
Application MDA in a Collaborative Modeling 
Environment 

Wuzheng Tan1, Lizhuang Ma1, Zhiliang Xu1, Junfa Mao2 
1Department of Engineering and Computer Science, Shanghai Jiao Tong University,  

200240, China 
2Department of Electronic Engineering, Shanghai Jiao Tong University, 200240, China 
tanwuzheng@yahoo.com.cn, ma-lz@cs.sjtu.edu.cn, xuzhiliang@sjtu.edu.cn, jfmao@sjtu.edu.cn 

Abstract. This paper proposes a modeling environment that intends to support 
service collaboration. In this platform, technology independence is a very 
important goal to be achieved. Model Driven Architecture and metamodels are 
some of the resources to provide such independence. Based on [1] and [2], this 
article offers a modified software development process that would leverage 
MDA, and studies a web application case of conceptual innovation modeling 
system 

Keywords: MDA, Collaborative Modeling, Collaborative Modeling Platform, 
Web Application 

1   Introduction 

Building enterprise-scale software solutions has never been easy. The difficulties 
of understanding highly complex business domains are typically compounded with all 
the challenges of managing a development effort involving large teams of engineers 
over multiple phase of a project spanning many months. In addition to the scale and 
complexity of many of these efforts, there is also great complexity to the software 
platforms for which enterprise-scale software are targeted. 

For a successful conception design initiative, an open and evolutionary platform 
must be considered in order to provide means to enable the old world of the legacy 
systems accessible to the new facilities brought by Internet. The Web Service (WS) 
architecture delivers standards for such collaborative environment. Although a good 
reference, the WS specifications, and the technologies to implement them, are still in 
evolution. To preserve the development efforts, at least minimal technology 
independence is desirable at the legacy integration and at the services design and 
compositions. 

To meet these needs, we propose the construction of conception design platform, 
which main objective is to provide an effective and consistent approach to manage 
metadata and a service-oriented architecture for the cooperation among disparate 
administrative units in a collaborative environment. 

 



 
Fig.1. Platform n-tier architecture 

 
Figure 1 shows n N-tier architecture for the platform. In the conception design 

logic, the service tier is responsible for the service management and the integration 
tier provides an integrated approach to the existing legacy systems. 

In [2], it introduced some related works about models and meta models, mapping 
between models and legacy integration. 
  In [14], it propose a sugarcane harvester modeling framework based on the 
commonly available communication platform and illustrate it with the implemented 
software that can be used as a core part for different real life applications. It is 
possible to perform their collaborative interactive modifications with concurrent 
synchronous visualization at each client computer with any required level of detail. 
The platform provides a product modeling and assembling environment and changes 
paradigms between I_DEAS, Smarteam(PDM software) and Conceptual Innovation 
Design System (CIDS). The platform is illustrated for sugarcane harvester modeling 
and assembling analysis as an example, and provides a collaborative intelligent 
environment for the model of products, aiming at integrating people, process and data 
in the model development. 

The remainder of this paper is organized as follows. In section 2, we present key 
concepts related to MDA and Web Services. In section 3, we present an outline of 
MDA-Compatible conception design development process. Section 4 and section 5 
deploy a case study of the conception design environment and MDA of web 
application. 

3   Outline of MDA-Compatible Collaborative Modeling 
Development Process 

The following twelve modified process steps based on [1][2], taken together, offer a 
simple robust way to incorporate MDA into a software development project for CIDS. 
1. Establish the domains of interest, and the requirements within those domains. 
2. Establish the connection between requirements and target platform. 
3. Identify a set of target platforms. 
4. Identify the metamodels that we want to use for describing models for conception 

design platform, and also the modeling language/profile in which we will express 
our models.  

5. To Find or select the proper abstracting metamodels. 
6. Establish the connection between abstracting metamodels and their instances. 



7. Define a model as an instance of a metamodel. 
8. Define the mapping techniques that we will use with our metamodels  so that 

there are full paths form the most abstract metamodels to the metamodels of all of 
our target platforms. 

