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Abstract. Overwhelming majority of the next generation wireless cel-
lular networks are based on CDMA (Code Division Multiple Access)
technologies, with various flavors such as CDMA2000, WCDMA and
their variations. Compared to the existing cellular networks which are
designed for voice-only applications, the upcoming networks will be ca-
pable of providing high throughput and QoS dependent applications such
as gaming, real-time streaming media, video conferencing etc., without
significant improvements in the overall network capacity. Therefore for
satisfactory end-user experiences, efficient use of the scarce network re-
sources is vital. An efficient such algorithm has to depend on the esti-
mates of information gathered from the network, such as the channel
gains, received power levels, intercell/intracell interference etc. In such
a scheme there are inherent sources for inaccuracies for the estimated
values, such as the measurement errors, the delay in the estimates and
the inaccuracies in models used for estimation. Implementing a resource
allocation scheme which is robust to such measurement errors is impor-
tant. In this paper, we study an optimum resource allocation scheme in
a CDMA based cellular network, which is capable of allocating network
resources to end-users of multimedia type applications, with QoS guar-
antees which are robust to inaccuracies in the estimated values, provided
that those estimates can be bounded within a certain neighborhood of
the real values.

1 Introduction

In cellular wireless communications, the recent worldwide trend has been over-
whelmingly towards CDMA (Code Division Multiple Access) based technologies,
namely, CDMA-2000 1x, CDMA-2000 HDR, CDMA-2000 EV-DO, CDMA-2000
EV-DV, WCDMA, HSDPA etc. As the deployments of these next generation
technologies become more wide-spread, the importance of the efficient use of pre-
cious spectrum resources become increasingly vital. Part of this urgency comes
with the introduction and penetration of various applications other than sim-
ple voice. Downloading/uploading images, online gaming, video conferencing,
streaming media and many upcoming new applications can only succeed if the



underlying infrastructure is capable of cramming in enough end-users with min-
imum network resource expenditure so as to reach and sustain viable economic
models for network operators.

With the industry success of Qualcomm’s IS-95 CDMA voice system, the re-
source allocation of voice-only applications has been mainly focused on “perfect-
power-control”, in the reverse-link which is targeting the lowest level of received
powers at the base-station provided that the QoS level of the users are still
satisfied. In the last decade, many researchers have attacked various research
problems related to power control, majority of which were centered around the
idea of achieving perfect-power-control either in a centralized or in a distributed
fashion ([1], [2], [3] and references therein). In particular, when communications
for real-time applications are considered, the majority of power control research
papers have been focused on how to better achieve equal received powers in
the uplink, to achieve efficient use of bandwidth. Some distributed algorithms
were discussed to achieve the equal received power without a centralized con-
trol and the convergence of such methods were analyzed. In [2], an algorithm
for handling mobiles’ transmitter power levels while explicitly handling their
time-varying transmission rates is introduced for future CDMA networks. In [3],
the performance of the step size closed loop power control algorithm that is im-
plemented in IS-95 is studied and a new predictive power control algorithm is
suggested. In [4] and [5] a truncated channel inversion is studied for non-real
time connections where the improvement in throughput and energy efficiency is
achieved at the cost of extra queueing delay. In [6], the tradeoff between fairness
and throughput is addressed and an extension is given to transmitting a single
user at a time to transmitting more than one user at a time. In [7], the power
management is done to minimize the power consumption of the wireless network
and it is compared to traditional cellular networks.

The limited capacity of wireless telecommunication media, with the expecta-
tion of upcoming multimedia applications with different QoS has attracted at-
tention to resource allocation issues in wireless systems. Some of the approaches
are listed in [6]-[13]. Specifically, in [8] and [9], the wireless users are classified
into real-time users and non-real time users. Then, the optimum spreading gain
control is implemented to increase the spectral efficiency and satisfy the QoS of
real-time users. The left-over capacity is shared among the non-real time users.
Resource allocation in wireless LAN’s with QoS requirements is studied in [10].
The coexistence of real-time voice users and high data rate non-real time users
is studied in [11]. In [12], the throughput of CDMA-HDR is analyzed.

