
A Real-time Video Illustration using CUDA

JiHyung Lee
1
, Yoon-Seok Choi

1
, Bon-Ki Koo1, and Chi Jung Hwang2

1 Electronics and Telecommunications Research Institute,

138 Gajeong-ro, Yuseong-gu, Daejeon, 305-700, Republic of Korea
{ ijihyung, ys-choi, bkkoo}@etri.re.kr

2 Chungnam National University, Department of Computer Science,

79 Daehangno, Yuseong-gu, Daejeon, 305-764, Republic of Korea
cjhwang@cnu.ac.kr

Abstract. According to advancements in video technology, there are lots of

needs for various special effects of videos. The conventional image-transform

effects could be applied to video streams, but non-photorealistic rendering

effects are not easy to apply. For example, cartoon or illustration effects have

expensive costs in video transformation which makes it difficult to execute in

real-time. In this paper, we suggest a video transformation system with

illustration effects. It is designed to apply the illustration effects to the video

stream directly and is implemented to achieve real time performances using the

GPU hardware with NVIDIA’s CUDA.

Keywords: non-photorealistic rendering, video, illustration, real-time, CUDA

1 Introduction

Recently, videos have become quite common in a human’s life. That is, videos are a

very familiar and popular media. So, there are demands to make videos with unique

style.

The easiest way to make a unique video is putting in special effects in it. To achieve

this goal, many special effects for videos were designed in the past. The early results

are derived from image transformations. The simple color conversions such as black

&white and sepia toning can be easily applied to videos on a real-time through

conventional applications.

However, video effects from more complex image transformations like non-

photorealistic rendering effects can’t be applied easily. Non-photorealistic rendering

effects are a variety of effects as if a person is directly painting a picture on the

simple image. For example, illustration and watercolor effects in an image takes a

long time to be generated and it is similar in videos. Several studies have been made

on video effects in the fields of non-photorealistic rendering, but those were simply

used as small images.

This paper aims to apply non-photorealistic rendering effects to various image sizes in

videos in real-time. Among non-photorealistic rendering effects, illustration effects

are emphasized. For real-time performances, it is designed and implemented using the

GPU hardware with NVIDIA’s CUDA.

mailto:bkkoo%7d@etri.re.kr

2 Previous work

Gooch et al. [1] suggests a facial illustration method. In his research, the illustration

technique and the caricature system, which are put in features of an individual, are

introduced. Even though he is mainly dealing with the caricature system, his

illustration technique for the face description also shows positive results.

Holger [2] introduces the technique which converted images in videos into images of

cartoon style on real-time. First, an image is abstracted by applying the bilateral filter

repeatedly. Second, the luminance quantization and DoG edge detection technique are

applied to the abstracted image. Results of the processes are combined and then the

final cartoon-style image is produced. And Klein [3] suggests the video mosaic

method which uses not only simple image but also video stream.

3 Video illustration

In this chapter, our real-time video illustration is described. At first, we mention basic

illustration algorithm and explain modified algorithm for real-time processing. Then,

we deal with the NVIDIA’s CUDA code in order to implement our algorithm.

3.1 Illustration

Illustration effects are based on brightness perception of black and white images. The

brightness of an object depends on the light reflected by itself and the object’s

background. Even if the brightness is a little different, relatively, it can be seen the

same. As shown in Fig. 1, below four circles have equal intensities. While the circles

in (a) seems to be the same, those in (b) seems to be different due to their

backgrounds.

Fig. 1. Example of brightness perception

The illustration is composed of three basic operations: differentiation, integration, and

threshold. First, two blurred images can be generated by applying two different sizes

of Gaussian blur filters to an original image. Second, the difference between the

corresponding pixels of two images is calculated and the value is integrated. The size

of the Gaussian blur filter increased than the former step with 1.6-fold, and the same

task is repeated several times. Finally, the last image based on an original image value,

an accumulated difference value, and a pre-defined threshold value is produced. Refer

to the below algorithm in Fig. 2.

Program Illustration(SrcImage)

{

 GrayImage = ConvertToGray(SrcImage);

 v1, v2, b : Image ;

 for s=1 to S {

 fAlpha = pow (1.6, s);

 nKernelSize = DecideKernelSize(fAlpha);

 GaussianFilterWeight= MakeGaussianFilter(nKernelSize);

 v2 = GaussianFilter(v1, GaussianFilterWeight);

 b += (v1 - v2) / (coeff + v1);

 v1 = Copy(v2);

 }

 FinalImage = Threshold(b, GreyImage, fThresValue);

 return FinalImage;

}

Fig. 2. Image illustration algorithm

3.2 Separable Gaussian Blur Filter

We divided the Gaussian Blur process into two passes to reduce computation costs. In

the first pass, a one-dimensional kernel is used to blur an image in only horizontal or

vertical direction. In the second pass, another one-dimensional kernel is used to blur

in remaining direction. The results of those passes are the same as convolving with a

two-dimensional kernel in a single pass. Equation 1 shows the basic Gaussian Blur

filter and equation 2 represents the separable Gaussian Blur filter for our purpose. The

separable Gaussian Blur filtering requires less computation costs. Fig. 3 shows the

step images which are created in each pass.

(1)

,

(2)

Fig. 3. Images generated by separable Gaussian Blur filter in each pass

3.3 Implementation using CUDA

We convert the image illustration algorithm by single thread using CPU to multiple

threads using current GPU which is capable of parallel computation. The texture array

provided by NVIDIA’s CUDA is used in order to assign data at each GPU processor

and to avoid data bottle neck generated in the SIMD command execution of CUDA.