 Define mapping Language Requirements. 
 Define the functional requirements 
 Define the usability requirements. 
 Define the transfering requrements. 
 Define the collaborating modeling requirements. 

9. Define the annotation models that these mapping techniques require. 
10. Implement the mapping techniques either by using tool support or by describing 

the steps necessary to manually carry out the technique. 
11. Modelling: use  ArgoUML [6] to build an executable specification, or Platform-

Independent Model(PIM) for each of the new domains/steps to be developed. 
12. Conduct iterations of the project. Each iteration will add detail to one or more 

models describing the system at one or more levels of abstraction. We will map 
the additional details all the way down to the target platforms 

The transformation language in these steps must be able to accord with the 
rules[2]. 

4   Case Study-The Collaborative Modeling System 

We study a simplified example independent model (PIM) and its transformation into 
three different platform-specific models (PSM), in this paper, we select the three 
platform specific model (PSM).  
In our work, we adopt the tool of TUPI [3] (Transformation from PIM to IDL)- that 
does an automatic transformation from a PIM to the corresponding specification in 
CORBA IDL [4]. TUPI receives as input a XMI (XML Metadata Interchange Format) 
[5] file that contains the meta-model description of the PIM model. ArgoUML [6] is 
used to produce the PIM Model. The PIM Model follows the syntax proposed by the 
UML profile for EDOC [7]. The PIM-PSM conversion rules are described in XSLT 
(eXtensible StyleSHeet Language Transformations) [8] and they produce a specific 
model to the CORBA platform represented in IDL (Interface Definition Language).  

The project had two main objectives. 
It provides a stable application interface between PDM framework layer, a 

configuration model layer, a functional model layer, a fuzzy reasoning layer, an 
integration layer for I-DEAS and CIDS, Service-Oriented Conception Design (SOCD) 
Model layer, design evaluation layer, a computer methods layer and a personal Web 
Graphical User Interface (GUI).  

It provides organizational use of access control and collaborative services, and 
allows users to access to the CIDS. 



4.1 Requirements and Domains 

The requirements for access control and collaboration could be traced into the UML 
models. We build and test UML models. It was configured using the requirements 
schema in Fig.2 below, and represented as a UML class diagram. 

 

 
Fig.2. Requirement Schema 

 
These requirements can be categorized, arranged into parent-child hierarchies, 

traced back to their source, or forward into the models, as illustrated in Fig.2. 
Each requirement also went through a set of life cycle phase, as shown in the state 

chart diagram in Fig.3 below, that is represented using the Moore formalism as 
described in [12] and [13]. 

 
Fig.3. Requirement State Machine 

4.2 The Components (Domains) 

 
To formalize the conceptual content of the requirements and the behavior they define; 
models were designed to lend themselves to ongoing modification. We can combine 
generic modeling and isolate volatile issues in separate domains, which nonetheless 
offer a stable interface to the rest of the system layers. 

We define several inter-related domains to capture and control the complexity of 
the overall system. 

This domain model diagram in Fig.4 shows the various components (domains) 
comprising the proposed solution. 



 
Fig.4. The stack with the different models and the MDA transformations between them 

In order to address these models, we got the conclusion that , the first step was to 
identify the different conceptual tiers involved in the development of an application 
using DAOP platform [10]. The following list of models was produced. 

The Computational Model focuses on the functional decomposition of the system 
into objects which interact at interface, exchanging messages and signals that invoke 
operations and deliver service responses-but without detailing the system precise 
architecture, or any of its implementation details. This model basically corresponds to 
an ODP computational viewpoint model of the system, or to Zachman’s Framework 
for Enterprise Architecture Row3[11]. Entities of this model are objects 
(implementing interfaces) and operations. To which we have added some constraints 
for expressing extra-functional requirements (such as security or persistence, for 
instance). 

The component and aspect model (CAM) and the component and aspect design 
model (CAD) define the basic entities and the structure of the system form an 
architectural point of view. In our case, components and aspects are the basic building 
blocks, following our goal of integrating CBSD and AOCD approaches. 

