
MusicCommentator: Generating Comments

Synchronized with Musical Audio Signals
by a Joint Probabilistic Model

of Acoustic and Textual Features

Kazuyoshi Yoshii and Masataka Goto

National Institute of Advanced Industrial Science and Technology (AIST)
Central 2, 1-1-1 Umezono, Tsukuba, 305-8568 Ibaraki, Japan

{k.yoshii,m.goto}@aist.go.jp

Abstract. This paper presents a system called MusicCommentator that
suggests possible comments on appropriate temporal positions in a musi-
cal audio clip. In an online video sharing service, many users can provide
free-form text comments for temporal events occurring in clips not for
entire clips. To emulate the commenting behavior of users, we propose
a joint probabilistic model of audio signals and comments. The system
trains the model by using existing clips and users’ comments given to
those clips. Given a new clip and some of its comments, the model is
used to estimate what temporal positions could be commented on and
what comments could be added to those positions. It then concatenates
possible words by taking language constraints into account. Our experi-
mental results showed that using existing comments in a new clip resulted
in improved accuracy for generating suitable comments to it.

Key words: Audio and language processing, user communication mod-
eling, probabilistic music-comment association, comment generation.

1 Introduction

Commenting plays important roles in the entertainment culture of the consumer
generated media (CGM) [1, 2]. We can access many online content-sharing ser-
vices such as YouTube (video), MySpace (music), and Flickr (photo) that enable
users not only to present their original works but also to comment on works cre-
ated by others. Users who view the same work can communicate with each other
by commenting. For example, users describe positive or negative reviews [3], and
show their agreement or disagreement with specific comments. This kind of user
communication has recently been facilitated.

Commenting can be viewed as collaborative creation in an advanced form of
user communication: pseudo-synchronized communication. We can see evidence
of this in a video sharing service named Nico Nico Douga (whose name means
“video making people smile” in Japanese), 1 where users can provide comments
at arbitrary temporal positions in the video. A unique feature of this service is
that recent comments of many users are overlaid directly onto the video and
synchronized to a specific playback time as shown in Fig. 1. This gives users a
1 Nico Nico Douga reserves over 17 hundred million comments by ten million users.

http://www.nicovideo.jp/, http://en.wikipedia.org/wiki/Nico Nico Douga.
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Fig. 1. Screenshots captured from a video sharing service named Nico Nico Douga.

sense of sharing the viewing experiences. That is, users feel as if they enjoyed
the same video together in real time although their comments were provided at
different dates and times in the real world. Some kinds of comments therefore
can add remarkable and interesting effects to the original video. For instance, we
often see barrages, where so many identical or similar comments collaboratively
made by many users are piled up to a degree that the original video is almost
completely hidden, and skilled users create cool drawings 2 by combining many
comments (characters) provided at temporally and spatially different positions.
Because commenting is much easier than creating new video clips from scratch
or reediting existing ones. it can be an important popularized way of creation.

Novice users, however, sometimes feel anxiety when commenting, wondering
Is my comment suitable to the occasion? Implicit rules seem to be shared among
users who collaborate to provide comments, so novice users had better experience
what kinds of comments are given by other users and what kinds of temporal
events are annotated. Another issue is that video creators can hardly predict
what comments will be given to their works, and the fear of being insulted often
makes them hesitant about presenting their work to the public, especially the
first time they try. Besides these practical issues, from an academic viewpoint, we
are interested in the relationships between music and comments and investigate
whether it is really possible to generate comments in a human-like fashion.

We therefore developed a system, called MusicCommentator, that can gener-
ate comments that are most likely to be provided at specific temporal positions
in a music video clip. It can help novice users by suggesting comments suitable
to the occasion and can help encourage video creators to present their work by
letting them virtually experience having comments made about their work. In
this study we deal with music, one of the audio parts within video clips, as the
first step toward handling all the information in the clips.

The rest of this paper is organized as follows. First, Section 2 introduces
related work. Then, Section 3 specifies the commenting problem and Section 4
explains how to build our system. Section 5 reports on our experiments. Finally,
Section 6 summarizes the key findings of this paper.

