
Dynamic Binding is the Name of the Game ?

Marco A. Gómez-Mart́ın,
Pedro P. Gómez-Mart́ın and Pedro A. González-Calero

Dep. Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain

email: {marcoa,pedrop}@fdi.ucm.es, {pedro}@sip.ucm.es

Abstract. This paper presents a tutoring system aimed at teaching how
to compile Java into the language of the Java Virtual Machine, and, at
the same time, promotes a better understanding of the underlying mecha-
nisms of object-oriented programming. The interaction with the systems
takes the form of a 3D videogame where the student must compete to
provide the right machine instructions, collect resources needed by the
instructions and use her knowledge about Java compilation to find the
best strategy.

1 Introduction

In 1970, Carbonell publicizes its classical paper about the integration of artifi-
cial intelligence techniques in computer assisted instruction [2]. This application
would be later known as Intelligent Tutoring Systems (ITSs) [7]. During the last
decades, much effort has been made to enhance these systems using different
pedagogical approaches. One particularly widespread is based in the construc-
tivist approach [4], that put emphasis on the learner’s active role while they
acquire new concepts.

Learning-by-doing method [6] is based on these theories. The apprentice ap-
proach has been used for ages, and today has been extrapolated to ITSs. More
and more systems provides an habitable 3D environment [1]. Learners are rep-
resented in that environment by an avatar that they guide through the virtual
world. The student has to make their avatar perform actions to solve the current
problem the system has posed.

However, those systems focus on the learning factor, and often are boring
applications that the student uses because they have to. On the other hand,
computer users are more and more engaged to entertainment software. Players
are immersed in microworlds, becoming part of the environment. When the game
design, story and appearance are good enough, users can spend a huge amount
of time using them. Mixing up both areas, ITSs and games, results in what is
known as game-based learning or game-based teaching [5].

Related to these kind of systems, over the last few years, we have been
developing JV2M, a system to teach how to compile Java code, in particular,

? Supported by the Spanish Ministry of Education & Science (TIN2005-09382-C02-01)

which kind of target instructions has to generate the compiler of Java [3]. The
application presents a virtual world where the student controls an avatar that
executes the action they order to resolve the exercise.

2 JV2M, a system to teach to compile

Usually, compiler subjects are quite hard due to the strong formal knowledge
required to understand how these program work. However, if both source and
object languages are known, the translation is, in fact, quite intuitive.

For some years we have been developing JV2M, an application where students
are faced to Java programs that must be translated to JVM assembler code. Users
have to make this translation by themselves, using their intuitive knowledge
about the source code semantic and the JVM internals.

Being JVM a software machine, some of its instructions have a quite high
abstraction level. In that sense, some of them are designed to implement very
specific characteristics of the object oriented programming, like dynamic binding.
In that sense, pupils not only learn the translation process, but also practise these
object orientation concepts.

The aim is the user generating the object code for the exercise. This could be
done just written it down. But in this way, the complete process would be quite
boring. Instead of that, our system recreates a game atmosphere, showing a 3D
virtual world where the action develops. The environments has a special room
where the compilation takes place. But, before entering in there, user must go
around all over the place collecting resources (such as operands) needed for this
translation. Apart of the 3D environment, the program has more typical game
ingredients like time limit, enemies, and other strategy aspects.

As said before, some JVM instructions are quite pedagogically interesting for
object orientation. Instead of just compile them in the special room, student must
execute them in order to practise the runtime aspects of the object–oriented pro-
gramming. In this sense, the most significant JVM instruction is invokevirtual
used to call a method using dynamic binding.

The environment is enriched with Javy, an avatar that helps the student
about the compilation process. This character has information about each exer-
cise and the general aspects of the translation in order to adapt his explanation
to the user knowledge.

3 Sample exercise

As an example of execution of the system, we will describe an exercise, to show
the kind of Java programs we are thinking of. We will also detail the kind of
JVM instructions the user has to face.