An image is inputted into the texture array and an intermediate value is stored in the

illustration process. Also, our implementation of CUDA employs the separable

Gaussian Blur filter to reduce computation costs. Below CUDA pseudo codes in Fig.

4 represents these explanations in detail.

Program cudaComputeIllust (*pSrcData, *pDestData, nWidth, nHeight,

fAlphaScale, fThresLumi)

{

 float *pV1, *pV2, *pV3, *pB;

 cudaArray *arrTex1, *arrTex2, *arrGuassWeight;

 dim3 threadBlock(blockSize, blockSize, 1);

 dim3 blockGrid(iDivUp(nWidth, threadBlock.x), iDivUp(nHeight,

threadBlock.y), 1);

 // Copy the data in main memory to GPU memory

 cudaMemcpy (pV1, pSrcData, nBytes, cudaMemcpyDeviceToDevice));

 for (s = 1 ; s<= N ; s++) {

 MakeGussianKernel(s);

 // Horizontal Gaussian Blur filter

 cudaThreadGaussRow2D <<<blockGrid, threadBlock, 0>>> (pV3,

nWidth, nWidth, nHeight, nAnchorX);

 // Vertical Gaussian Blur filter

 cudaThreadGaussColumn2D <<<blockGrid, threadBlock, 0>>> (pV2,

nWidth, nWidth, nHeight, nAnchorX);

 // Get the differences between orignal & blurred image

 cudaThreadComputeB <<<nHeight, 128 >>> (pB, nWidth, nWidth,

nHeight, fCoeff);

 // Swap original image and blurred image

 swap (pV1, pV2);

 }

 // Get the Final Image

 cudaThreadComputeFinal <<<nHeight, 128 >>> ((Pixel4 *)pDestData,

nWidth, nWidth, nHeight, fThresLumi);

}

Fig. 4. CUDA pseudo code for our illustration algorithm

4 Experiments and Results

To find advantages of our real-time video illustration, we conduct two kinds of

experiments. The first experiment is about the quality of video illustration. To check

the illustration quality, comparison between result images using illustration module in

Adobe Photoshop and our results. In Fig. 5, (a) is a source image, (b) is the result

image of illustration by Adobe Photoshop, and (c) is the result of our illustration.

Comparing the quality of (b) and (c), we can’t find much difference. Therefore, when

we apply illustration effects to video streams, we can obtain high image quality.

(a) Source Image (b) Illustration by Adobe Photoshop

(c) Our Illustration Image

Fig. 5. Images generated by separable Gaussian Blur filter in each pass

The second experiment is about real-time performances. In this experiment, we

implemented a variety of cases: CPU-based method using OpenCV library [5] and

GPU-based method using NVIDIA CUDA. The former is divided into 2 methods

according to the form of the Gaussian Blur filter. In short, there are CPU-based

method using OpenCV (CPU1), and CPU-based method with the separable Gaussian

Blur filter (CPU2), and NVIDIA CUDA method (CUDA). Therefore, we can

compare the results of above three methods.

Because performance of an image or a video transformation relies on its image size

(resolution), we can test the performances of three methods, using various image sizes.

Table 1 represents the number of illustration frames in a video to be generated per

second. The image sizes of videos used in our experiments are 320x180, 640x360,

960x540, and 1280x720. All methods were tested on an Intel Q9550 CPU PC with

Microsoft Windows XP and a NVIDIA GeForce GTX260.

Table 1. The performance evaluation of 3 methods under various video resolutions.

Resolution CPU1 CPU2 CUDA

320 x180 32.26 66.67 148

640x360 8.54 16.13 62.5

960x540 4 7.09 32.36

1280x720 2.56 3.77 21.28

As shown in Fig. 6, the GPU-based method using NVIDIA CUDA shows more

impressive results when comparing with the other methods. Particularly, if the image

size of a video is enlarged, the performance difference grows because computation

costs of the Gaussian Blur filter increase.

Fig. 6. Comparison of 3 methods (FPS)

5 Conclusion

In this paper, we suggest a video transformation system which is designed to apply

illustration effects to video streams directly. It is also implemented by using the GPU

hardware with NVIDIA’s CUDA for real-time performances. Our system has more

effective performances than systems simply with CPU. Excellent results come out in

videos of the HD resolution (1280x720) as well. Illustration effects are not influenced

in color distributions or in contents of videos because calculation is performed pixel

by pixel. Therefore, performances according to the resolutions of videos can be

expected for the real application.

In the future, we hope to create real-time video transformation systems with other

non-photorealistic rendering effects like cartoon, photo-mosaics, and watercolor.

Acknowledgments. This work was supported by the IT R&D program of

MCST/MKE/IITA. [2008-F-030-02, Development of Full 3D Reconstruction

Technology for Broadcasting Communication Fusion]

References

1. Bruce Gooch, Erik Erinhard, Amy Gooch: Human Facial Illustrations: Creation and

Psychophysical Evaluation. ACM Transactions on Graphics, Vol. 23, No. 1, pp. 27--44

(2004)

2. Holger Winnemöller, Sven C. Olsen, Bruce Gooch: Real-Time Video Abstraction.

Proceedings of ACM SIGGRAPH 2006, pp. 1221--1226 (2006)

3. A. W. Klein, T. Grant, A. Finkelstein, M. F. Cohen: Video mosaics. Proceedings of the 2nd

international symposium on Non-photorealistic animation and rendering, pp. 21--28 (2002)

4. CUDA: Compute Unified Device Architecture. http://www.nvidia.com/object/cuda-

home.html

5. OpenCV: Open Computer Vision Library, http://sourceforge.net/projects/opencvlibrary/

