A Framework for Constructing Entertainment
Contents using Flash and Wearable Sensors

Tsutomu Terada and Kohei Tanaka?

tKobe University, 1Osaka University
11-1 Rokkodai, Nada Ward, Kobe, Hyogo 657-8501, Japan
11-5 Yamadaoka, Suita, Osaka 565-0871, Japan
tsutomu@eedept.kobe-u.ac. jp, tanaka.kohei@ist.osaka-u.ac. jp

Abstract. Multimedia interactive contents that can be controlled by
user’s motion attract a great deal of attention especially in entertain-
ment such as gesture-based games. A system that provides such interac-
tive contents detects the human motions using several body-worn sen-
sors. To develop such a system, the contents creator must have enough
knowledge about various sensors. In addition, since sensors and contents
are deeply associated in contents, it is difficult to change/add sensors
for such contents. In this paper, we propose a framework that helps con-
tents creators who do not have enough knowledge on sensors. In our
framework, an interactive content is divided into two layers; sensor man-
agement layer and content layer. We confirmed that creators can create
interactive contents easier with our framework.

Key words: Wearable Computing, Flash, Development Environments

1 Introduction

In recent years, the importance of intuitive human-computer interfaces has in-
creased and increased. Especially, Nintendo Wii that is a video game console
released in 2006 infuses new breath into the game market since we can play
video games intuitively by using sensor-enabled game controller as a sword and
a tennis racket. On the other hand, it is still difficult for contents creators who
create contents using Flash or other animation tools to develop such contents
since they usually do not have the knowledge to manage sensors and to recognize
user’s motion from raw sensor data. Moreover, once the contents creator made
a content using sensors, it is difficult to change the sensors used in contents
because the sensor management is deeply integrated to the contents. Therefore,
there is a requirement on the support for contents creation by easier sensors
managements.

Here, Flash[6] is so popular for providing interactive contents on web browsers.
Flash contents have various advantages such as small file size with respect to rich
contents, and support for various platforms (more than 99% people in mature
market can play flash contents). Contents creators can implements interactivity
on the contents using easy programming scripts called ActionScript. Thus, we

2 Tsutomu Terada, Kohei Tanaka

WHEN GPS_MOVE
IF CURRENT.Position == ’station’
THEN DO BROWSER_OPEN(’URL’)

Fig. 1. An example of ECA rule

propose a framework for flash creators to create interactive contents with sensors
and actuators. Our framework provides several tools to hide the difficulty in sen-
sor management and creators can create interactive contents by ActionsScript
easily.

The remainder of this paper is organized as the follows. Section 2 describes
our environmental assumptions and Section 3 presents related works. Section 4
describes the process of developping contents using our framework. We explain
our framework in detail in Section 5 and discuss our framework in Section 6.
Finally, we conclude this paper in Section 7.

2 Environmental assumption

The target users of our framework are flash contents creators that do not have
enough knowledge how to use the sensor data while they can create flash con-
tents without sensors. Recent days, there are many people that can create flash
contents since flash becomes popular.

We employ Wearable toolkit that we developed to define/recognize user con-
texts. It consists of an event-driven rule processing engine and several plug-ins
to implement context-aware applications easily. The rule in the toolkit is called
ECA rule, which consists of Event, Condition, and Action. For example, when we
want to develop the system that displays the train schedule when user arrives
at the station, we define the reception of GPS data as Event, the comparison
the current position with the position of station as Condition, and the naviga-
tion to web site as Action, as shown in Figure 1. Wearable toolkit has Context
Definition Tool that users define user contexts easily by actually demonstrating
the motion to be registered. The rule engine raises an event when it detects the
similar motions to registered contexts. The Context Definition Tool supports
various sensors such as 3-axis acceleration sensors, temperature sensors, a GPS,
and RFID tag readers.

Figure 2 shows an example of our assumed content and user. The user inter-
acts with the content by his motions in front of the screen. He receives feedbacks
by the screen, sound, and some actuators.

3 Related works

There are many researches to develop services using various sensors and actua-
tors. Phigets[3] and Teleo[2] are toolkits that consist of various sensors and actu-

A Framework for Constructing Entertainment Contents 3

Interactive content ||

Fig. 2. An example of playing contents

ators to develop applications using the libraries in various development environ-
ments. Gainer[8] is a hardware platform to connect various devices to computer.
GlovePIE[1] is a tool for assigning device functions to application functions by
a script language. Using these toolkits, we can develop applications that use
various devices easily. However, we still need to know how to process the sensor
data since they support only connection between computer and devices.

A CAPpella[7] enables us to define user actions easily, and GT2K]9], AR-
Toolkit[11], and DART[10] provide the recognition of gestures and markers by
camera. However, these systems does not refer to programming model.

4 Contents development with our framework

We show an actual development of interactive game, a 110m hurdles game, as
the following steps. Our framework especially supports Step 2, 3, and 4 since
these steps are difficult for contents creators.