In recent years, some studies have proven that theoretically the perfect-
power-control was indeed not optimum, even for voice-only applications and
performed poorly for other QoS depended applications [15], [16].

In practical systems, the chosen resource allocation algorithm will make use of
the best available estimates of the parameters in the network which the resource
allocation algorithm uses to carry out the resource allocations. As an example,
the parameter FER (Frame Error Rate) or the received power levels are both
estimated values of the real values which are delayed in time, since estimating



some of those values necessitate time averaging so-named values over time. There
are also inherent estimation errors attached to each of the parameters caused by
the inaccuracies of the methods and circuitries used to obtain those estimates.
Given this framework, implementation of a resource allocation algorithm for
cellular networks must be able to cope with the inherent inaccuracies of the
estimated parameters to be able to implement the resource allocation algorithm
it is targeting.

In this paper, we will describe an optimum resource allocation algorithm for a
CDMA based wireless multimedia network which achieves the QoS requirements
of the end-users even if the estimated parameters are inaccurate, provided that
the inaccuracies are bounded within a certain neighborhood of the estimated
value. In section II, we will describe the resource allocation algorithm. In section
III, we will describe the resource allocation with the assumption of precise para-
meter estimates. In section IV, we will relax our assumptions to have non-precise
parameter estimates and introduce the modified resource allocation algorithm.
In section V, we will discuss our results and we will conclude in section VI.

2 Optimum Resource Allocation with Precise parameter
estimates

2.1 System Model and Analysis

We will focus on the downlink (forward link) in a CDMA based cellular Wire-
less Wide Area Network (WWAN). We will assume that every wireless station
is assigned to a single base station in the network and stays assigned to that
base station throughout its connection lifetime. Every wireless station has some
latency sensitive data to transmit with different QoS requirements during its
connection lifetime. We will further assume without loss of generality that every
wireless station has a single connection and the QoS requirement of that con-
nection is not changing over time.

Let M be the number of wireless stations in a particular cell site of interest
within a larger network. Let p(t) .= (p1(t), p2(t), . . . , pM (t)) be the powers of the
transmitted signals to the wireless stations from the basestation with time de-
pendencies. Also define g(t) .= (g1(t), g2(t), . . . , gM (t)) as the downlink channel
gains vector from the base station to the wireless stations.

Define P .= (P1, P2, . . . , PM ) as the maximum allowed transmission powers
vector, where Pi is the maximum allowed power from the basestation to wireless
station i. Notice that such a power restriction non-explicitly exists for real-
time connections with latency requirements. As an example consider a 9.6Kbps
realtime connection with 100msec latency tolerance (i.e. voice connection). Then,
every 100msecs, there is only 960 bits to be sent. If the smallest granularity of
packets is 10 msecs then the maximum needed peak rate is limited by 96Kbps
which in turn creates a soft limit on the peak power level needed.

Let Ii denote the intercell interference (interference caused by the neighbor
basestations in the adjacent cells) plus the background noise experienced by the



wireless station i. In general the value of Ii will be time dependent, but during
the initial part of this analysis, for short time durations of our interest, we will
assume that Ii is a constant. Later, in the final algorithm, we will relax this
assumption as we let Ii vary with time.

