
Interpreted Active Packets for Ephemeral State
Processing Routers

Sylvain Martin? and Guy Leduc

Research Unit in Networking, Université de Liège,
Institut Montefiore B28, 4000 Liège 1, Belgium

{martin, leduc}@run.montefiore.ulg.ac.be
http://www.run.montefiore.ulg.ac.be/

Abstract. We propose WASP (lightweight and World-friendly Active packets for
ephemeral State Processing), a new active platform based on Ephemeral State de-
signed to allow bytecode interpretation on programmable datapath elements. We
designed WASP to be a good compromise between flexibility (e.g. offering solu-
tions in quality-adaptive multimedia flows, service discovery or mobility support)
and safety (i.e. protection of router and network resource).

1 Introduction and Motivations

With the emergence of network processors, the way we design active networks has
evolved [14]. Older active platforms like ANTS [1] offer fully-featured environment
supporting complex functions like transcoding video flows, redistributing a packet to-
wards a collection of targets, etc. In constrast, SNAP (Safe and Nimble Active Packets
from the SwitchWare project[5]) and more recently ESP (Ephemeral State Processing
router designed at University of Kentucky [4]) stress that active processing should re-
main safe and efficient in addition of being flexible (in a word, practical [2]).

WASP is an attempt to merge the benefits of these two platforms to offer a better
compromise between users and network operators’ expectations about active network-
ing. The WASP router keeps the focus on routing the packets, with the option of per-
forming very simple tasks (e.g. that are “too cheap to measure” compared to packet
forwarding) that can help applications in end-system to take better decisions or locally
improve flow efficiency.

In other words, we can express the constraint we put on WASP design as follows:

User-Friendly: WASP should offer significant programmability while allowing the
end-user to know to what extent he can trust what he gets from the active network.

Network-Friendly: WASP should not become a nuisance to networks (and operators).
It should require no configuration from the operator and the network load it pro-
duces should be predictable.

Router-Friendly: Active packets should not be able to harm a router nor degrade its
performance.

? Sylvain Martin is a Research Fellow of the Belgian National Fund for Scientific Research
(FNRS). This work has been partially supported by the Belgian Science Policy in the frame-
work of the IAP program (Motion PS/11 project) and by the E-Next European Network of
Excellence.

1.1 The Need For Speed

The speed at which our active platform will be able to process active packets will de-
fine the network locations where it can actually be deployed. With the appearance of
network processor devices that offer datapath programmability at rates of up to 1Gbps,
we may expect a network environment where programmable nodes are not simply end-
systems in an overlay but even border routers in a transit domain.

A simple active packet crossing an active node will incur different types of time-
consuming operations, among which delivery to the software component that will eval-
uate it and unmarshalling of high-level language abstractions can be a significant share
(up to 42% and 32% of the smallest ANTS capsule respectively, according to [10]) of
the total processing time. Considering these results, second-generation active platforms
have migrated from the user-level space to kernel level and tend to operate directly on
packet data rather than requiring serialization/deserialization between the representa-
tion active code uses and the one stored in the packet.

Because it is extremely small, the WASP microbytes interpreter can be made safe
enough to run with the same privileges as the “fast path” of the router. Moreover, it
doesn’t require any marshalling cost as it directly operate on the packet as if it were flat
memory rather than trying to assign strong types to data objects.

1.2 How Network Processors Differs from Generic-Purpose Processors

We developed the WASP platform with two target platforms in mind: regular PC sys-
tems (where it could be for instance running as a Linux kernel module) and routers
equipped with network processors, where it is possible to implement efficiently solu-
tions that require custom operations on packets. Network processors typically include
a general-purpose processor (for control plane purpose), specialized co-processors (for
hashing or trie lookup) and dedicated RISC cores for programmable datapath on a sin-
gle chip. These chips try to avoid SDRAM lookup latencies1 by providing closer, faster
(and smaller) storage for both data and code and often access multiple words in a row.
These hardware considerations have an impact on the design we can implement effi-
ciently on such system.

