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Abstract. This paper presents a neuro-fuzzy classifer for activity recognition 
using one triaxial accelerometer and feature reduction approaches. We use a 
triaxial accelerometer to acquire subjects’ acceleration data and train the neuro-
fuzzy classifier to distinguish different activities/movements. To construct the 
neuro-fuzzy classifier, a modified mapping-constrained agglomerative 
clustering algorithm is devised to reveal a compact data configuration from the 
acceleration data. In addition, we investigate two different feature reduction 
methods, a feature subset selection and linear discriminate analysis. These two 
methods are used to determine the significant feature subsets and retain the 
characteristics of the data distribution in the feature space for training the 
neuro-fuzzy classifier. Experimental results have successfully validated the 
effectiveness of the proposed classifier. 
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1   Introduction 

The development of wearable systems using advanced miniature sensors and wireless 
technologies has allowed people to issue a command for controlling electric 
appliances by gestures/activities. Activity recognition is one of the technologies 
frequently embedded in wearable systems for recognizing human activities or 
gestures. Nowadays, many researchers have focused on diversifying application 
domains of human activity recognition in biomedical engineering, medical nursing, 
and interactive entertainment. Signals for recognition can be obtained from different 
kinds of detectors. These include electromyography (EMG), audio sensors, image 
sensors, and accelerometers. Among the aforementioned sensors, accelerometers that 
can record acceleration data caused by movements and gravity have drawn much 
attention in the field of activity/gesture recognition [1]. 
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Fig. 1. Topology of the neuro-fuzzy classifier. 
 

Recently, research studies have proposed a variety of classifiers for activity 
recognition from acceleration data. These methodologies used to build classifiers 
include support vector machine (SVM) [4], [6], K-nearest neighbors [4], decision tree, 
[3], naïve Bayes classifiers [1], [4], hidden Markov models [8], and neural networks 
[6]. In this paper, we adopt a neuro-fuzzy classifier to recognize human activities 
using one triaxial accelerometer to acquire a subject's acceleration data. In addition, 
we compare two different dimensionality reduction methods in our recognition 
scheme: one is the feature selection method proposed in [2] and the other is linear 
discriminate analysis (LDA) [5]. 

The rest of this paper is organized as follows. In section 2, we introduce the 
structure of a neuro-fuzzy classifier and its construction algorithm. Section 3 presents 
the detailed information about the proposed recognition strategy, including feature 
extraction and dimensionality reduction. Section 4 provides the experiment design for 
validating the effectiveness of the proposed classifier. Finally, conclusions are given 
the last section. 

2   Neuro-Fuzzy Classifier 

In this paper, we adopt a neuro-fuzzy classifier to recognize daily activities from 
acceleration data. The structure of the neuro-fuzzy classifier is shown in Fig. 1. It 
contains five layers and the description of the layers is given as follows. Layer 1: The 
nodes in this layer only transmit input values to the nodes of the next layer directly. u 
= [u1, u2, ..., ur]T is the input vector, where r represents the number of elements in the 
input feature set. Layer 2: The nodes represent Gaussian membership functions: 
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ui. Layer 3: The nodes in this layer constitute the antecedents of the fuzzy rule base. 
The output of the node is
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node. Layer 4: This is the output layer. The output nodes integrate all the inferred 
information from Layer 3 with the corresponding singleton values hjw and act as a 

defuzzifier.
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yN]T are the output vector. We set the numbers of the fuzzy rules and output neurons 
equal to the number of activity classes. The fuzzy rules can be expressed as 
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Layer 5: This is the competitive layer. Each element in the output vector competes 
with the others. We set the winner's output be 1 and zeros for the rest outputs. 

In general, a clustering technique is appropriate to determine the parameters of the 
neuro-fuzzy structure. To effectively construct the network structure, we modify the 
mapping-constrained agglomerative (MCA) clustering algorithm [7] that takes the 
number of fuzzy rules as the number of clusters in the input and output spaces. The 
parameters of these clusters including the input centers (m), variances (σ), and output 
centers (W), can be directly used to construct the neuro-fuzzy classifier. For each 
cluster, say cluster α, the components of mIOα = [mIα, mOα]T (σIOα = [σIα, σOα]T) denote 
the centers (variances) in the input space (I) and output space (O), respectively, and 
let zα be the counter representing the number of patterns in cluster α. Given a set of 
training patterns V = [u, y]T, we first assign the initial seed clusters by randomly 
selecting the data points in the training patterns and then feed the data points as the 
training patterns. The seed cluster closest to the current data point is defined as the 
winner cluster. We perform { }arg min ,IOwinner V m α= − α = 1, …, N, and update 
the parameters of the winner cluster: Set the counter of data points zwinner = zwinner + 1. 
For the input space, set  
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Similarly, for the output space, set .Owinner

winnerOwinner Owinner z
−= + y mm m Repeat the above 

steps until there remains no data to be clustered. The above modified MCA algorithm 
determines the parameters of m, σ and W by setting m = mI, σ = σI and W = mO. 

3   Activity Recognition Strategy 

We have developed an effective activity recognition strategy to increase the 
recognition accuracy and reduce the computational burden of the neuro-fuzzy 



classifier. First, we cut the raw acceleration sequences into many overlapping 
windows of the same length and extract features from each window into a feature set. 
In order to reduce the dimension of the feature set, we investigate two dimensionality 
reduction methods in Section 3.2.  