The exercise is a typical example in object oriented programming. It has
an abstract class Figure, with a single public abstract method, getArea that
returns a double. Two concrete classes inherit from it: Circle and Square, with

public class Ci r c l e
extends Figure {

Ci r c l e (double rad iu s) {
r ad i u s = rad iu s ;

}

public double getArea () {
return r ad i u s ∗ PI ;

}

protected double r ad i u s ;
protected f ina l double

PI = 3.1415926535898 ;

} // c l a s s C i r c l e

public class Exerc i s e {

public stat ic void main (
St r ing params []) {

Figure f1 ;
Figure f 2 ;
double t o t a l ;

f 1 = new Ci r c l e (1 0) ;
f 2 = new Square (1 0) ;
t o t a l = f1 . getArea () ;
t o t a l += f2 . getArea () ;

} // main

} // c l a s s Exerc i se

Fig. 1. Code example

their particular constructors: the Square’s one receives the edge’s longitude and
store it in an object’s attribute, and the Circle’s one receives its radius. The
exercise is completed with a main function in a fourth class, that creates two
figures, and calculates the sum of both areas. Figure 1 shows the Java code of
two classes: Circle and Exercise.

The exercise does not pursue a perfect object oriented design. For example,
Figure class should be an interface instead of an abstract class. Besides, PI
attribute should be static or, even better, Circle class should use Math.PI.

However, this example introduces a lot of interesting concepts that the learner
has to practice. The content creator (tutor) has to decide, based on their expe-
rience, how many concepts include in each exercise for the user to face.

In this concrete code, the student has to practice arithmetical expressions
(sum and multiplication), attribute access and object construction. But, above
all, the main goal of the example is dynamic binding. During the exercise resolu-
tion, the student has to think about the execution of the JVM invokevirtual
instruction. When the program counter reaches f1.getArea(), the student has
to realize that, though Java code seems to say that the method Figure.getArea
has to be called (due to the static type of the f1 variable, they have to find out
its execution type to call the correct method.

Figure 2 shows the environment with part of the compiled code for this
exercise. All the operands in the instructions (for example Figure.getArea in
instruction 23) are the resources the student must look for before entering in the
compilation room. This enforces the user to think about the translation while
she is playing the level in the rest of the spaceship. Instructions 23 and 29 in the
main code are the invokevirtual mentioned previously. Although they are both
the same instruction in the object code, their executions are different because
the runtime type of the references they affect are distinct.

Fig. 2. Application snapshot with object code

4 Conclusions

After a few years developing JV2M, a system to teach how Java code is executed
in the Java Virtual Machine using game-based teaching strategies, we are now
in a position of been able to face users to real exercises.

This paper shows a description of the system and describes an scenario of
execution. In particular, we list the Java code of an exercise that face the stu-
dent with concepts such as attribute access, object construction, inheritance and
dynamic binding.

References

1. W. H. Bares, L. S. Zettlemoyer, and J. C. Lester. Habitable 3D learning environ-
ments for situated learning. In ITS ’98: Proceedings of the 4th International Con-
ference on Intelligent Tutoring Systems, pages 76–85, London, UK, 1998. Springer.

2. J. R. Carbonell. AI in CAI: an artificial intelligence approach to computer-assisted
instruction. IEEE Transactions on Man-Machine Systems, 11(4):190–202, 1970.

3. M. A. Gómez-Mart́ın, P. P. Gómez-Mart́ın, and P. A. González-Calero. Game-
driven intelligent tutoring systems. In Entertainment Computing - ICEC 2004,
Third International Conference, Lecture Notes in Computer Science, pages 108–
113. Springer, 2004.

4. J. Piaget. The Construction of Reality in the Child. New York: Basic Books, 1955.
5. M. Prensky. Digital Game-Based Learning. McGraw-Hill, 2004.
6. R. Schank and C. Clearyv. Engines for Education. Lawrence Erlbaum Associates,

Hillsdale, NJ, 1994.
7. D. H. Sleeman and J. S. Brown, editors. Intelligent Tutoring Systems. Academic

Press, London, 1982.