In addition, in the Intel IXP family ([9]), each execution unit (called a microengine)
has very small instruction memory (2K-4K) whose content cannot be reprogrammed
while the microengine is in use. It is thus quite unpractical to implement a platform that
would cache native code at the microengine level. Moreover, if one wishes to implement
a bytecode interpreter, it will have to be simple enough to fit a few microengines.

1.3 Third-Party Services: an Hybrid Networking Approach

Literature on active applications have shown how end-users could benefit from high-
level operations such as hierarchical HTTP caches and multimedia flow transcoding
depending on terminal/network abilities. A network operator who is willing to offer
such “value-added services” to customers will however face the problem of client-side

1 According to [6], it will take up to 750 cycles of the IXP1200 microengine

configuration and service advertisements. In our previous work [8], we have shown
how the WASP platform could be used to help deploy such services through a fully
decentralized, configurationless discovery scheme.

The key idea of that service location facility is that, if sufficient WASP nodes are
deployed in a network domain, nodes that are willing to offer a given service S simply
need to leave information in WASP routers so that, when customers establish a new
connection, they can automatically detect whether a given service is available or not
and which “proxy” node should be contacted to get the service. In terms of speed im-
provement, this hybrid approach allows the operator to draw the full power of nodes
that hosts services with limited overhead on routers, taking benefits of both component-
based active networks for the services implementation and active packets for services
discovery.

2 A Router-Friendly Platform

Even if WASP is based on active packets, it is much more restricted than general-
purpose capsules, so that user’s bytecode cannot waste router’s resources. For instance,
WASP bytecode language prohibits backward jumps and all instructions have pre-
dictable execution time, which makes packet processing time trivial to control (as shown
in SNAP [5]). If such a restriction is impractical for general-purpose services, it per-
fectly fits the lightweight control tasks that WASP will have to perform. While alter-
native solutions exist, such as associating a counter to any backward jump in the code,
we believe the benefit we could get in WASP is not worth the additional management
required.

2.1 Memory and Storage

Most active protocols will need information to be stored temporarily on intermediate
nodes, so that it can be later retrieved by other active packets. For instance, we could
drop B frames of an MPEG video stream if the I frame they refer to has been dropped by
the node or if it is likely to be dropped, for instance due to a congested output link. This
requires I frame to leave information on the router status for further frames. It is im-
portant for network availability and performance that this local storage remains easy to
manage and can automatically discard information that is no longer pertinent. ANTS [1]
and many other platforms use soft-state-based memory management to release memory
that has not been used by packets for a given amount of time.

Unfortunately, soft-state based managers make it hard for the access control to de-
fine if there will be sufficient memory to accept the flow. It has been shown in ESP [4]
that memory will be much easier to manage in the ephemeral state approach, that is if
the store only keeps data for a constant period (10 seconds), regardless of how frequent
the data is referenced during that period.

If we also ensure that all the data slots in the store have the same size, collecting
free-for-reuse slots becomes simple enough to execute without disturbing packet for-
warding tasks on the router, and checking if the router will have sufficient resources to
process an additional flow simply requires that the router checks how many different

load(@queue_state);
test(heavy_loaded_bit);
bnz(+1); FORWARD;
insert $key;
FORWARD;

$key=0xdecafbad

MPEG DATA (iframe)

IBBPB

 lookup $key;
 bundef(+1); DROP;
 FORWARD;

$key=0xdecafbad

MPEG DATA (bframe)

MPEG stream

frames dependencies WASP router

Fig. 1. WASP code attached to MPEG I frames and B frames

slots are used by the flow. Those small, fixed-size data slots that the node associate with
a key for a fixed amount of time are called tags in the ESP terminology. Note that no
access control is required for tags. It is simply assumed that each source picks up a
random 64-bit value and uses it as a key. The chances that two sources randomly pick
the same tag and send packets over routes that cross the same router in a 10 seconds
timeslice (otherwise no collision occurs) are extremely small.

