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Abstract. One of the most exciting aspects of shape modeling is the
development of new algorithms and methods to create unusual, inter-
esting and aesthetically pleasing shapes. In this paper, we present an
interactive modeling system for generating freeform surfaces using a 2D
user interface. In this paper, we firstly interpret the given 2D curve to be
the projection of the 3D curve that has the minimum curvature. Then
we propose a topology-consistent strategy to trace the simple faces on
the interconnecting 3D curves. By using the face tracing algorithm, our
system can identify the 3D surfaces automatically. After obtaining the
boundary curves for the faces, we apply Delaunay triangulation on these
faces. Finally, the shape of the triangule surface mesh that follows the 3D
boundary curves is computed by using harmonic interpolation. Solving
Laplace’s equations, we are able to construct simple and conceptual 3D
models interactively. Although the incorporation of topological manip-
ulation will introduce many new(and interesting) design problems that
cannot be addressed in this paper, we show that automatically generated
models are both beneficial and feasible.

1 Introduction

Nowadays, most designers still prefer to express their creative design idea through
2D sketches. However, space curve sketching using the 2D user interface has a
challenging and active research problem of interpreting 2D sketches of curves
and surfaces as a 3D entity. Obviously, this kind of reconstruction should need
more information such as general assumptions or experiences, database of 2D-
3D geometrical correlations or given models of reconstructed objects. it is well
known that the fundamental difficulty is in choosing the appropriate one.

In this paper, we attempt to provide a physically sound and topologically el-
egant method of 3D model construction from 2D curves. Similar to the approach
used in [1], we try to interpret the 3D curve corresponding to the given 2D curve
to be the one that minimizes the maximum normal curvature in 3D. However,
until now our construction of the 2D curves can only support the network of the
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3D curves as the control profiles of smooth surfaces, and do not provide general
topology. In order to identify the faces on the mesh with topology consistency, we
use topology graph operations which are similar to Euler’s operations and based
on graph embedding. The biggest advantage of our operations is that they are ex-
tremely simple and always guarantee topological consistency. We also developed
a data structure, called Bidirectional Face Table(BFT), to support topological
computation and identify the faces on the mesh efficiently.

The second issue we address in this paper is the generation of smooth sur-
faces on the above identified simple faces on the mesh. The 3D surface shape is
generated in the form of a 3D parametric surface, which is obtained by trans-
forming the 2D plane into 3D surfaces and automatically interpolating the mesh
vertices of the 2D triangle mesh into 3D.

Primarily, there are four main contributions in this paper as follows:

— The topology of meshes can be updated automatically during the sketch
process simply by adding or removing the key points and curves.

— Smooth free-form surfaces can be generated with simple user input, and

adopt a face tracing algorithm for the simple face identification.

Given the articulated sketches, we present an effective algorithm to gener-

ated shape of the surface mesh using a finite element method (FEM). All

the internal vertices on the mesh are interpolated by using the harmonic

functions.

— We developed an interactive modeling system to test a lot of drawings. It is
proved that the system can create many reasonable shapes from the profile
and silhouette sketches

£ Converting

| of I 2D strokes eometrical
HH 2D Strokes HH |:> into —
il T L S S N i tess

3D Curves

S eSS B S E S S S SR
[ )
3

ks

Delaunay Triangulation 3
&

% Harmonic Interpolation

Dynamical
Face Tracing
and Identification

205

Topological

Fig. 1. The pipeline for Topology-consistent Design with Harmonic Interpolation

2 Related Work

Some shape modeling systems are based on tensor product parametric surfaces
such as tensor product B-spline [2]. However surfaces can only support quadri-
lateral meshes as control meshes for smooth surfaces and do not provide general



topology [3]. And the restriction to quadrilateral meshes also makes the mod-
eling process difficult for users. There have been significant efforts in solving
this problem by still staying in the parametric surface realm [4].Recently, some
papers have been presented on fitting surfaces to a network of curves.

On the other hand, three-dimensional shape modeling systems that use a vol-
umetric data structure directly are relatively new [5, 6] as compared with other
popular modeling primitives, such as polygons, NURBS, and subdivision sur-
faces. Recently, a scripting language [7], octree [8], subdivision volume [9], and
level set [10] have been used as volumetric modeling methodologies. Sketch-based
modeling using standard mouse operations became popular in the past decade.
One of the earliest sketching systems was Viking [11], which was designed in
the context of prototypic CAD models. Later works include SKETCH [12] and
Teddy [13]. The SKETCH system is intended to sketch a scene consisting of
simple primitives, such as boxes and cones, while the Teddy system is designed
to create rotund objects with spherical topology. Although improvements to the
original Teddy system have been recently proposed [14, 15], extending the topo-
logical variety of creatable models is still an unsolved problem.