There is a unique mapping from the BER requirement of a downlink connec-
tion to the required Eb/N0 value at the wireless station, where Eb is the energy
per bit and N0 is the total noise experienced at the wireless station for that
connection. This mapping depends on factors such as the modulation scheme,
interleaving method and error-correction scheme. Therefore we will assume that
the wireless stations define their QoS requirements in terms of their Eb/N0 needs.
Let (κ1, κ2, . . . , κM ) be that QoS requirements vector. Then the SNR equation
for the wireless station i is:

(
Eb

N0
)i =

W

Ri

gipi∑
j 6=i gjpj + Ii

=
W

Ri

pi∑
j 6=i pj + Ii

gi

, ∀i ∈ {1, 2, . . . ,M} (1)

where Ri is the throughput of the ith wireless station for a unit time duration
(rate) and W is the bandwidth of the downlink. The last equation follows because
gi = gj for all j ∈ {1, 2, . . . ,M} in a downlink from the base station to the ith

wireless station, in other words both the signal aimed for the ith user and all
the other communication that is only interference to user i traverses the same
channel.

Notice that the right-hand side of the equation is the processing gain mul-
tiplied by the user’s received power divided by the total noise power that the
user is experiencing. (Eb/N0)i and Ri are inversely proportional, therefore the
QoS requirements should be met with equality, (Eb/N0)i = κi, for throughput
maximization; since we can always lower the Eb/N0, increase Ri and keep every
other value constant in equation (1) as long as the Eb/N0 requirement is satis-
fied. Therefore the throughput of the ith wireless station in the [0, t] time interval
is given by:

hi(0, t) =
∫ t

0

Ri(t)dt =
W

κi

∫ t

0

pi(t)∑
j 6=i pj(t) + Ii/gi(t)

dt (2)

Let Λ
.= (ρ1, ρ2, . . . , ρM) be the minimum required rates vector. Define

the sets Φ = {R |
∫ t

0
Ri(t)dt

t ≥ ρi,∀i = 1, 2, . . . ,M} and Υ (B) = {p | 0 ≤
p ≤ P and 1T · p = B} as the required rates and feasible powers vector sets
respectively3, where B is the maximum power level that the basestation can
transmit. Assume that the connection topology stays the same during [0, t] and
further assume that [0, t] is short enough so that the channel gains are con-
stant. If we denote H(0, t) .=

∑
i hi(0, t) as the total throughput then the total

downlink throughput maximization problem of the cell is given by:

sup
p∈Υ (B): R∈Φ

H(0, t) = sup
p∈Υ (B): R∈Φ

∑
i

W

κi

∫ t

0

pi(t)∑
j 6=i pj(t) + Ii/gi

dt (3)

3 Vector relations are componentwise.



Clearly the set that defines the domain of the optimization (3) is infinite and
there is no clear feasible method of finding the best solution.

For a practical system, the transmitted powers are selected from a discrete
(quantized) set of power levels. Therefore with a dense enough quantization, the
continuous time power allocation and scheduling can be approximated with a
power allocation and scheduling with fixed power levels, with arbitrary prox-
imity. For quantization level k (i.e., a transmitted power can take one of the k
discrete values), there are only kM different power allocations possible. Let’s as-
sociate the time durations Γn = (tn, tn+1), n = 1, 2, . . . , kM to each such distinct
power allocation and find the optimum set of Γn’s which maximizes the total
throughput of the cell site, i.e.:

max
p∈Υ (B): R∈Φ

H(0, t) ∼= max
Γ :

∑
|Γn|=t, R∈Φ

∑
i

W

κi

K∑
n=1

pin | Γn |∑
j 6=i pjn + Ii

gi

(4)

where the set Υ (α) = {p | 0 ≤ p ≤ P and 1T · p = α} and B is the maximum
total power the base station is allowed to transmit, | Γn |= tn+1 − tn and pin

is the fixed transmitted power level of wireless station i in the nth subinterval
Γn, i.e. pi(t) = pin for t ∈ Γn. Γn’s form a partition of the [0, t] time interval.
Notice that the above maximization problem is done over all possible sets of Γn’s
and the pin values are constants. Therefore the condition R ∈ Φ becomes the
constraint on the decision variables Γn’s. It is also worth nothing that the RHS
of equation (4) can be made arbitrarily close to LHS for large enough k, which
in turn requires a large enough K.