2.2 A First Example

The above decisions may sound excessively restrictive, but the platform we build on it
can still be sufficiently expressive. Figure 1 illustrate a WASP implementation of the
selective frame filter [12]. The code for I frames checks a bit of the interface state to
evaluate the load on the outgoing interface (set by a RED queue manager, for instance)
and, depending on the result, leaves (insert) a tag demanding B frames to be dropped.

All the B frames depending on a given I frame will carry the same unique identifier
(e.g. 0xdecafbad) generated by the source and use it to check (lookup) the pres-
ence of the tag in the router’s store. Note that this scheme could easily be extended so
that, for instance, a B frame that faces a ‘drop request’ propagates this information back-
wards to the source. We could also use an I frame code that would compare the local
time with the reception time of the last I frame to see if the deadline is still achievable.

3 A Network-Friendly Framework

Even if we take care of router resources, an ill-intentioned active packet could easily
create an avalanche of clones to overload its destination. Among ‘first generation’ active
platforms, PLAN [11] was the only project that addressed this issue by making sure all
children’s resource counters receive a portion of the parent’s counter. Unfortunately,
knowing what initial bound should be allowed remains a complex issue.

In the case of the WASP platform, packets do not have the ability to create child
packets unless they are targetted at a multicast address, but they can drop themselves or
return to their source. If we focus on applications like service discovery or server load
balancing, we have no real need for more: we can store the new destination in the active

ESS

eth0

Ephemeral
State
Store

lookup

load

store

VPU

packet
variables

packet
header

environment
variables

insert

lookup

packet
code

incoming

center

outgoing

Fig. 2. A WASP router and WASP execution environment. Gray items mean the VPU has read-
only access to the resource

packet, return the packet towards its source and let the source issue a new connection
attempt to the real destination.

In the case of content distribution networks, however, being able to change the des-
tination address could have a great impact on performance, especially if we are allowed
to swap a multicast address to unicast addresses. Using this scheme, it becomes possi-
ble to take advantage of multicast routing where it is deployed rather than requiring a
consistent deployment along the whole path.

From the network operator point of view, such rerouting needs to be carefully han-
dled so that it does not lead to packets looping endlessly within a domain or “ping-
ponging” between two domains. For instance, by the action of rerouting, a WASP packet
should never require an additional IP table lookup and it may never lead to sending a
packet back on the interface it is coming from. The problem of rerouting is further
discussed in section 6.

4 The WASP Platform

WASP is derived from ESP router[4], which consists of the router logic and Ephemeral
State Stores (ESS) containing tags that packets access based on 64-bit keys. As shown
on Fig. 2, ESS are either bound to a network interface or to the “center” location, and
active packets that cross the router can only request interpretation at 3 logical locations:
incoming interface, center and/or outgoing interface.

Each ESP packet requests the execution of one of the pre-defined operations on cer-
tain tags. Unfortunately, those operations remain tightly bound to a specific application
domain (multicast) and non-trivial protocols require almost dedicated operations. The
WASP platform thus keeps the overall design of ESP but replaces pre-defined opera-
tions by a virtual processor interpreting a bytecode language inspirated by SNAP [5].
We also extended the packet control operations, access control semantics on the tags
and access to node-specific state.

4.1 WASP Packets

WASP uses the active packets paradigm: each packet contains its own code and the
data on which it can operate. The evaluation of packet code (up to 256 bytecoded

micro-instructions called microbytes) terminates when a packet control microbyte is
encountered, which tells the router what to do with the packet. In addition to “forward”
and “drop” semantics, WASP allows the packet to be sent back to the source at any
router, which can be useful when a quick feedback of a discovered state is required
(e.g. filtering more packets in the router ahead of a congestion point).

During interpretation, the data part of the WASP packet is available as a 128 byte
region of random-access memory and only the IP header is readable. Other parts (WASP
bytecode, other IP options, transport payload) are unavailable to WASP code.