3 Curve Construction

In our implementation, the given 2D curves are interpreted to be the projection
of the 3D curve that has minimum curvature, by incorporating the idea from
[1].In our implementation, the resulting 3D space curve, though a very close ap-
proximation of the curvature minimizing curve, has non-smooth, high frequency
transitions of the depth values across the critical points. We use the Laplacian
filter to obtain a final smooth space curve as it is extremely fast and simple as
required by interactive sketching applications.

After transforming the 2D curers into 3D, our system also has the ability to
form these curves into a network (graph). In this process, we call the end points of
a curve to be the linkage points. And every point on the drawn curves could also
be the linkage point, assigned by the users. Hence user could interactively specify
the connectivity between the linguae points on the 2D interface. In this way, the
curve network could be generated. Afterwards, we use an automatical recognition
process of patch identification, where the the resulting network is the input.
Once the patch boundary connectivity is known, the topological triangular mesh
can be constructed, and then we can generates 3D surfaces by using Laplacian
interpolation.

3.1 Conversion of 2D Curves to 3D Outlines

Usually, the 2D curves drawn freehand in sketching applications are not Bezier
curves, but a sequence of edge connected points. Hence, we have to adapt the
curvature minimizing scheme for the depth extraction for a generic 2D curve.
Obviously, one way is to fit a Bezier curve to the input point sequence and
interpolate the depth of this 2D Bezier curve. However, this is a computationally



expensive operation and most importantly, the error in curve fitting will provide
a distracting and unexpected feedback to the user.

In this subsection, we give a fast and simple method for finding the depth
of the sketched 2D curve points that approximates the minimum curvature 3D
curve. We assume that the depth values of the control points are equally spaced
and the closest point on the curve from any control point has the same depth
value as the control point. Hence if we identify these key points on the curve
that are closest to the control points and space their depth values equally, we
will have the first approximation of the space curve. Since we do not have these
3D Bezier curve control points and hence of its 2D projection, identifying even
the correct number of key points is difficult.

Even though we do not have an explicit Bezier representation of the 2D
sketched curve, the number of critical points in the curve is the lower bound
on the number of control points of the hypothetical Bezier representation of the
same curve. The critical point need not be the closest curve point (key point)
to the corresponding control point. The fundamental source of approximation in
our algorithm for curvature minimizing depth interpolation comes from the fact
that we assume that these critical points are key points.

The second source of approximation comes from the fact that, there need not
be a critical point corresponding to every control point. Hence all the required
control points cannot be found by just one sequence of critical points. Differ-
ing from the previous approaches which hierarchically subdivide the curves, we
solve this issue of selecting the key points, by simplifying the original 2D curve
from the first point location. In practice, the hieratical method usually obtain
the slow convergence, because that it takes many iterations to capture the key
points, due to the local smoothness of the 2D curve. On the other hand, if we
assume the starting point could be the key point, the alterative solution comes
naturally and effectively. The basic idea of simplification is eliminating inter-
mediate nodes in a straight boundary segment except two end nodes. Based on
this idea, the algorithm inherently includes a routine for simplifying a curved
boundary exactly made of many small segments. This is an artifact caused by
the digitalizing the user’s drawing. Meanwhile, what is important, is that if we
perform the curve simplification to select the key points, we can easily apply
curvature minimizing method to interpret the 2D curves, and the geometrical
feature and the smoothness of curves still hold well for each curved segments.