Definition 1. Vertex: A transmitted powers vector is a vertex in a time interval
if pi = 0 or pi = Pi for all i = 1, 2, . . . ,M in that time interval.

Definition 2. Vertex-restricted-by-B: A transmitted powers vector is a vertex-
restricted-by-B in a time interval if pi = 0 or pi = Pi for all i = 1, 2, . . . ,M
except one i = k ∈ {1, 2, . . . ,M} for which 0 ≤ pk ≤ Pi and Σipi = B in that
time interval.

Proposition 3. In the solution of the optimization problem (4), the transmitted
powers vector in subinterval Γi is either a vertex or a vertex-restricted-by-B, for
all i = 1, 2, . . . ,M .

Proof. Assume there exists at least one subinterval Γj in the optimum solution
such that the transmitted power vector is not a vertex nor a vertex-restricted-
by-B. This means at least two of the transmitted power values, pij is neither 0
nor Pi and pkj is neither 0 nor Pk. Assume pij > pkj without loss of generality.
Then one can divide Γj into two subintervals such that the new value of pij is
p1

ij = pij − q > 0 and the new value of pkj is p1
kj = pkj + q in the first λ portion

of Γj and the new values are p2
ij = pij + q and p2

kj = pkj − q in the remaining
1− λ portion of Γj . Let all the other transmitted power values stay unchanged
for both subintervals. Then the throughput of the downlinks other than i and



k are unchanged in the new power allocation scenario. But for the ith and kth

downlink we have an increased throughput in the new power allocation scenario if
λ ∈ (a+b2−q

2(a+b2)
, c+b1+q

2(c+b1)
) where a = pij , b1 = (Σn 6=i,kpnj)+ Ii

gi
, b2 = (Σn 6=i,kpnj)+ Ik

gk

and c = pkj since:

λ <
c + b1 + q

2(c + b1)
⇒ λ

a− q

b1 + c + q
+ (1− λ)

a + q

b1 + c− q
>

a

c + b1
(5)

where the intermediate steps are mundane arithmetics and therefore are skipped.
Notice that multiplying each side of the last inequality by | Γj | proves that the
throughput of the ith downlink is improved in the new scenario. Similarly:

λ >
a + b2 − q

2(a + b2)
⇒ λ

c + q

a + b2 − q
+ (1− λ)

c− q

a + b2 + q
>

c

a + b2
(6)

Again notice that multiplying each side of the last inequality by | Γj | proves
that the throughput of the kth downlink is improved in the new scenario. Finally
one can easily verify that a+b2−q

2(a+b2)
< c+b1+q

2(c+b1)
to complete the proof.

ut

Let Γ
.= (| Γ1 |, | Γ2 |, . . . , | ΓL |), then by proposition 3, the optimization

problem in (4) becomes:

max
Γ :

∑
|Γn|=t, R∈Φ

∑
i

W

κi

L∑
n=1

p̃in | Γn |∑
j 6=i p̃jn + Ii

gi

(7)

where the vectors (p̃1n, p̃2n, . . . , p̃Mn) ∈ ϕ, n = 1, 2, . . . , L are all distinct, and ϕ
denotes the set of all possible vertices and vertices-restricted-by-B. Also without
loss of generality we renamed the partition in which the vertex (p̃1n, p̃2n, . . . , p̃Mn)
is employed, to Γn, for all n = 1, 2, . . . , L. Unlike the original optimization prob-
lem (over the infinite set Υ (B)) , after restricting the solution set considerably
(to the finite set ϕ) , we can now solve the optimization problem with Lin-
ear Programming (LP). The output of the optimization algorithm will be the
| Γ1 |, . . . , | ΓL | values.