4.2 The WASP Node

Each WASP node has a certain number of Ephemeral State Stores that will associate
64-bit keys with small, fixed-size data into tags. Each ESS is associated with a Virtual
Processing Unit (VPU) that processes the WASP packets. Since all exchanges between
packets occur in the ESS, there is no need to store VPU state between the evaluation
of two packets. This greatly simplifies the synchronization problems, even on a multi-
processor system, since it means we can bind VPU data to one real CPU rather than to
an ESS.

Before a VPU starts evaluating a packet, it retrieves the node and interface envi-
ronment variables and exports them as banks of read-only memory to WASP code.
Those variable will typically contain the node IP address, netmask, local time, etc. plus
statistics about the current interface (recent packet transmission statistics, queues status,
etc.), which can be useful for applications sensible to network conditions.

Considering the restricted resources of network processors, we tried to keep the
design of WASP’s virtual processor as simple as possible, which makes it look more
like an embedded microcontroller than a modern microprocessor, from an architectural
point of view.

– Work registers are organized following the ’accumulator and stack’ approach, lead-
ing to smaller encoding and better use of hardware registers.

– Once the index register has been loaded, any memory reference can either stay
on that index or advance to the next word. With an appropriate ordering of data
according to code sequence, this may save up to 50% of code size for the ESP
instructions involved in data aggregation service [15].

– Only simple ALU and shifting operations are allowed. The VPU has, for instance,
no support for floating point values, multiplications/divisions, or signed arithmetic.

4.3 More Efficient Access to ESS

Among all microbytes, interactions with the ephemeral state store will be the most
important to tune, as they will likely be the most costly operations the VPU will have
to handle. It is clear that we’d like to avoid repetitive hashing in a lookup-then-update
cycle, for instance. In native implementations, once the hash table has been looked
up, resulting memory references are kept for further updates. In WASP VPU, those
“resolved pointers” are stored in a cache transparent to the bytecode programmer. We

no caching full small mapping native
count 721 637 592 586 349

collect 1245 1082 958 842 633
rchild 2058 1830 1845 1509 775

rcollect 2980 2438 2394 2020 1091

Table 1. Comparing caching policies. Timings in CPU cycles on 1GHz Pentium III

tested two cache policies, small caching, where only the last resolved pointer is kept,
and full caching, which keeps every resolved pointers.

Moreover, previous work with ESS-based programmable nodes has shown that non-
trivial operations (including rchild and rcollect used for the robust aggregation service)
may require 3 or 4 logical variables in the ESS, leading to increased processing cost
due to repeated search in the ESS and repeated access to SDRAM.

WASP solves these issue by allowing larger values (namely 32 bytes) to be stored
in the ESS, and through a map microbytes that makes a whole ESS value appear as a
memory bank for the VPU. The packet can then access individual bytes/words of that
bank with no extra key resolution until another map forces the bank to be written back
in the ESS. Even on the PC implementation, mapping larger memory banks has allowed
us to reduce execution time by about 30%, and we expect even higher improvements
on IXP architecture thanks to burst transfers with SDRAM. It is also interesting to note
that, due to overhead in the ESS entries, allowing 8 times more storage leads to better
memory consumption as soon as we have an average of at least 2 related values.

4.4 Preliminary Performance Results

To validate our assumptions, we compared the execution time of ESP operations on
a Pentium III processor, interpreted by WASP using different access policies, against
ESP’s native implementation (see Table 1). Note that the small caching policy behaves
better than full caching here. This can be explained by the fact most of ESP operations
(as described in [15]) don’t look up for a given variable more than once and that updates
can be done before another lookup is issued. The cost for setting up and maintaining a
more complex policy such as full caching is thus greater than the benefit one can expect
from the cache hit ratio. The mapping scheme is clearly giving even better results once
the bytecode has been rewritten to use the map instruction, approaching an execution
time of 200 to 150% of the native implementation provided by University of Kentucky.