2 ASCII art or text art: http://en.wikipedia.org/wiki/ASCII art.
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2 Related Work

Several studies have been conducted to predict suitable words to a given mu-
sical piece by using the audio signal as input. These studies typically estimate
how strongly each word is associated with a given piece. For example, Whitman
and Rifkin [4] used a kernel method to predict words that will appear in music
reviews. Turnbull et al. [5] attempted to associate audio content with semanti-
cally meaningful words by using a Gaussian mixture model (GMM) of acoustic
features for each word. The output is obtained as sentences by filling slots with
predicted words in sentence templates manually prepared beforehand. Bertin-
Mahieux et al. [6] used an ensemble learning method called AdaBoost to predict
social tags, which are free-form text labels at a song or artist level.

Our study differs from the previous studies in two ways. First, we deal with
comments that are not given to an entire piece but provided at arbitrary tem-
poral positions in it. It is thus necessary to determine what temporal positions
can be annotated in a given piece. Second, we try to generate comments as
natural-languages sentences. These goals make our attempt very challenging.

3 Problem Specification

The input data for the MusicCommentator task contains N audio clips (audio
tracks of video clips) and their comments provided by users. Note that we focus
on audio tracks in this paper even if we deal with video clips. Let n (1 ≤ n ≤ N)
be the index of an audio clip. This data is used to train a computational model
of commenting. When the system is given a new audio clip (and some existing
comments on it), the objective is to add reasonable comments at appropriate
temporal positions by using the model. Audio clips are represented as acoustic
features and comments are represented as textual features.

1. Acoustic features: We use mel-frequency cepstrum coefficients (MFCCs)
and their delta components because these features have been effectively used
for characterization of detection of musical genres and moods [7]. Calculat-
ing MFCCs at each frame, 3 we can obtain a temporal sequence of feature
vectors. Let a

(n)
t be a feature vector of frame t in clip n.

2. Textual features: We define three kinds of textual features of comments.
(a) Bag-of-words features: These features represent the content of pro-

vided comments. We split all Japanese free-form comments into words 4

with a Japanese morphological analyzer called Mecab [8]. Because differ-
ent words including the same base morpheme are semantically identical,
we do not distinguish them. Removing auxiliary words and extracting
significant words whose numbers of occurrences are higher than a thresh-
old, we get a vocabulary consisting of V words. Then, we count how
many times each word occurs. For example, if a frame contains three

3 A “frame” here is a short duration (256 ms) to be analyzed in an audio clip.
4 Some words have single morphemes while others have two or more morphemes within

them. The inflectional word “loved,” for example, consists of the base morpheme
“love” and the inflectional morpheme “ed” (past tense).
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comments, “I love it,” “It is loved,” and “Love song,” the average num-
ber of occurrences of the verb “love” is 0.66 Let w

(n)
t = {w(n)

t,1 , · · · , w(n)
t,V }

be a bag-of-words vector, where w
(n)
t,v (1 ≤ v ≤ V ) represents the number

of occurrences of word v per comment at frame t in clip n.
(b) Comment density: This indicates the number of comments in each

frame. Note that feature values in each clip are normalized with respect
to its length and the number of comments. This feature is used to learn
what temporal positions should be annotated in a target clip. Let d

(n)
t

be a feature value of frame t in clip n.
(c) Average length of comments: This indicates the average number of

words in a single comment and is used to learn how long comments could
be generated. In the above example with “love”, the value of this feature
is 2.66 ((3 + 3 + 2) / 3). Let l

(n)
t be an average length of comments of

frame t in clip n.
A set of these features is given by o

(n)
t = {a(n)

t , w
(n)
t , d

(n)
t , l

(n)
t }. When clip n

contains Tn frames, the observable features O(n) and O are given by O(n) =
{o(n)

1 , · · · , o(n)
Tn
} and O = {O(1), · · · , O(N)}.

4 MusicCommentator

MusicCommentator takes a constructive approach that tries to clarify the cog-
nitive mechanism of humans by building and examining a computational model
emulating it. As shown in Fig. 2, the system comprises a learning phase in which
the system tries to acquire a sense of commenting (i.e., build a computational
model of what comments are suitable to specific acoustic features) by experienc-
ing many comments provided by users, and a commenting phase in which the
model is used to generate comments suitable to the occasion. We will discuss
how to design the model and then explain the two phases.

