad + dskLoad (4)

Table 2. The variable of system utilization

Item Explanation

memTotalSwap The total space of swap memory
memAvailSwap The available space of swap memory
memTotalReal The total space of physical memory
memAvailReal The available space of physical memory
memTotalFree The total space of free memory
laLoad x The average load of CPU for x minutes
dskTotal The total disk space
dskAvail The available disk space
dskUsed The used disk space

In order to determine the utilization of a system, the memory utilization and
CPU utilization and disk utilization must be added. The calculation equation of
system utilization is given below:

memSwapLoad =
memTotalSwap−memAvailSwap

memTotalSwap
× 100 (5)

memRealLoad =
memTotalReal −memAvailReal

memTotalReal
× 100 (6)

laLoad = laLoad x× 100 (7)

dskLoad =
dskUsed

dskTotal
× 100 (8)

Equation (5) is used to calculate the use rate of swap memory using the
memTotalSwap value and the memAvailSwap value. Equation (6) is to calcu-
late the utilization of physical memory using the memTotalReal value and the
memAvailReal value. Equation (7) is to calculate the average utilization of CPU
for x minutes by percent. Equation (8) is to calculate the utilization of disc using
the dskTotal value and the dskUsed value.

3 Implementation and Experiment

The differentiated Web service system proposed in this paper is implemented
using a Linux Kernel 2.4.7 and PCs with a Pentium-III 800MHz processor and a
256MB RAM, while the test environment is built by networking three clients, one

�
� � �
� � � �
� � � �
� � � �
� � � �
� � � �

�����
	
 � �
 � � � �
 � �
 �

� �
��
���
��
��
� �
��

� 	 � � � ! " # � � " ! $ %
 & � # ' � ! !
 (# " � !) �
 ! * +) � � " !�
� � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � �
	
 ! �
 � � � �
 � �
 �

� �
��
���
��
��
� �
��

� 	 � � � ! " # � � " ! $ %
 & � # ' � ! !
 (# " � !) �
 ! * +) � � " !
�

�

� �

� �

� �

���,�
	
 � �
 � � � �
 � �
 �

� �
��
���
��
��
� �
��

� 	 � � � ! " # � � " ! $ %
 & � # ' � ! !
 (# " � !) �
 ! * +) � � " !

-- --

.. ..

// //
�
� � �
� � � �
� � � �
� � � �
� � � �
� � � �

�����
	
 � �
 � � � �
 � �
 �

� �
��
���
��
��
� �
��

� 	 � � � ! " # � � " ! $ %
 & � # ' � ! !
 (# " � !) �
 ! * +) � � " !�
� � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � �
	
 ! �
 � � � �
 � �
 �

� �
��
���
��
��
� �
��

� 	 � � � ! " # � � " ! $ %
 & � # ' � ! !
 (# " � !) �
 ! * +) � � " !
�

�

� �

� �

� �

���,�
	
 � �
 � � � �
 � �
 �

� �
��
���
��
��
� �
��

� 	 � � � ! " # � � " ! $ %
 & � # ' � ! !
 (# " � !) �
 ! * +) � � " !

-- --

.. ..

// //

Fig. 1. Experimental graphs of the ethernet and system utilization

load balancer, two servers, and one monitoring server. An Apache Web Server
2.4.17 is modified for the Web server, and a Montavista realtime scheduler is
added to the Linux kernel.

In this paper, HP’s httperf program, and AB(Apache HTTP server Bench-
mark tool) that measure the response speed of the Apache server are used to
evaluate the capability of the Web server.

Tests are carried out for three cases: when the servers are not overloaded(test
1), when the servers are overloaded(test 2), and when the servers are overloaded
and some requests are subsequently stopped(test 3). In test 1, the virtual IP
address is 165.229.192.14, the total number of connections 50000, the number of
concurrent users per session 1, and the number of calls per session 50.

Fig. 1(A) presents the results of the ethernet and system utilization, which
shows the reply changes of Web servers upon the three clients. As the servers
are not overloaded, the graphs are almost the same. However, if Web servers
are overloaded, In Fig. 1(B), the system proposed in this paper realized better
capability 1.3 times better than the least connection scheduling, and 1.5 times
better than the round-robin scheduling. In test 3, which uses the same conditions
as test 2. But the script code was formatted with such mechanism that the CPU
load of real server 1 would increase. As shown in Fig. 1(C), the proposed mecha-
nism realized 1.3 - 1.6 times better capability than other scheduling algorithms.
It was because load balancing was precise owing to the periodical measure of
present load of every real server.

4 Conclusion

To implement a differentiated Web service system that provides differentiated
services according to information importance or user priority, this paper pro-
posed three-level approaches: a kernel-level approach, an application-level ap-
proach and a dynamic load-balancing approach. In the kernel-level approach, a
realtime scheduler is added to the kernel, while in the application-level approach,
the load balancer is implemented using an IP-level masquerading technique and
tunneling technique. The performance of the load balancing system was tested
in three different situations, and the results confirmed that the system supported
differentiated Web services.

References

1. R.Fielding, J. Getys, J. Mogul, H. Frystyk, and T. Berners-Lee, Hypertext Transfer
Protocol HTTP/1.1, IETF (1997)

2. N. Bhatti, A. Bouch, and A. Kuchinsky, ”Integrating User Perceived Quality into
Web Server Design”, Proc. of the 9th International World Wide Web Conference,
Amsterdam, Netherlands (2000) 92-115

3. N. Vasiliou and H. Lutfiyya., ”Providing a Differentiated Quality of Service in
a World Wide Web Server”, Proc. of the Performance and Architecture of Web
Servers Workshop, Santa Clara, California USA (2000) 14-20

4. Apache Group, http://www.apache.org/.
5. R. Bhatti and R. Friedrich, ”Web Server Support for Tiered Services”, IEEE Net-

work (1999) 64-71
6. Chad Yoshikawa, Brent Chun, Paul Eastharn, Armin Vahdat, Thomas Anderson,

and David Culler, ”Using Smart Clients to Build Scalable Services”, USENIX’97,
http://now.cs.berkeley.edu/ (1997)

7. Thomas T. Kwan, Robert E. McGrath, and Daniel A. Reed, ”NCSA’s World Wide
Web Server: Design and Performance”, IEEE Computer (1995) 68-74

8. A. Dahlin, M. Froberg, J. Walerud and P. Winroth, ”EDDIE: A Robust and Scal-
able Internet Server”, http://www.eddieware.org/ (1998)

9. Ralf S.Engelschall, ”Load Balancing Your Web Site: Practical Approaches for
Distributing HTTP Traffic”, Web Techniques Magazine 3 http://www.webtech-
niques.com (1998)

10. Edward Walker, ”pWEB - A Parallel Web Server Harness”, http://www.ihpc.nus.
edu.sg/STAFF/edward/pweb.html (1997)

11. Daniel Andresen, Tao Yang, Oscar H. Ibarra, ”Towards a Scalable Distributed
WWW Server on Workstation Clusters”, Proc. of 10th IEEE Intl. Symp. of Parallel
Processing(IPPS’96) (1996) 850-856

12. Eric Anderson, Dave Patterson, and Eric Brewer, ”The Magicrouter: an Appli-
cation of Fast Packet Interposing”, http://www.cs.berkeley.edu/∼eanders/magi-
crouter/ (1996)

13. Wensong Zhang, ”Linux Virtual Server Project”, http://proxy.iinchina.net/
∼wensong/ippfvs (1998)

14. Montavista Software, http://www.montavista.com/.