Note that even if interpretation with WASP is twice longer than execution of na-
tive code, this represents only a small fraction of the code that is actually executed
to process a packet. For instance, on a Linux router running at 300MHz featuring the
ESP/WASP module (with small caching policy), the ESP:count packet took an av-
erage 69.8µs2 while processing WASP:count took 77.6µs – only a penalty of 10%,

2 those timings are obtained using timestamps returned by libpcap on a machine running Linux
kernel 2.4.18, which forwards a ping with an average latency of 48µs and takes 99.8µs to
reply to a ping.

compared to 69% suggested by Table 1. Comparatively, the same packets take respec-
tively 23.6µs and 24.3µs to be just forwarded. Moreover, a more complex packet like
WASP:collect took 80.0µs for processing and 25.0µs for plain forwarding. Finally,
a WASP packet of the same size as WASP:count that simply contains the forward
microbyte took 66.6µs, which means most of the overhead is in packet checking, ini-
tializing and finalizing rather than in instructions processing.

5 Trustworthy Storage for the End-User

As soon as WASP is used to locate services, packets need to use a well-known key
to access information other participants might have left in routers. Such a well-known
key can be for instance produced by hashing a service name, which makes them easier
to guess from an external attacker than random keys of section 2.1. Therefore WASP
introduces protected tags that can only be modified by super packets. If the domain
operator ensures that no super packets can come from outside, the end user can be
sure that the information bound to the tag has been set up by the domain operator. The
node determines whether a tag is protected or not by checking its key against a specific
pattern3, and will allow writes to such tags only to packets that are marked ‘super’ in
their WASP header.

All a network manager will have to do in this case is (1) filter out WASP super
packets at ingress nodes from the outside and (2) use super packets to advertise services
within his own network.

5.1 Hash-Requesting Packets and Private Tags

When participants and attackers can come from the same domain, protected tags are no
longer helpful. For such cases, WASP offers private tags, which works like protocol-
private data in ANTS. Unlike other tags, the application programmer has no direct con-
trol on the key that will be used for private tags. Instead, the WASP node will hash the
code contained in the packet and use the result as the private key for that packet, which
is kept secret by the router. To make sure that regular packets do not attempt to use
brute-force scan, private tags have an identifiable prefix and any attempt to use keys
with that prefix explicitly will abort packet execution.

If the hash method is carefully chosen (e.g. a one-way hash like MD5), it means
that packets will have access to the same private space only if they have the same code,
which means we are sure they play the same game with same rules. Under those cir-
cumstances, an attacker can only hope to break the protocol by sending more (or less)
packets than expected by the protocol – which a properly designed protocol should han-
dle anyway. Note that the implementer of a WASP node is free to use any hash method
that best suits its hardware as the resulting hashes are used only on the computing node.
The only rule is that packets with the same hashed part operate on the same private tag
and that packets with different hashed parts operate on different private tags.

3 highest 8 bits are all 1 in current implementation

A B

 $

$

(a)

$

= =

 $

=

customer to
provider
relationship

peering
relationship

Provider

Peer

to:
 X,Y

to:
 any $

$

X Y

A B

Provider

Peer

XU

 $

U

 regular
 A to U

fake
A to X

rerouted
A to U

(b)

v

Fig. 3. Typical interdomain policies for domain A (a), broken by blind rerouting (b)

Note that routers that cannot afford MD5 could be allowed to use cheaper algorithms
(e.g. CRC) by mixing the bytecode with a locally-generated random number and still
be able to safely assume that protocol’s privacy cannot be broken.

5.2 World-Readable, Protocol-Writable Tags

While private tags guarantee that a collection of participants will modify state in the
router following a common set of rules (e.g. the protocol), their cost may not be accept-
able for packets that just need to follow the decision without altering the state (e.g. a
multimedia stream). Each packet would also have to carry the whole protocol so that it
receives the same hash value, regardless of what part of the code is useful for itself.

As a result, the expose opcode allows a hash-requesting packet to have its private
state accessible read-only as a protected tag. The result is a new ESS tag that contains a
link to the private tag, which is transparently resolved by the VPU when a packet tries
to read it. Writing to an exposed tag via a link is of course not allowed.