Let A = ((aij)) where aij = W
κi

p̃in∑
j 6=i

p̃jn+
Ii
gi

then the optimization problem

can be written as:

maximize 1TAΓ with the constraints4: AΓ ≥ Λ (8)

Notice that although we have found the throughput maximizing scheduling
for the duration (0, t), this scheduling will satisfy all the QoS requirements of
each wireless user but the extra capacity will be transferred to users with better
channel gains which is unfair and unpractical. If we introduce the additional
condition that each user will share the extra capacity proportional to their QoS
4 the inequalities are componentwise



requirements, then it is easy to show that the throughput maximization problem
is equivalent to finding the minimum feasible value t, by when all the QoS
requirements are satisfied. Therefore we transform the throughput optimization
problem to the following minimization problem:

minimize
L∑

i=1

| Γi | with the constraints4: AΓ ≥ Λ (9)

It is not hard to see that the inequality in the constraint above can be re-
placed by equality since the optimum solution will satisfy the rate requirements
with equality. Let Γ ∗ = (| Γ ∗

1 |, | Γ ∗
2 |, . . . , | Γ ∗

L |) be the solution to the last
optimization problem which can be solved by LP. The optimum solution Γ ∗ will
have at least L − M zero values and at most M non-zero values. The efficient
LP techniques like simplex method can be used in order to achieve fast results.
Since in the algorithm we would only have M basic feasible solutions at any
iteration, we will have O(ML) worst-case time and O(M2) best-case time. The
memory need is only O(M2).

We can now construct the power allocation and scheduling scheme for precise
channel gain and interference estimates. The proposed power allocation scheme
will work as follows: As soon as one of the values of measured values of g(t)
or Ii’s changes, the base station will run the optimization algorithm and will
assign the powers according to the optimization output, meaning for a period of
| Γ ∗

1 |, the powers vector V1 will be transmitted, then for a period of | Γ ∗
2 |, the

powers vector V2 will be transmitted and so forth. As soon as the duration | Γ ∗
L |

where the powers vector VL is assigned elapses, the base station will repeat the
exact same assignments until either the value of g(t) or Ii changes. Remember
that there are only at most M non-zero Γ ∗

i values, meaning that there will be
a time-division round robin between at most M vertices. We named the generic
family of this resource allocation method as FiGARO.

For uplink (reverse link) resource allocation problem, most of the analysis
follows in a similar fashion. For sake of completeness of the analysis, we will list
the results for uplink with some notation abuse. For uplink the Γ only consists
of the 2M vertices. The minimization problem corresponding to equation (9) is:

minimize

2M∑
i=1

| Γi | with the constraints4: AΓ ≥ Λ (10)

where A = ((aij)) is the matrix with entries aij = W
κi

gip̃ij∑
k 6=i

gkp̃kj+I0
.

3 Optimum Resource Allocation with Non-Precise
parameter estimates

In practical systems the channel gain and interference estimations of the network
may not be perfect. If the estimation of the channel gain is different than the



actual value, the FiGARO algorithm may result some of the connections to fail to
satisfy their QoS guarantees. If the real channel gain is lower than the estimated
value, the QoS of the channel will suffer and the connection may eventually be
lost. In order to have a robust resource allocation, we will formulate and solve the
resource allocation algorithm such that the QoS requirements will be met even
if they are off by some amount. To serve this aim we will formulate the resource
allocation problem with inexact constraints for the estimated values, namely,
the channel gains and the interference estimates will lie within a certain interval,
rather than being exact. Then we will use the Inexact Linear Programming (ILP)
method to reduce that stochastic LP problem to an ordinary LP and solve it.

3.1 Inexact Linear Programming

In an inexact LP, the usual convex inequalities, AΓ ≥ Λ, are replaced by the
constraint that the sum of a finite number of convex sets is contained in an-
other convex set, in our case, we will restrict the latter to the special form of a
polyhedral convex set, i.e.:

maximize 1AΓ with the constraints5: Γ1G1+Γ2G2+. . .+ΓLGL ⊆ G and Γj ≥ 0
(11)

where Gj is a convex set containing aj , the jth column of the matrix A, and
G = {y ∈ R2M | y ≥ Λ}. In (11), Γ is only a feasible solution if and only if
Γ1a1 + Γ2a2 + . . . + ΓLaL ≥ Λ and Γi ≥ 0 for all possible sets of activity vectors
in Gi’s.