Thus, the key points are extracted by the curve simplification. And the spe-
cific algorithm proposed here is based on the concept that newly simplified
boundary segments are within a preset tolerance from original curve segments
from 2D user’s drawing. At first, two deviation tolerance schemes were exam-
ined. The one is limiting a maximum error between newly generated simplifying
stroke segments and original stroke segments. The other is limiting a sum of
errors between two different stroke segments. The latter scheme gave locally big
deviations between the two boundaries although it limited a total accumulation
of errors. So the former scheme was chosen for simplifying the curve from the



Algorithm 3-1 KeyPointSelection(Curve C'))

Input: Sample points of a 2D curve C.
Procedure:

Let LS be {All the sample points of C'}.
{vo,v1,v2, ..., vn_1} is the point sequence from LS.
Let KS be { point v|v € C' A v is a key point }.
Let 7 be a preset tolerance to limit the difference between the original curve from LS
by and the simplified curve from KS.
Let ¢ and j be the node indices of original curve.
KS — {vo,vn-1},1—0,7 2.
Loop:
KS=KSU{v}
IF j==n-1 THEN
return; {Break Looping.}
ELSE
Calculate a line, L;; , connecting v; and v;.
Calculate the distances from the intermediate nodes,vx, where i < k < j, to L;.
Let the distances be dj and the maximum among di be dmaz-
if dmae > 7 then
KS=KSU {vj,l};
i—j—1.
end if
Jje—J+1
END ELSE.
END Loop.

return KS.

original drawing. The summary of the algorithm for finding the key points by
simplifying the curve is given as pseudo-codes in Algorithm 3-1.

3.2 Automatic Face Tracing and Identification

After transforming the 2D curves into 3D, our system also has the ability to form
these curves into a network (graph), which will directly control the generation
of the free-form surfaces on the curved boundaries. In this process, we call the
end points of a curve to be the linkage points. And any other point on a (already
drawn) curve could also be the linkage point, assigned by the users. Then user
could interactively specify the connectivity between the linkage points on the 2D
interface. In this way, the curve network could be generated. Afterwards, we use
an automatical recognition process of the face tracing and identification, where
the the resulting topology for the input control graph can have the on-the-fly
change.



3.3 Topological Operations on the Curve Networks

Our goal is to generate the 3D free-form surfaces from a network of input curves.
Hence, in our current implementation, once the user sketches the desired shape
of the object in the form of outline curves, the system should have some ”in-
telligence” to help the user identify the face forming the surface. Please note
that our system allows various models including smooth and sharp boundaries,
and we consider the designed meshes can be divided into simpler surfaces, which
are called faces. So the 3D curves here are nested to form the inter-connected
boundaries of these faces.

Theoretically speaking, the face recognition is a face-tracing work in the
graph represented by the network of curves. In order to make system automati-
cally recognize the faces on the curve network and accelerate the further triangu-
lation on the faces, we apply the graph rotation system [16] on the nested curves,
as shown in Fig. 2. So that we can identify the following topological operations
on the rotation systems as essential for the mesh modeling:

— Face-Trace(f) outputs a boundary walk of the face f. This is related to
reconstructing a ”polygon” (face) in the curve graph and to triangulation of
the faces on the mesh.

— Vertex-Trace(v) outputs the edges incident on the vertex v in the (circular)
ordering of the rotation at v. This is useful when the constructed mesh needs
reshaping.

— Insert(v;,v9,¢) inserts the new edge e between the face corners v; and vq(a
face corner is a subsequence of a face boundary walk consisting of two con-
secutive edges plus the vertex between them). This is used in revision of
the curve network and triangulation of the face on the mesh, changing the
topology of the mesh dynamically.

— Delete(e) deletes the edge e from the current embedding. This is the con-
verse operation of edge insertion and is also used in changing the topology
of the mesh.

— CoFacial(v,v2) returns true if the two face corners v; and v belong to the
same face of the current embedding and false otherwise. This operation is
useful in maintaining topological consistency of the mesh.
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w, v, W W W

Fig. 2. Inserting an edge between two corners of the same face(left). Inserting an edge
between two corners from two different faces.(right).

We have initiated the face tracing and identification algorithms on graph
rotation systems in order to implement these operations efficiently. We have



first observed that if a rotation system of a graph is represented in the edge-list
form, which for each vertex v contains the list of its incident edges, arranged in
the order according to the rotation at v, the representation does not efficiently
support the operations listed above. Here we introduce a new data structure and
show that the new data structure efficiently supports all of the operations listed
above.

Each face is given by a sequence of vertices corresponding to a boundary
traversing of the face. The vertex appearances in the sequence will be called
vertex nodes. Note that two consecutive vertex nodes in the sequence correspond
to an edge side in the embedding. The sequence is represented by a cyclically
concatenatable data structure. For specific discussion, we will use 2-3 trees for
this concatenatable data structure. For readers’ convenience, we recall 2-3 tree
is a balanced tree whose depth is always logarithmic in the number of nodes in
the tree. Moreover, operations on 2-3 trees such as inserting a node, deleting a
node, splitting a 2-3 tree into two 2-3 trees, and concatenating two 2-3 trees into
a single 2-3 tree, can all be done in logarithmic time.

v |

Fig. 3. An illustration of the BFT data structure for a tetrahedron.