Note that the presence of a link only tells that it exposes private data, but not what
protocol exposes them. It will thus be up to the protocol designer to ensure that the key
used for exposing the data cannot be guessed by an attacker before the link is created.
A simple way to achieve this is to generate the key from a random number on the router
and inform participants of its value after data has been exposed.

6 Rerouting Packets

While considerably augmenting the flexibility of the WASP platform, packet rerouting
raises a number of issues for both network operator and end-users. The main concern
for the end-user will be to ensure that packets still reach the expected destination, even
when re-routing applies. When the sequence of destination addresses to the final target
is given explicitly in the packet’s variables, the offered service has the same security
semantic as loose source routing in IP. When that sequence is retrieved from ESS, how-
ever, we need to ensure that no one is trying to abuse the end-systems to gain an in-
termediate position on a specific data flow. We are confident that protected/private tags
should however help the end-user build reliable rerouting-based applications.

From the operator’s point of view, the main difficulty comes from the fact that gener-
ally speaking, we do not want to allow any packet to be received from any link. Business
agreements with other peer domains, for instance, may only allow a domain A to use
link to domain B to reach B’s clients, but not to reach other peer domains or providers
of B (see Fig. 3a). Nowadays, most of these agreements are enforced by filtering routes
advertised by BGP rather than by filtering packets, but blindly enabling rerouting of
WASP packets could lead to situations where a packet leaves A with a destination ad-
dress falling in one of B’s clients and then reroute itself to another peer domain on B’s
ingress router, thus cheating the business model (see Fig. 3b).

We propose to solve those problems by means of invitations left in the ESS by
former packets. When a WASP packet executes on an interface VPU, it can create a new
tag carrying its source address by means of the invite opcode. The binary pattern of
the key used with invite tells the VPU that the value can be safely used as a redirection
target. Depending on how the interface is configured, the reroute opcode will accept
either any target value (e.g. for customers-ingress links) or will be restricted to protected
tags and invitations (e.g. for any other link). This way, “ping-ponging” between domains
is no longer possible if all egress interfaces restrict rerouting to invited destinations.
An invitation to address Y present on the interface means that the peer router for that
interface has once sent a packet coming from Y , and thus it should be able to route
another packet towards Y properly.

We can also prevent cheating on the business model if non-client (guest) packets can
leave invitations only on incoming VPU of ingress routers. More precisely, if we make
sure that WASP packets from peers and providers are tagged as guest when they reach
the center (see Fig. 2) of their ingress router and that invite opcode is not allowed for
guest packets, then a packet p received on a non-client ingress interface that is targetted
to a client domain can only be delivered to a client domain. By contradiction, suppose
V is the first VPU where rerouting changes packet p’s destination towards a non-client
destination U . This is only possible if an invitation to U is present in V , however:

– if V is on a core router, it cannot have the invitation since guest packets can only
leave invitations on their ingress VPU (unless source addresses are spoofed)

– if V is on a border router, it implies V is bound to an outgoing interface, say itf,
towards domain U . Note that p can only reach that hypothetical interface if itf
connects to both clients and non-clients domains (likely to be a configuration error).

In Fig. 3, note that B is not protected if A allows blind rerouting on its egress
interface to B (we could easily disable blind rerouting on output interface, anyway). If
both A and B configure rerouting properly, malicious clients from A cannot lead A to
a situation where it unwillingly misroutes packets through B.

Note that even if rerouting does not, by itself, allow source spoofing (which is the
root of most DDoS attacks [13]), it might disturb tools based on header-hashing for
traceback of packets used to react to those attacks. Allowing interoperations between
rerouting and traceback might include storing previous destination in a field of the
WASP packet or keeping traces of applied rerouting on routers and will be an inter-
esting challenge for future work.

7 Conclusion and Future Work

We proposed a new platform that combines safety of ephemeral state processing and
flexibility of a bytecode language. While involving strong restrictions on programs one
can write, WASP can still address a large range of problems and it can be used as a
“helper” tool for more complex solutions that require a more “applicative layer” ap-
proach. Still, for the network operator, WASP is safe and offers strong guarantees on
processing time, memory requirements and network link consumption.