4.1 Model Formulation

Considering the characteristics of target data, we think that a reasonable model
should meet the following three requirements:
1. Joint modeling of acoustic and textual features: When users want to

produce new comments, they seem to simultaneously take into account the
content of musical audio signals and the content of comments provided by
other users. This suggests that well-balanced integration of them will enable
the model to yield reasonable comments.

2. Temporal modeling of acoustic and textual features: Because music
is one of temporal medium, its temporal characteristics such as mood tran-
sitions should be captured by using a temporal model. Similarly, we focus
on topic transitions in comments that are synchronized with music.

3. Cross-modal feature binding through temporal contexts: We can
assume that a single latent state, which can be conceptually interpreted as a
mood or topic, is shared behind the observable features of audio signals and
comments at each frame.
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Fig. 2. Overview of MusicCommentator.

To meet these requirements, we propose a joint probabilistic model of multi-
modal features by extending a standard hidden Markov model (HMM), as shown
in Fig. 3. Let K be the number of latent states and let z

(n)
t = {z(n)

t,1 , · · · , z(n)
t,K} be

a state representation at frame t in clip n, where z
(n)
t,k′ = 1 and {z(n)

t,k = 0|k �= k′}
if the model stays at state k′ (1 ≤ k′ ≤ K). We define latent state sequences
Z(n) and Z as Z(n) = {z(n)

1 , · · · , z(n)
Tn
} and Z = {Z(1), · · · , Z(N)}.

Our HMM can, like standard HMMs, be characterized by a set θ of three
kinds of parameters {π, A, φ}. π is a set of initial probabilities {π1, · · · , πK},
where πk ≡ p(z(·)

1,k = 1). A is a transition matrix {Ajk|1 ≤ j, k ≤ K}, where

Ajk ≡ p(z(·)
t,k = 1|z(·)

t−1,j = 1). φ is a set of parameters of output distributions
that calculate the likelihoods of observable features.

Acoustic and textual features at a frame are associated with the same state.
Let bk be a joint output distribution of state k. This calculates the likelihood
of o

(n)
t , which is given by bk(o(n)

t ). This indicates how likely the four kinds
of features {a(n)

t , w
(n)
t , d

(n)
t , l

(n)
t } jointly occur from state k. We assume that

bk(o(n)
t ) can be decomposed into the following four likelihoods:

bk(o(n)
t ) = ba,k(a(n)

t ) bw,k(w(n)
t ) bd,k(d

(n)
t ) bl,k(l(n)

t ), (1)

where ba,k, bw,k, kd,k, and bl,k are designed as follows:

1. Output distributions of acoustic features: ba,k is a Gaussian mixture
model (GMM) of state k as in typical HMMs for speech recognition. Let M
be the number of mixtures and let ga,k,m, μa,k,m, and Σa,k,m be the weight,
mean, and covariance of the m-th Gaussian in the GMM of state k.

2. Output distributions of textual features: bw,k is a multinomial distribu-
tion for bag-of-words features. Its parameters are given by pk = {pk,1, · · · , pk,V }.
bd,k is a standard Gaussian representing the distribution of comment densi-
ties. Let μd,k and Σd,k be the mean and variance of the Gaussian associated
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Fig. 3. Overview of our ergodic hidden Markov model.

with state k. Similarly, bl,k is also a Gaussian for comment lengths, and its
mean and variance are given by μl,k and Σl,k.

Let φk be the set of parameters of output distributions of state k, given by
φk = {{ga,k,m, μa,k,m, Σa,k,m|1 ≤ m ≤M}, pk, μd,k, Σd,k, μl,k, Σl,k}. In total, a
set of all parameters of output distributions φ is given by φ = {φ1, · · · , φK}.