Step 1 Contents design

Step 2 Motion registratoin
Step 3 Rules description
Step 4 Flash contents creation
Step 5 Debug

Step 1 Contents design: We established the overall picture of the contents in
this step. Then, We discussed the purpose of the contents, motions to be used,
and required sensors and actuators. In this case, the purpose of the game is to
compete the time from start to goal. The character on the flash contents runs
while the player runs, it stops when the player stops, and it jumps when the

4 Tsutomu Terada, Kohei Tanaka

player jumps. Moreover, a vibrator works when the character fails to jump a
hurdle.

Step 2 Motion registratoin: Next, we registered the player’s motions that
are designed in previous step using Context Definition Tool. To register them,
we only performed the actual motions. We also confirmed that the actions can
be recognized accurately. For this game, we registered the 3 motions; run, stop,
and jump.

Step 3 Rules description: In this step, we described the rules for Wearable
Toolkit to communicate with flash contents. Our Code Generation Tool, which is
explained in the following section, produces the rules by inputting the relation-
ship between user actions and flash scripts that are activated when the motions
are recognized. Concretely, to create the rules about run action, we input the
name of running action and a script that is executed at running. The Code Gen-
eration Tool generates the scripts and the rules to execute the input scripts when
the system recognizes run. We also input descriptions about stop and jump. In
the same way, we also easily get the scripts and the rules to control actuators by
Code Generation Tool. In concrete, we selected the vibrating function from the
list of Wearable Toolkit functions, then the named of the function can be used
in flash contents.

Step 4 Flash contents creation: In this step, we created flash animation
contents. The Code Generation Tool generated flash project file in which the
script for communication is already described. To control an actuator, we only
describe RaiseEvent() function that has the event name selected in the previous
step. We added RaiseEvent() function in the script code for collision detection.
Step 5 Debug: We tested the contents using the debugger of Wearable Toolkit.
Using this debugger, we confirmed that flash received the player motion events
and Wearable Toolkit received the device control events. Moreover, we checked
the accuracy in motion recognition. When the accuracy is not enough, we change
the threshold in recognition or redefine the motions. We can change the content
easily since Code Generation Tool generates rules and scripts independently from
actions and actuators.

5 Design of framework

Our framework consists of 2 layers as shown in Figure 3. Sensor management
layer manages sensors and actuators, and recognizes user motions. Flash contents
layer is flash contents including several templates to communicate with the other
layer. Since it is difficult for flash creator to use the sensor data directly, our
framework hides the sensor management layer from contents creators. If they
define the user motions that they want to use semi-automatically using Context
Definition Tool, flash contents can receive the motion-recognition event from
sensor management layer.

In this research, we add a function for communicating with flash contents to
Wearable toolkit and implement Code Generation Tool that generates the rules
and the scripts for associating motions with actions.

A Framework for Constructing Entertainment Contents 5

Software (library, application) Support with our tool
(Windows
Flash contents layer Common
Control

Sensor management layer (Wearable Toolkit)

L1] os l]

A 4

3-'Axis)
[6] accooometer) -

Hardware (/0 module)

Fig. 3. Structure of proposed framework

RegisterAction(
"ACTION_NAME", OnAction,
"explanation", "type of argument");
RegisterEvent (

"EVENT_NAME", "explanation",
"type of argument");

function OnAction(Arg:type of argument){
//0OnAction implementation Here

\} y

Fig. 4. An example of script at initialization

To realize the communication between Wearable Toolkit and flash contents,
we utilize the Flash Player’s commands that are originally used for communica-
tion with Flash Player and the contents. Although this command cannot transfer
without text message, it has enough capability to send context information to
flash contents and we do not suppose the contents creators use the raw data
from sensors. The communication between Wearable toolkit and flash occurs in
the following three situations:

Communication on flash contents starting: First communication occurs in
initializing the content. When a flash content starts, it sends messages to Wear-
able Toolkit to register user motions and actuators to be used via fscommand|()
function[4]. This process is based on the code shown in Figure 4, which is gen-
erated by Code Generation Tool. This process includes the association between
motions and scripts. In the figure, ACTION_NAME action is associated with OnAc-
tion() function. When the toolkit receives the messages, it registers the messages
as events or actions.

6 Tsutomu Terada, Kohei Tanaka

WHEN CONTEXT_RECOGNIZED(’CONTEXT_NAME’)
IF CURRENT.Rate > 80
THEN DO FLASH_ACTION(’ACTION_NAME’)

Fig. 5. An example of ECA rule to send a message to the flash content

WHEN FLASH_EVENT (’EVENT_NAME’)
THEN DO CONTOL_ACTUATOR()

Fig. 6. An example of ECA rule to control actuators

Communication when user motion is recognized: After the flash content
starts, Wearable Toolkit recognizes user motions from sensor data. When a mo-
tion is recognized, ECA rules that are generated by Code Generation Tool are
executed to send the recognition results to the flash content. The flash content
calls the associated scripts according to the received results.