3.1   Feature Extraction. 

We extract the features in time domain and frequency domain from each window of 
the triaxial acceleration data. The time domain features are extracted from the raw 
data and include mean, correlation between axes, interquartile range, mean absolute 
deviation, root mean square, standard deviation, and variance. The frequency domain 
feature is energy calculated as the sum of the squared discrete FFT component 
magnitudes of the signal in a window [6]. Since we collect signals from a triaxial 
accelerometer, a total of 24 features (3 axes × 8 features) are calculated from a 
window of the acceleration data for x-axis, y-axis, and z-axis. 

3.2   Dimensionality Reduction. 

In general, the following two approaches are usually used in dimensionality reduction: 
1) Selecting the significant features and eliminating irrelative ones to preserve as 
much of the original information as possible for recognition; and 2) Transforming 
original feature sets into a lower dimensional feature space with class separability. In 
this study, we investigate two approaches, a feature subset selection (FSS) [2] and 
linear discriminate analysis (LDA) [5]. 

Feature subset selection. The FSS is based on common principal components (CPCs) 
generalized from the principal component analysis (PCA). First, the FSS performs 
PCA on each class to obtain the CPC loadings [2]. Each row vector in the CPC 
loadings represents the projection of the corresponding feature of the classes to a 
lower dimensional common space. Then, a clustering technique is utilized to group 
the row vectors of the CPC loadings which have similar contribution in the data 
distribution. We select the points closest to the centers of clusters as the selected 
features. That is, each data point represents a feature and the number of the selected 
features equals to the number of clusters. 

Linear discriminate analysis. The basic concept of the LDA is to seek the most 
efficient projective direction which minimizes the data distribution in the same class 
and separates the data distribution in the different classes for discrimination. For this 
purpose, two scatter matrices are defined: the between-class covariance matrix SB and 
the within-class covariance matrix SW. SB shows the scatter of the expected vectors 
around the mixture mean: 
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and SW represents the scatter of samples around their respective class expected vectors: 
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where nα is the number of samples in the class α, ( )

ix α is the ith sample of αth class, m(α) 
is the mean vector of the samples in the class α, and m is the mean vector of all the 
data points. The LDA preserves class separability in a lower dimensional space by 
finding a unit projective vector w which maximizes the covariance between classes 
and minimizes the covariance within class by maximizing the following criterion [5]: 

( ) .
T

B
T

W

J =
w S w

w
w S w

 (5) 

4   Experimental Results 

The acceleration data was collected using the MMA7260Q triaxial accelerometer on a 
wearable board. The accelerometer’s sensitivity is set from –4.0g to +4.0g and the 
output signal of the acceleometer is sampled at 100 Hz by a 10-bit ADC. 

The classification tasks include eight common domestic activities: walking, 
running, scrubbing, standing, working at a computer, vacuuming, brushing teeth and 
sitting. We gathered acceleration data from a single triaxial accelerometer module 
mounted on the dominant wrist of each subject. All the subjects (seven normal and 
healthy subjects) were asked to perform each activity for two minutes. We took the 
window size of 512 with 256 samples overlapped with consecutive windows. A total 
of 45 windows were obtained from the acceleration data for each activity of one 
subject. 

We utilized a leave-one-subject-out cross-validation procedure to validate the 
effectiveness of the proposed activity recognition strategy. Six subjects were trained 
in the recognition scheme and then tested on the subject left out of the training data 
set. We repeated the same procedure for all the subjects. 

The LDA and FSS methods were applied to reduce the dimensionality of the 
feature space, and then we utilized the lower dimensional feature sets to train and test 
the proposed neuro-fuzzy classifier. The original feature space was transformed into a 
new seven-dimensional feature space after performing the LDA. The average cross-
validation recognition accuracy achieves 92.86±5.91%. Table 1 shows the confusion 
matrix that records the number of recognition errors for all the subjects. To compare 
the performance of the LDA and FSS methods, the FSS method selected seven 
features from the original 24 features. The average recognition accuracy is 
83.41±5.93%. The LDA method outperforms the FSS method. The recognition results 
show that the proposed activity recognition strategy can provide satisfactory accuracy 
by the proposed neuro-fuzzy classifier. 



Table 1. Confusion matrix for all subjects 

Classified as Walking Running Scrubbing Standing Working 
at a PC 

Vacuuming Brushing 
teeth 

Sitting 

Walking 304 0 2 0 0 10 0 0 
Running 0 265 0 0 0 1 0 0 
Scrubbing 0 10 279 0 0 2 16 0 
Standing 0 0 0 306 0 0 0 0 
Working at a PC 0 0 0 0 315 0 0 45 
Vacuuming 11 31 5 9 0 302 0 0 
Brushing teeth 0 6 29 0 0 0 299 0 
Sitting 0 3 0 0 0 0 0 270 

5   Conclusions  

In this study, we have developed a human activity recognition scheme based on a 
neuro-fuzzy classifier using acceleration data acquired by a single accelerometer. We 
employed the modified MCA and two dimensionality reduction methods to construct 
the neuro-fuzzy classifier. The performances of the proposed classifiers with the FSS 
and LDA achieve 83% and 93%, respectively. If accuracy is the major concern for 
building the classifier, the construction algorithm can be associated with optimization 
techniques to further fine-tune the parameters of the neuro-fuzzy classifiers in 
improve the overall performance of the classifier. 
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