For the end-user, WASP gives enough programmability for most per-packet control
operations. Moreover, WASP is clear concerning what may happen and what may not:
the active network will never, for instance, alter source addresses or payloads, nor will
it reroute packets if not explicitly requested. It would be interesting to investigate fur-
ther how the receiver can be given more control on what WASP function can/must be
supported by received flows, and whether it could help hosts protect themselves against
DDoS, spam, etc.

The preliminary benchmarks and the design choices of this platform give us good
hope that an implementation on network processors will be able to sustain high through-
put of active packets, even if a real implementation on IXP network processor is still re-
quired to measure under which proportion of active packets wire speed can be achieved.

Acknowledgment

We would like to address special thanks to Jiangbo Li from Kenneth L. Calvert’s team
for having so kindly replied to all our questions related to ESP.

References

1. D. Wetherall, A. Whitaker: ANTS - an Active Node Transfer System. version 2.0
http://www.cs.washington.edu/research/networking/ants/

2. J. Moore and S. Nettles: Towards Practical Programmable Packets, In Proc. of the 20th IEEE
INFOCOM. Anchorage, Alaska, April 2001.

3. E. Nygren, S. Garland, and M. Kaashoek: PAN: A High-Performance Active Network Node
Supporting Multiple Mobile Code Systems, In Proc. of IEEE OPENARCH, pp. 78-89, New
York, March 1999.

4. K. Calvert, J. Griffioen and S. Wen: Lightweight Network Support for Scalable End-to-End
Services, in Proc. of ACM SIGCOMM, pp. 265-278 Pittsburg, PA. August 2002.

5. Jonathan T. Moore: Safe and Efficient Active Packets, Technical Report MS-CIS-99-24, Uni-
versity of Pennsylvania, October 1999.

6. K. Calvert, J. Griffioen, N. Imam and J. Li: Challenges in implementing an ESP service, in
Proc. of IWAN, pp. 3-19, Kyoto, Japan, December 2003.

7. S. Martin and G. Leduc: A Dynamic Neighbourhood Discovery Protocol for Active Overlay
Networks, in Proc. of IWAN, pp. 151-162, Kyoto, Japan, December 2003.

8. S. Martin and G. Leduc: An Active Platform as Middleware for Services and Communities
Discovery in Proc. of 2nd Int. Workshop on Active and Programmable Grids Architectures
and Components, May 2005, Atlanta, USA, LNCS, 3516, pp. 237-245, Springer-Verlag

9. Intel Corporation The IXP2400 Hardware Reference Manual, November 2003.

10. Wetherall, D. Active network vision and reality: lessons from a capsule-based system, Oper-
ating Systems Review, vol.33, ACM, Dec. 1999. p.64-79.

11. M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles: PLAN: A programming
language for active networks. In Proc. of ACM ICFP’98, pp. 86-93, Sept. 1998.

12. S. Bhattacharjee, K. Calvert E. Zegura, Technical Report GIT-CC-96/02, On Active Net-
working and Congestion, Georgia Institute of Technology. ftp://ftp.cc.gatech.edu/pub/coc/-
tech_reports/1996/GIT-CC-96-02.ps.Z

13. T. Dübendorfer, M. Bossardt and B. Plattner: Adaptive Distributed Traffic Control Service
for DDoS Attack Mitigation. In Proc. of SSN 2005, April 2005, Denver, USA.

14. James P.G. Sterbenz, Intelligence in Future Broadband Networks: Challenges and Opportu-
nities in High-Speed Active Networking. In Proc. of IEEE IZS 2002, Zürich, Feb. 2002, pp.
2-1 – 2-7

15. K. Calvert et al. ESP Packet & ESP Instruction Specification, Technical Report, http://proto-
cols.netlab.uky.edu/˜esp/documents/esp_spec.pdf, University of Kentucky.