Our model is an ergodic HMM, which allows any state transition at any time,
because we cannot identify correct sequences of states in training data. In speech
recognition, manual transcriptions of speech signals (i.e., phoneme sequences)
can be directly transformed into state sequences because each phoneme is defined
as a combination of several states. Left-to-Right HMMs, where state transitions
are limited to match the transcriptions, are therefore commonly used in speech
recognition. In contrast, we use the HMM in an unsupervised fashion.

4.2 Learning Phase

This section explains how to estimate the unknown parameters θ = {π, A, φ}.
Let p(O|θ) be the likelihood of observable variables O. Instead of directly maxi-
mizing the incomplete likelihood p(O|θ), we try to maximize the expected com-
plete likelihood of observable variables O and latent variables Z by using the
Expectation-Maximization (EM) algorithm [9]. The complete likelihood is

p(O, Z|θ) =
N∏

n=1

p(z(n)
1 |π)

[
Tn∏
t=2

p(z(n)
t |z(n)

t−1)

]
Tn∏
t=1

p(ot|z(n)
t ), (2)

where p(z(n)
1 |π) is given by

∏K
k=1 π

z
(n)
1,k

k , which is an initial probability that clip
n starts at a state specified by z

(n)
1 . We then define the Q function as follows:

Q(θ|θold) =
∑
Z

p(Z|O, θold) log p(O, Z|θ), (3)

where θold is a set of the current parameters and p(Z|O, θold) is a posterior
probability of latent variables Z. Q(θ|θold) indicates the expected complete log-
likelihood of all variables O and Z when we regard θ as a variable of the function.
Thus, the optimized parameters are obtained by maximizing Q(θ|θold) and are
then set to θold next time. This is iterated until Q(θ|θold) converges.
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In the E-step of the EM algorithm, the objective is to calculate the posterior
distribution p(Z|O, θold). For convenience, we define some new symbols as:

γ(z(n)
t ) ≡ p(z(n)

t |O, θold), ξ(z(n)
t−1, z

(n)
t ) ≡ p(z(n)

t−1, z
(n)
t |O, θold), (4)

γ(y(n)
t,k ) ≡ p(y(n)

t,k |O, θold) = p(y(n)
t,k |z(n)

t )γ(z(n)
t ), (5)

where γ(z(n)
t ) is a posterior distribution of latent variable z

(n)
t . ξ(z(n)

t−1, z
(n)
t )

is a joint posterior distribution of adjacent latent variables z
(n)
t−1 and z

(n)
t . For

each t, γ(z(n)
t ) consists of K probabilities that sum up to unity. ξ(z(n)

t−1, z
(n)
t )

is expressed as a K × K probability matrix whose elements sum up to unity.
Let γ(z(n)

t,k ) be the conditional probability of z
(n)
t,k = 1 and let ξ(z(n)

t−1,j, z
(n)
t,k )

be that of z
(n)
t−1,j = z

(n)
t,k = 1, given O and θold. These probabilities can be

efficiently calculated by using the forward-backward algorithm [11]. y
(n)
t,k is a

vectorial variable, {y(n)
t,k,1, · · · , y(n)

t,k,M}. This shows which Gaussian is responsible

for generating a
(n)
t among M Gaussians in GMM ba,k, where y

(n)
t,k,m′ = 1 and

{y(n)
t,k,m = 0|m �= m′} when the m′-th Gaussian is responsible. p(y(n)

t,k |z(n)
t ) is

expressed as a K × M probability matrix that reserves the responsibilities of
KM Gaussians of GMMs {ba,1, · · · , ba,K} for observation a

(n)
t .

In the M-step, we try to maximize the Q function Q(θ|θold). Substituting
Eqn. (2) for Eqn. (3), we get

Q(θ|θold) =
N∑

n=1

K∑
k=1

γ(z(n)
1,k ) log πk +

N∑
n=1

Tn∑
t=2

K∑
j=1

K∑
k=1

ξ(z(n)
t−1,j , z

(n)
t,k ) log Ajk

+
N∑

n=1

Tn∑
t=1

K∑
k=1

γ(z(n)
t,k ) log p(o(n)

t |φk), (6)

where the last term can be decomposed into four terms as log p(o(n)
t |φk) =

log ba,k(a(n)
t )+log bw,k(w

(n)
t )+log bd,k(d(n)

t )+log bl,k(l(n)
t ) We can thus indepen-

dently update the parameters of four kinds of distributions (GMM ba,k, multi-
nomial distribution bw,k, and two Gaussians bd,k and bl,k) by using the Lagrange
multiplier method. We get the updating formula as follows:

πk =

∑N
n=1 γ(z(n)

1,k )∑N
n=1

∑K
k=1 γ(z(n)

1,k )
, Ajk =

∑N
n=1

∑Tn

t=2 ξ(z(n)
t−1,j , z

(n)
t,k )∑N

n=1

∑K
l=1

∑Tn

t=2 ξ(z(n)
t−1,j, z

(n)
t,l )

,

ga,k,m =

∑N
n=1

∑Tn

t=1 γ(y(n)
t,k,m)∑N

n=1

∑Tn

t=1

∑M
m=1 γ(y(n)

t,k,m)
, μa,k,m =

∑N
n=1

∑Tn

t=1 γ(y(n)
t,k,m)a(n)

t∑N
n=1

∑Tn

t=1 γ(y(n)
t,k,m)

,

σa,k,m =

∑N
n=1

∑Tn

t=1 γ(y(n)
t,k,m)(a(n)

t − μa,k,m)2∑N
n=1

∑Tn

t=1 γ(y(n)
t,k,m)

, pk =

∑N
n=1

∑Tn

t=1 γ(z(n)
t,k )w(n)

t∑N
n=1

∑Tn

t=1 γ(z(n)
t,k )

,

μd,k =

∑N
n=1

∑Tn

t=1 γ(z(n)
t,k )d(n)

t∑N
n=1

∑Tn

t=1 γ(z(n)
t,k )

, σd,k =

∑N
n=1

∑Tn

t=1 γ(z(n)
t,k )(d(n)

t − μd,k)2∑N
n=1

∑Tn

t=1 γ(z(n)
t,k )

,
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μl,k =

∑N
n=1

∑Tn

t=1 γ(z(n)
t,k )l(n)

t∑N
n=1

∑Tn

t=1 γ(z(n)
t,k )

, σl,k =

∑N
n=1

∑Tn

t=1 γ(z(n)
t,k )(l(n)

t − μl,k)2∑N
n=1

∑Tn

t=1 γ(z(n)
t,k )

. (7)

4.3 Commenting Phase
This section explains how to provide comments suitable to a target audio clip.
Like the training data, the audio signal and provided comments are characterized
by a sequence of acoustic features, a′ = {a′

1, · · · , a′
T ′}, three sequences of textual

features, w′ = {w′
1, · · · , w′

T ′}, d′ = {d′1, · · · , d′T ′}, and l′ = {l′1, · · · , l′T ′}, where
T ′ is the number of frames. This phase consists of an outlining stage and an
assembling stage. The latter estimates how many comments and what content
should be provided at each frame. The former concatenates a suitable number
of words in an appropriate order by taking language constraints into account.

Outlining Stage. We first determine a most likely sequence of latent states in
the target, z′ = {z′

1, · · · , z′
T ′}, with the Viterbi algorithm [10]. When z′t,k is 1

at frame t (1 ≤ t ≤ T ′), the most likely density there, d̂t, is given by the mode
(most likely observation) of the Gaussian bd,k, i.e., mean μd,k. From the density
distribution over the entire clip, we can determine how many comments should
be provided in each frame. Similarly, when z′t,k is 1, we can get most likely bag-
of-words features (occurrence probabilities of significant words) ŵt to be pk and
can determine the comment length (number of words) l̂t to be μl,k.

We here cannot generate sentences that are appropriate as natural language,
i.e., reasonable sequences of words, because bag-of-words features only outlines
the content of comments. Therefore, we should solve the following problems:
1. We do not have occurrence probabilities of non-significant words such as con-

junctions and auxiliary verbs, which are indispensable for natural language.
2. We do not have individual occurrence probabilities of inflectional words that

have the same base morpheme within them (see 2a in Section 3).
3. We cannot determine an appropriate order of words because the current

model does not take into account sequential relations between words.
For example, suppose that two words “it” and “love” are highly likely to occur
and the comment length is likely to be three. We cannot synthesize a comment
like “It is loved” or “I love it” because the probabilities of “is” and “loved” are
not given and we therefore do not know which sentence is more appropriate.