An example of such ECA rule is shown in Figure 5. This rule is activated
when the context named CONTEXT_NAME is recognized, and sends the function
name ACTION_NAME to exectute the script in the flash content. This rule is au-
tomatically generated by Code Generation Tool.

To realize this communication, FLASH_ACTION action calls SetVariable() func-
tion [5] on the SWFobject, which is a function to change the value of variables
on the flash content. In the content, the target scripts are described as a callback
function. In the example of Figure 4, OnAction() is executed when the value of
the variable is changed to ACTION_NAME.

Communication when the content controls actuators: Our framework
enables flash contents to control actuators by fscommand() function in the con-
tents that sends text messages to Wearable toolkit. The ECA rules for actuators
control in Wearable toolkit, which is created by our Code Generation Tool, re-
ceive commands and control the associated actuators. An example of the ECA
rules is shown in Figure 6. The rule in the figure execute CONTROL_ACTUATOR ()
action to control an actuator when the command named EVENT_NAME is received
via fscommand() from the flash content.

6 Consideration on implementation time

We discuss the easiness of contents development by using our framework. Firstly,
we implemented an interactive game by modifying existing breakout game. We
associated two motions on the game with two physical motions. We took less
than one hour to modify this game.

Next, we implemented two games that are the homerun chase game and the
swimming game. In the homerun chase game, to swing the bat on game, a user

A Framework for Constructing Entertainment Contents 7

Time: 30.15s

- A~ .
= 7EKE

€
P GOeee o o a R—LT
15/ 65k

(a) Swimming game (b) home run chase game

Fig. 7. Created games

swings an arm with an acceleration sensor. In the swimming game, when a user
strokes with his arms with acceleration sensors, the game character swims for-
ward. It took two hours for developing the homerun chase game and three hours
for developing the swimming game. Most of the time for implementation was to
create flash animations. Approximately 15 minutes are used for the definition of
user motions and the description of rules that are needed to communications.
Figure 7 shows snapshots of these games.

In addition, we created a content for donation box at Kobe Luminarie that
is a festival held in Kobe, JAPAN. The festival is held to mourn the victims.
We developed the content on the display in front of the donation box. The dog
character in the content performs the same motion as a person who fold the
donation box. For example, when the person bows, the dog on the display also
bows and says, “Thank you for your donation” as shown in Figure 8.

This contents was also developed in approximately three hours. From these
implementations, there is little time to implement interactive contents using
sensors by our framework.

7 Conclusions

In this research, we proposed and implemented a framework that enables con-
tents creators to create interactive contents using wearable sensors. The frame-
work presents the mechanism for communication between Wearable toolkit and
flash contents. Moreover, our proposed Code Generation Tool achieved auto-
matic scripts/rules generation to use our framework easily. We confirmed that
contents creator could develop intuitive contents in a few hours by evaluating
actual implementations.

On the other hand, we feel that the difficulty of games becomes higher since
the gesture input is difficult and delayed compared with the conventional input
methods. Thus, we should adjust the game difficulty according to the recognition
accuracy and the delay of the motion.

Tsutomu Terada, Kohei Tanaka

#PILX+T 2008

R]

HNESH
SXNFT

(a) waiting (b) bows

Fig. 8. Snapshots of the content in donation box

In the future, we will evaluate our framework based on actual implementa-

tions by flash content creators to show the effectiveness on complicated interac-
tive contents.

References

=~ W N =

D Ot

10.

11.

. Glovepie, http://carl.kenner.googlepages.com/.

. Makingthings, http://www.makingthings.com/.

. Phidgets, http://www.phidgets.com/.

. Adobe: Actionscript 2.0 components lauguage reference, http://livedocs.adobe.

com/flash/9.0/main/.

. Adobe: Developer connection, http://www.adobe.com/devnet/flash/articles/.
. Adobe: Flash CS4, http://wuw.adobe.com/products/flash/.
. A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu: a Cappella: Programming

by demonstration of context-aware applications, Proc. of International Conference
on Human Factors in Computing Systems (CHI2004), pp. 33-40 (2004).

. S. Kobayashi, T. Endo, K. Harada, and S. Oishi: Gainer: A reconfigurable I/O

module and software libraries for education, Proc. of the 2006 International Con-
ference on New Interfaces for Musical Expression (NIMEOG), pp. 346-351 (2006).

. T. Westeyn, H. Brashear, A. Atrash, and T. Starner: Georgia Tech Gesture toolkit:

Supporting Experiments in Gesture Recognition, Proc. of International Conference
on Perceptive and Multimodal User Interfaces(ICMI2003), pp. 85-92 (2003).

B. Maclntyre, M. Gandy, S. Dow, and J. David Bolter: DART: A toolkit for Rapid
Design Exploration of Augmented Reality Experiences, Proc. of Conference on
User Interface Software and Technology (UIST04), pp. 197-206 (2004).

H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana: Virtual
Object Manipulation on a Table-Top AR Environment, Proc. of the International
Symposium on Augmented Reality (ISAR2000), pp. 111-119 (2000).