The DAOP platform implements the concepts of the CAM model in a particular 
way. This level is still technology-independent, since it just deals about the way 
components and aspects are weaved, and how the abstract entities of the CAM model 
can be represented form the computational and engineering viewpoints-but still 
independently form the middleware platform (CORBA, EJB,.NET) or programming 
language used implement them. 

The middleware platform provides a description of the system form a technology 
viewpoint. In this model we decide whether we want to implement the DAOP 
platform using Java/RMI, CORBA, EJB, or .NET, using their corresponding services 
and mechanisms. 

5 Model Driven Architecture of Web Application 

The proposed platform supports the design of collaborative services using the MDA 
concepts and the Web Services composition techniques. The services are first 
developed platform independent, by means of the ArgoUML [6] profile and thereafter 
transformed to platform specific model like Web Service(WS-PSM). 

In order to define a Web application System, [9] proposes a Web application view 
model that is made up 8 views, grouped into three: requirements, functional and 



architectural viewpoints.  This viewpoint includes a logical architectural view and a 
physical architecture view. The logical architectural view gathers the set of logical 
components (subsystems, modules and/or software components) and relations among 
them. While the physical architecture view describles the physical components that 
integrate the lower level specification of the application (clients, servers, networks, 
etc.). [9] defines a process that can shift one view to the other. 

Acknowledgments. This work is supported by National Science Fund for Creative 
Research Groups （60521002）and national natural science foundation of China 
(Grand No. 60573147). 

 

References 

1. Stephen J. Mellor, Kendall Scott, Axel Uhl and Dirk Weise. Model-Driven Architecture. 
OOIS 2002 Workshops. LNCS 2426. pp. 290-297. 2002 

2. Wuzheng Tan, Lizhuang Ma, Jun Li, and Zuxiu Xiao. Application MDA in a Conception 
Design Environment. International Multi-Symposiums on Computer and Computational 
Sciences(IMSCCS|06). 

3. Teresa Nasciminto, Thais Batista, and Nelio Cacho. TUPI: Transformation from to IDL. 
CoopIS/DOA/ODBASE 2003, LNCS 2888, pp. 1439-1453, 2003. 

4. Tari, Z., Bukhres, O.: Fundamentals of Distributed Object Systems- The CORBA 
perspective. John Wiley & Sons.(2001) 

5. OMG: XML Model Interchange (XMI) OMG Document ad/98-10-01, (1998). 
6. Ramirez, A.,Vanpeperstraete, P., Rueckert, A., Odutola, K., Bennett, J., Tolke,L., 

ArgoUML, - a Tutorial and Reference Description (2000). Available at argouml.tigris.org/ 
7. OMG: UML Profile for Enterprise Distributed Object Computing Specification(EDOC), 

OMG Document ad/01-08-18, (2001) 
8. W3C: XSL Translations Specification W3C. (1999). Available at www.w3.org /TR/xslt. 
9. Santiago Melia Beigbeder and Cristina Cachero Castro. An MDA Approach for the 

Development of Web Applications. ICWE 2004, LNCS 3140, pp, 300-305, 2004. 
10. Lidia Fuentes, Monica Pinto, and Antonio Vallecillo. How Can Help Designing 

Component-and Aspect-based Applications.EDOC03,2003. 
11. J. A. Zachman. The Zachman Framework: A primer for enterprise Engineering and 

Manufacturing. Zachman International, 1997. http://www.zifa.com. 
12. S. Shlaer, S. J. Mellor. Object Lifecycles: Modelling the World in States. Yourdon Press 

Computing Series. (April 1991). 
13. C. Raistrick et al. Model Driven Architecture with Executable UML. Cambridge 

University Press. (March 2004). 
14. Wuzheng Tan, Lizhuang Ma, Jun Li, Junfa Mao. A Platform for Collaborative Modeling. 

Journal of Computer Science and Technology. Submitted.  
 
 
 
 
 