Assembling Stage. To solve the three problems described above, we propose
a comment generation method based on adaptation of general language models
(uni-, bi-, and tri-grams) that are learned from numerous comments of all clips
in the training data. Unlike what we do in the learning phase, we distinguish
between different words that have the same base morpheme (e.g., we distinguish
“took” from “taken”’). The uni-gram can be used for solving the first and second
problems, and the bi- and tri- grams contribute to solving the third one.

Fig. 4 shows a sketch of how the probabilities ŵt of significant words at
frame t are incorporated into the general uni-gram, which includes all the words
appearing in the training data. We duplicate the probability of each significant
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Fig. 4. Adaptation of general uni-gram to multinomial distribution.

word to those of its inflectional words that have different surface expressions. For
example, the probabilities of words “took” and “taken” are set to be the same
as that of word “take.” Then, because the sum the probabilities of significant
words and their inflectional ones is greater than 1, the probabilities are scaled so
that their sum is α, which is a control parameter given in advance. On the other
hand, the probabilities of other words containing non-significant words and their
inflectional ones are scaled so that their sum is 1 − α. As a result, we now get
the adapted uni-gram (a set of occurrence probabilities of all words).

When z′t,k is 1 at frame t, we assume that a most likely comment (word
sequence) ĉt should be determined according to the following generative model:

ĉt = argmax
c,l

p(c, l; θk) = argmax
c,l

p(c|l; θk)p(l; θk), (8)

where p(l; θk) is a likelihood that a comment generated from state k consists
of l words. Its value is calculated according to Gaussian bl,k and p(c|l; θk) is a
conditional probability that comment c is generated when its length is given by
l. Note that for readability we hereafter omit the estimated parameter θk. To
get ĉ, we have only to calculate argmaxc p(c|l) for each length.

To estimate argmaxc p(c|l), we propose a method that can find a most likely
path of words on a trellis including all words by using the Viterbi algorithm [10].
As shown in Fig. 5, each node corresponds to a specific word and the observa-
tion probabilities of words in each column are given by the adapted uni-gram.
Transition probabilities between nodes are determined as bi- and tri-grams. We
let SilB and SilE be special symbols (silent words) that indicate the beginning
and ending of comments. The likelihood of comment c is given by

p(c|l) = p(w1|SilB)

(
l∏

i=2

p(wi|wi−2, wi−1)

)
p(SilE|wl−1, wl), (9)

where wi is the i-th word in comment c and w0 is SilB. p(wi|wi−2, wi−1) is
an adapted trigram probability, which is calculated with linear interpolation of
the general tri- and bi- grams pt, pb and the adapted uni-grams p′u as follows:
p(wi|wi−2, wi−1) ← βtpt(wi|wi−2, wi−1) + βbpb(wi|wi−1) + βup′u(wi), where βt,
βb, and βu are weighting factors of the tri-, bi-, and uni-grams.
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5 Evaluation
We experimentally evaluated how accurately the system predicted comments
that are freely provided on arbitrary temporal positions by users.
5.1 Conditions
The audio clips (tracks) we used were included in the video clips taken from
the music category of the video sharing service Nico Nico Douga. Specifically,
we focus on music performances whose titles included “Ensoushitemita” (“We/I
played something, not limited to musical instruments, e.g., music box and wooden
gong”), or “Hiitemita” (“We/I played piano or stringed instruments, e.g., violin
and guitar”). Some of them were performed by multiple people, e.g., sessions,
bands, or ensembles. There are many popular clips that follow these conventional
naming rules in the title. We collected the most popular 100 “Ensoushitemita”-
category clips that are shorter than 10 minutes according the the number of
comments that roughly reflects its popularity. Then, the first 1100 comments,
which were available as many as possible in all the clips, were extracted. Note
that the first 1100 comments do not mean the 1100 comments taken from the
beginning within each clip, but mean the 1100 comments taken from the be-
ginning of its submission to the video sharing service. As for the “Hiitemita”
category having more comments, we were able to extract 2400 comments from
each of 100 clips. The control parameters were set as V = 2082, 2278, K = 200,
α = 0.9, and βt = βb = βu = 1.0 by trial and error.