Definition 1 Let p(G) be an embedding of a graph G = (V, E) with face
set F. A Bidirectional Face Table(BFT) for the embedding p(G) is a triple
L =< F,V,e >, where the face list F' consists of a set of |F| sequences. Each
is given by a 2-3 tree and corresponds to the boundary walk of a face in the
embedding p(G). Moreover, the roots of the 2-3 trees are connected by a circular
doubly liked list. The vertex array V has |V| items. Each V[v] is a linked list of
pointers to the vertex nodes of v in the 2-3 trees in F. The edge array ¢ has |E|
items.Each ¢[e] is doubly linked to the first vertex nodes of the two edge sides
of the edge e in the 2-3 trees in F.

Figure 3 gives an illustration of the BFT data structure for a tetrahedron.
It can be shown that the BFT structure and the BFT structure used in com-
putational geometry can be converted from one to the other in the linear time.
This implies that the computer space used by a BFT structure to represent a
mesh modeling is linear in the size of the mesh, which is the best possible.



4 Surface Construction

Once the boundary connectivity for each face is known, our system constructs
topological triangle mesh, and then generates a smooth freeform surface based
on the given boundary curve network, using Laplacian interpolation followed by
surface refining.

4.1 Triangulation and Harmonic Interpolation

After we obtain all the simple faces with their boundary curves, the generation
of the meshes for the 3D profiles has the following two steps:

1. Topological Triangulation-The input to this step is a closed sequence of
connected curves. The output is a topology of the triangulation (with unre-
fined geometric coordinates for the vertices) that consists of input vertices on
the curve and the newly introduced vertices in the interior of the identified
face.

2. 3D Interpolation of Surface Mesh-The triangle mesh is automatically
extended to the shape that represents the freeform surface by harmonic in-
terpolation. Afterwards, mesh refining is processed to reduce the geometrical
noise in generated mesh.

Specifically, in step 1, the boundary curves of the identified faces that are
created in previous process are projected onto a plane that best approximates
the curve points. Hence our triangulation method is applied on 2D domain,
generally based on the Delaunay triangulation, where a triangles is created by
joining nearest neighboring nodes as its edges. Since all the vertices having been
projected onto the plane, such triangulation actually is a 2D Delaunay trian-
gulation, called topological triangulation. Here,the input for mesh generation is
a Planar Straight Line Graph (PSLG), including the vertices of the boundary
curves projected onto the plane. Quality mesh generation for a PSLG is a stan-
dard computation involving two control parameters, a triangle size tolerance (u)
and a minimum angle tolerance (). A quality mesh generation program com-
putes a constrained Delaunay triangulation that is a refinement of the input
PSLG, with no triangle exceeding p in size and no angle less than 6, except pos-
sibly for small angles between constrained edges in the input PSLG. The modeler
uses the freely distributed program program Triangle. As a result, the topological
triangle mesh that is suitably fine for modeling the surface is obtained.

On the other hand, the nodes in the meshes which are obtained by trian-
gulating the surface domain with the boundary curve constraints in 2D, are
interpolated to give a 3D shape by using the transformed profiles in 3D. The
surface mesh vertices are interpolated to conform to the profiles transformed in
3D using Laplacian interpolation. We seek to define the parametric surface by
the function f(r,s) = (x(r,s),y(r,s), z(r,s)) representing the 3D surface mesh
shape, where r and s are the parameters for a position in the 2D plane domain
2. We now specify 92 be the outline of the faces projected onto the 2D plane,



and let I" be the original 3D surface profiles which is interactively modeled and
automatically captured before. There are two kinds of boundary conditions ap-
plied to the domain {2, the one is a Neumann boundary condition defined atd(2
becaused? is considered as free, and the other is a Dirichlet boundary condition
defined at I'; which are illustrated in Figure 4. Let g(r, s) be the forced bound-
ary condition at I', which is given by the 3D curves generated interactively as
discussed previously. The interpolation problem is mathematically defined as
follows.

Interpolated x, y or z of
3D sketching surface

Interpolated .
value l

-0 Given value
n (Forced B.C.)

Original 2D domain

Fig. 4. Interpolation of 3D surface mesh coordinates(left), neighboring triangles of a
Delaunay edge(right).