Notice that unlike (11), in generalized LP there is freedom to choose any
vector aj ∈ Gj for each j to maximize the objective function, i.e.,

maximize 1AΓ with the constraints: Γ1a1+Γ2a2+. . .+ΓLaL ≥ Λ and Γj ≥ 0,aj ∈ Gj

(12)
In the generalized LP the activity vectors aj are decision quantities as are the
Γj ’s.

If the convex sets Gi’s are equal to single vector, than the inexact LP coincides
with regular LP. Therefore the inexact LP [14] applies to problems where the
constraint vectors aj ’s are not exactly known but are known to be in a convex
set Gj .

Proposition 4. S = {Γ | Γ is feasible for (11) } is a convex set.

Proof. Let (Γ̃1, Γ̃2, . . . , Γ̃L) and (Γ̂1, Γ̂2, . . . , Γ̂L) ∈ S and for any aj , ∀j =
1, . . . , n, and λ ∈ (0, 1) we have s1 = Γ̃1a1 + Γ̃2a2 + . . . + Γ̃LaL and s2 =
Γ̂1a1 + Γ̂2a2 + . . . + Γ̂LaL ∈ S, so (λΓ̂1 + (1− λ)Γ̃1)a1 + (λΓ̂2 + (1− λ)Γ̃2)a2 +
. . .+(λΓ̂L+(1−λ)Γ̃L)aL = λs2+(1−λ)s1 ≥ Λ, which means λs2+(1−λ)s1 ∈ S.

ut
5 the inequalities are componentwise and the + refers to addition of sets in this

equation



Definition 5. The support functional of the convex set Gj , denoted as δ(z | Gj),
is equal to infaj∈Gj

z · aj .

For each j define the vector āj where its ith entry is equal to δ̂(ei | Gj)
.=

infaj∈Gj
aij , where ei is the vector with its ith entry as 1 and has entry 0

elsewhere. Notice that if the set Gj includes a vector who has an entry equal to
−∞, say the ith entry , then δ̂(ei | Gj) = −∞ and therefore Γ1G1 + Γ2 · G2 +
. . . + ΓL · GL ≥ Λ necessarily implies that Γj = 0. Therefore we can omit the
activity set Gj from our LP without loss of any generality. Therefore we will
assume that δ̂(ei | Gj) > −∞ for all i and j, from now on. The same restriction
is automatically achieved if it is assumed that the sets {Gj} are compact [14].

After forming Ā = (ā1, ā2, . . . , āL), consider the following artificial LP prob-
lem:

maximize 1ĀΓ with the constraints: Γ1ā1 +Γ2ā2 + . . .+ΓLāL ≥ Λ and Γj ≥ 0
(13)

In the following paragraphs we will argue that the optimal solution to (13) is
also the optimal solution to (11). Let’s define the set H, as the set of all possible
matrices formed from the convex sets Gi’s; i.e.:

H = {(a1,a2, . . . ,aL) | ai ∈ Gi , ∀i} (14)

After this definition, it’s appropriate to claim that Γ is a feasible solution to
problem (11) if and only if AΓ ≥ Λ , ∀A ∈ H and Γ ≥ 0.

Proposition 6. If Γ̄ is a feasible solution to (13) (the artificial ordinary linear
optimization problem) , then Γ̄ is a feasible solution for (11) (the inexact linear
optimization problem), and vice versa.

Proof. Let Γ̄ be a feasible solution to our artificial LP (13), then since ĀΓ̄ ≥ Λ
and Γ̄ ≥ 0, and by construction we have A ≥ Ā. But then Γ̄ is a feasible solution
for our original inexact LP (11) since AΓ̄ ≥ ĀΓ̄ ≥ Λ for all A ∈ H.