The experiments were conducted in the way of 4-fold cross fold validation.
First, all audio clips with provided comments were randomly divided into four
groups. Three groups were used as a training set in the learning phase and the
other group was used as a test set in the commenting phase. Switching the choice
of test set, we conducted four trials. 4-fold cross fold validation was furthermore
performed in each trial by dividing the provided comments of each test clip into
four groups. To estimate a most likely sequence of states in a given clip, the
system used either no comments (i.e., only acoustic features) or one, two, or
three groups (i.e., 0%, 25%, 50%, or 75%) of comments on the clip. That is, we
tested four settings. The remaining comments was used as ground truth.

To evaluate the results, we calculated the word-based F-value, which is given
by F = 2PR

P+R , where P and R are the precision and recall rates. We focused on
each word of the system-generated comments. A word in a system’s comment
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Fig. 6. Results of experimental comment generation.

was considered reasonable if it appeared in users’ comments annotated in the
neighborhood of the system’s comment. The error tolerance was set to 5 seconds.

P =
#appropriate words

#words of system’s comments
, R =

#appropriate words
#words of users’ comments

, (10)

5.2 Results
As shown in Fig. 6(a), the F-values could be improved even if only 25% of users’
comments of a target clip was available for adding new comments. Although the
F-values reached at most 10%, we think these results were promisingly reasonable
because it is impossible to completely predict what comments are provided by
users at a word level even for humans. Note that when we evaluated only the
temporal positions and lengths of generated comments (i.e., allowed errors in
word selection), the F-values were around 70%, as shown in Fig. 6(b). One may
say that it is enough to list most likely words as a rough suggestion. However, we
believe that sentences of natural language are much better in terms of readability
although they are often grammatically or semantically strange because n-grams
cannot all inter-word dependencies contained in a sentence.

The F-values were not furthermore improved when we increased the amount
of users’ comments over 25% for adding new comments. This indicates that the
current system cannot deal with widely diverse comments. That is, the model
cannot create various comments that are essentially different from each other in
their meanings once a specific state is determined for given acoustic and textual
features. Comments freely provided by humans without constraints are widely
diverse. A major reason that the F-values for the “Ensoushitemita” category
were lower than those for the “Hiitemita” category could be the wider diversity
of the comments on former clips. The title “Hiitemita” means limited kinds of
instruments such as piano and guitar were used in the video.

We also found that the current system is not always useful because general
comments like “it is very cool” and “great” tend to be generated. The F-values
of frequently used positive words such as “cool” or “great” were around 40%.
This was closely related to the limitation of the statistical approach. If we can
use a huge amount of users’ comments for training the HMM (we actually used
over 100,000 comments), the probabilistic model tries to capture universal char-
acteristics of the data. However, it is not appropriate to spoil the diversity of
humans’ comments for our task. We should tackle this problem in the future.
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6 Conclusion

We presented MusicCommentator that generates comments (short sentences of
natural language) and provide them at appropriate temporal positions. The sys-
tem is based on a multi-modal HMM that associates acoustic features with
textual ones through latent sequences of states. These sequences correspond to
temporal transitions of both musical moods and comment topics. To estimate
the parameters of the HMM, we used a likelihood maximization method so that
many examples of how users have provided comments can be well explained with
the model. Given a new audio clip, the system concatenates suitable words in
an appropriate order by using general language models.

The experimental results were promising but revealed that we are still far
from the ultimate goal of building a computer that can express the impressions of
video clips as natural language as humans do. Because commenting is one of the
most sophisticated cognitive functions of humans, it would be hard to precisely
emulate even if we use the state-of-the-art techniques of machine learning. We
think, however, that our study is an important first challenge. We plan to improve
MusicCommentator by incorporating advanced methods of recognizing musical
content such as rhythm and melody. This kind of multi-aspect modeling could
help the system generate comments that are more appropriate and diverse.
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