2 2

Vif = % ZT‘;C =0 for (r,s) € 2 (1-1)
f(rs) = glr,s)  for(ns)eT (1-2)

% =0 for (r,s) € 002 (1-3)

Functions that satisfy Laplace’s equation, VF = 0, are called harmonic func-
tions. The Laplace’s equation is interpreted as partial differential equations gov-
erning an elastic membrane problem. The function f specified by Equations(1)
can be viewed as 3 harmonic functions defined in §2 that interpolates g(r, s) on
I'. Now the Laplacian interpolation problem of the surface mesh is solved by a
finite element method (FEM) defined for the discretized domain. However, we
do not need much of the apparatus of the FEM, because in this simple case,
the linear equations for the coordinates, xy, yi, and z, can be formed from a
single parameter, ;;, associated with the mesh edge between vertices P; and P,
as shown in Figure 4. Because we are using a Delaunay triangulation, 7;; has a
simple geometric description. For an edge internal to the mesh, let T4 and Tz
be the mesh triangles that share the common edge between P; and P;. Let Q4
and @p be the circumcenters of T4 and Tz, then v;; = ||Qa — Qg||/||P; — P;l|;
which is discussed in detail by [17].
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If edge P; to P; is on the boundary of the surface, then T4 has no neighbor
Tp. In this case, @p is the midpoint of edge P; to P; and T4 must be acute
so that Q4 stays in Ty4. This restriction on the triangles at the 3D surface
boundary basically requires the mesh to be adequately fine and well shaped
near the boundary.

To compute the discretized coordinate function, z(r,s), the FEM method
specifies a system of linear equations of the form Az = b where xj, is the value
of the coordinate function at mesh vertex Pk. In Equation (2), we give the form
of the equation associated with a mesh vertex, P;, not on the surface skeleton,
that is connect to m neighboring mesh vertices, Pj, ,k = 1 to m by mesh edges.

k=1 k=1
O v )i — > Yigws, =0 (2)

If Pi = (ry,s;)lies on the surface profiles,then the equation is simply z; =
Zsk(ri, 8;). This is a system of linear equations with sparse matrix, A, which can
be solved by most sparse matrix techniques or software.

5 Experimental Results

We have tested our approach generating a number of simple models. Fig.5 and
Fig.6 show some of the sketched-based models accursed using our interactive
method. Most of the test cases are used with normally six to ten curves, pro-
ducing a similar number of the simple faces on the model surface.

Our system provides a simple interface where the user can draw lines, ro-
tate the view and continue drawing until the desired shape is achieved. Basic
utilities like picking, moving and smoothing curves, or indicating corner points,
are part of the interface. The identification of the simple faces on the mesh is
automatically completed, but still needs the user’s indication in some unusual
cases. So the recognition work will be improved to be further self-acting and
more interactive in future. In order to reduce the effect of the possible outliers in
the surface fairing procedure, we damp the migration of vertices, only allowing
displacements proportional to the length of surrounding edges. This way the rel-
ative movement of vertices is controlled by a user-defined parameter. The surface
generated gives a coarse representation of the object and can be further refined
using subdivision method.

6 Conclusions and Future Works

In this paper, we have also also proposed a conceptual framework for the de-
velopment of systems for modeling topologically consistent meshes. We combine
the graph rotation system representation and the harmonic interpolation scheme
into one integrated system, in which the graph rotation system is used for an
internal face recognition for models, while the harmonic interpolation is used
for surface generation. We also provide efficient topological operations for edge
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Fig. 5. Our system creates the mesh model for tree design(left). The textured tree
model is rendered in the virtual environment(right).

Fig. 6. One tetrahedron model generated by our system: the input sketches(left), the
generated mesh(middle) and the texture-mapped appearance(right).

insertion and deletion, and vertex and face tracing. In particular, we have also
explored the physically-based method(FEM) to utilize the Laplacian interpola-
tion to shape the mesh from the silhouette and profile curves.

Our planned future work includes more intelligent and automatic shape iden-
tification for surface generation, e.g., currently we are trying to use heuristics to
determine the more plausible shape to be generated. In addition, future investi-
gation will attempt to improve the surface reconstruction algorithm, including
extensions to sketches that cannot be described by a connected graph. Finally,
we believe that developing efficient ways to couple topology-guidance with geo-
metrical optimization techniques is a fertile ground for future research.
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