Conversely, if Γ̄ is a feasible solution for (11), then, Γ̄1ai1 + · · · + Γ̄LaiL ≥
ρi (where ρi is the ith component of the vector Λ), where aj ∈ Gj , for i =
1, 2, . . . ,M . Therefore, for all i = 1, 2, . . . ,M we have

Γ̄1 inf
a1∈K1

ai1 + Γ̄2 inf
a2∈K2

ai2 + · · ·+ Γ̄L inf
aL∈KL

aiL ≥ ρi, (15)

which is indeed equivalent to Γ̄ being a feasible solution to (13).
ut

Corollary 7. As an immediate result of proposition 6, the sets of the feasible so-
lutions to the two problems are identical, i.e., the solution of (11) can be directly
obtained by solving (13), which is a ordinary linear optimization problem.



3.2 FiGARO with Inexact Estimates

Assume that the FiGARO engine does not have the exact values of the channel
gains and the interference values, but rather inaccurate estimates of those vari-
ables. Therefore the real values of the estimated variables are only guaranteed
to be within a neighborhood of the estimate, i.e. we have:

gi ∈ [ĝi −∆i, ĝi + ∆i] and Ii ∈ [Îi − ∆̄i, Îi + ∆̄i] for all i = 1, . . . ,M (16)

These relations translate into the following condition that aij is guaranteed to
be in the interval θij where the θij is defined by

θij =

W

κi

p̃ij∑
k 6=i p̃kj + Îi+∆̄i

ĝi−∆i

,
W

κi

p̃ij∑
k 6=i p̃kj + Îi−∆̄i

ĝi+∆i

,

 (17)

If we define the set Gj ’s, j = 1, 2, . . . ,M such that:

Gj = {(a1j , a2j , . . . , aLj)T | ∀ i aij ∈ θij}, (18)

to satisfy the individual connection requirements under FiGARO, no matter
what channel gains and interference values we get (given that they will lie within
their allowed intervals) we have to solve (11) with the new values of Gj ’s. But
by corollary, solving that LP is equivalent to solving the following artificial LP:

maximize 1ĀΓ with the constraints: Γ1ā1 +Γ2ā2 + . . .+ΓLāL ≥ Λ and Γj ≥ 0
(19)

where the vectors āj = (ā1j , ā2j , . . . , āMj), the matrix Ā = (ā1, ā2, . . . , āL) and

āij = δ̂(ei | Gj) = inf
aj∈Gj

aij = inf
aij∈θij

aij =
W

κi

p̃ij∑
k 6=i p̃kj + Îi+∆̄i

ĝi−∆i

(20)

Notice that at this point, we can assign the desired values to ∆i’s and ∆̄i’s and
calculate the output of FiGARO, namely, the vector Γ .

4 Discussions

Since it leads to a very practical implication, which is a slightly more interesting
case, in this section we will present our results for the uplink scenario. In the
uplink the θij ’s are given by

θij =

[
W

κi

(ĝi −∆i)p̃ij∑
k 6=i(ĝk + ∆k)p̃kj + (Î0 + ∆I)

,
W

κi

(ĝi + ∆i)p̃ij∑
k 6=i(ĝk −∆k)p̃kj + (Î0 −∆I)

]
(21)



For the sake of analysis, let’s assume that we can foresee and guarantee
estimation of the channel gains and the intercell interference values with the
same percentage accuracy, i.e.:

∆1

ĝ1
=

∆2

ĝ2
= · · · = ∆M

ˆgM
=

∆I

Î0

= c (22)

Then,

āij =
W

κi

(ĝi − cĝi)p̃ij∑
k 6=i(ĝk + cĝk)p̃kj + (Î0 + cÎ0)

=
1− c

1 + c

W

κi

ĝip̃ij∑
k 6=i ĝkp̃kj + Î0

=
1− c

1 + c
âij

(23)
and therefore, Ā = 1−c

1+cÂ, where Â = (â1, â2, . . . , â2M ) . To interpret what this
means, we will go over an example. Assume we have the channel gain estimates,
ĝ1, · · · , ĝM , and an estimate for the intercell interference value,Î0. Additionally,
assume that we know that the estimates are guaranteed to be within 5% of our
estimated values. FiGARO would calculate the output, Γ with the input set
ĝ1, · · · , ĝM , Î0. But the Quality of Service requirements will not be satisfied un-
less we are lucky and get exactly the estimated values. If we want the outcome
scheduling be optimum and satisfy the individual Quality of Service require-
ments as long as the estimation errors are within the 5% error margins, then
FiGARO should calculate Γ as if the rate requirements of each of the connec-
tions were higher by a multiple of 1+c

1−c = 1+0.05
1−0.05

∼= 1.105 and implement the
modified output. But this will result in an output of Γ

′
= 1+c

1−cΓ , where Γ is the
solution to the original situation where we weren’t seeking any guarantees for
the estimation errors. So if (22) is satisfied, we have a very simple modification
to the FiGARO algorithm and that is:

run FiGARO with the input set (ĝ1, · · · , ĝM , Î0) to get output Γ

implement Γ
′
= 1+c

1−cΓ where c is the percentage error that can be tolerated
for estimates

Table 1. INCREASE IN TIME REQUIREMENTS WITH ESTIMATION ERRORS
IN UPLINK

Estimation Error 1% 2% 3% 5% 10% 20% 25% 33% 50%

Γ
′
/Γ 1.020 1.041 1.062 1.105 1.222 1.500 1.667 2.000 3.000



In table 1, we tabulated how the time requirements increase with respect to
the error margin tolerance. As we become closer to 100% estimate error range,
the Γ

′
/Γ value reaches ∞ which is expected. The solution of (13), actually

provides an ultraconservative strategy for the stochastic LP of the form (11). If
we have different estimation error percentages for the different connections, i.e.
for example the better channel may be estimated more accurately, then those
values should be used to calculate the corresponding āij values. This will improve
the performance loss for rate requirement guarantees.

We have simulated a CDMA2000 EV-DV like system in Mathematica. Our
system model allows 5msec packets on a 1.25MHz channel with Rayleigh distri-
bution on top of a lognormal fading for the channel model. We have soft-limited
the peak rates to 200Kbps for the multi media type application with a 10Kbps
minimum rate requirements. We assume each terminal have the same application
with the same QoS requirements. Our model also incorporates some technical
details such as the need to be connected to the basestation with a bare-minimum
rate (1200Kpbs) even in case the transmitter is scheduled to be silent, in order
to keep the connection alive. The suggested resource allocation scheme with over
provisioning for 2%, 5%, and 10% error margins are compared to a theoretical
upperbound where the scheduler has perfect knowledge of the parameters and
implements the optimum corresponding to those values. Our simulations over
many iterations show that the overprovisioning in time was 1.0414, 1.1063, and
1.2266 times more than the theoretical optimum respectively for 2%, 5%, and
10% error margins for the estimated parameters. The theoretical optimum is
calculated such that for every iteration, the scheduler calculates the optimum
allocation with the perfect knowledge of the parameters. The average additional
time required to provision for the estimation errors in simulations are in perfect
agreement with the tabulated theoretical data in table1.

5 Conclusion

We proposed a novel power allocation and scheduling scheme for multimedia
CDMA based wireless wide area networks with non-precise parameter estimates.
Unlike traditional CDMA networks, our proposed algorithm transmits to the
wireless stations with certain power levels and durations which is a result of an
optimization problem we define and solve. The resulting algorithm dynamically
adapts to the changes in the channel gains, intercell interference and background
noise levels and guarantees QoS for end-users as along as the estimation errors
are within a pre-defined range. Therefore the algorithm FiGARO provides an
adaptive resource allocation scheme for cellular wireless networks with fault-
tolerance towards parameter estimation errors.
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