
Supporting Differentiated QoS in MPLS
Networks

Roberto A. Dias1, Eduardo Camponogara2, and Jean-Marie Farines2?

1 Federal Technology Center of Santa Catarina, Florianópolis, 88020-300, Brazil
2 Federal University of Santa Catarina, C.P. 476, Florianópolis, 88040-900, Brazil

roberto@cefetsc.edu.br, camponog@das.ufsc.br, farines@das.ufsc.br

Abstract. This paper proposes a new approach for providing different
levels of QoS in IP networks over MPLS. The system’s operator wishes
to maximize the throughput of the high priority flows by choosing the
less congested paths while taking care of the applications’ requirements.
These requirements give rise to an optimization problem that consists
of finding resource-constrained shortest paths in a directed graph. The
problem can be formally cast in mathematical programming and its so-
lution can follow two directions: (i) a centralized, heuristic approach that
aims at approximating the optimal solution in a fast and efficient way;
(ii) a distributed approach that relies on Lagrangean relaxation to de-
compose the optimization problem in small subproblems and thereby
divide the computational burden between distributed routers. By means
of numerical analysis and simulation, this paper demonstrates the effec-
tiveness of the proposed approaches and shows QoS improvements of the
high priority flows.

1 Introduction

In a context of Internet expansion, Traffic Engineering (TE) can deliver a net-
work operation that meets stringent QoS requirements of applications by opti-
mizing the use of network resources. A key element to support TE in IP networks
is the Multiprotocol Label Switching (MPLS) technology, to a great extent be-
cause MPLS implements explicit routing whereby data packets are transmitted
in virtual paths denominated Label Switched Paths (LSPs). In this paper we pro-
pose a TE approach based on an optimization problem which consists of finding
shortest paths in a directed graph, while respecting multiple constraints.

Further, the TE problem implements an admission control policy that, un-
der circumstances of traffic congestion, favors the admission of high priority
flows in detriment of low priority flows. However, the mathematical formulation
of the TE operation renders a computationally hard problem (Section 2): the
knapsack problem [1] can be easily reduced to the TE problem in polynomial
time. To circumvent both the computational hardness and the large size of typ-
ical instances, we propose two approaches: (i) a simple and effective centralized
heuristic (Section 3); and (ii) the decomposition of the TE problem into a set of
smaller subproblems to be solved distributively (Section 4).
? This research was supported in part by CNPq (Brazil)

2 Traffic Engineering Problem (TEP) Formulation

Our approach to service differentiation in MPLS networks is based on the for-
mulation and solution of a Traffic Engineering Problem (TEP): the problem
goal is throughput maximization of the flows transmitted by the communication
network; the constraints are bandwidth limits and end-to-end maximum trans-
mission delay; and a prioritization scheme is implemented to differentiate among
service classes. Although our model can support an arbitrary number of priority
levels, the numerical experiments herein use only two priority levels, which can
be mapped in two classes of services: (i) high priority class which corresponds
to premium applications; and (ii) low priority class which encompasses the best
effort flows. Our model can cope with multiple classes of service which, in turn,
can be mapped into service classes of the DiffServ architecture at ease.

The flows are forwarded in LSPs configured along paths connecting source
and destination nodes, which adequately allocate bandwidth to avoid conges-
tion. Path and bandwidth are subject to network constraints, as link bandwidth
limitations and maximum end-to-end delays. Thus, the problem can be thought
of as a weighted maximum-flow multi-path problem subject to multiple constraints
[2] that, in its single-path form, renders an NP-Hard problem [3].

Our formulation of TEP also implements an admission control policy. Every
flow forwarded in its respective LSP is labelled with a priority tag to indicate
its importance. Under conditions of network congestion, the transmission rate of
low priority flows can be reduced or, in extreme circumstances, dropped to zero
to ensure QoS of high priority flows.

The bandwidths of the flow requests are discretized in levels that vary from a
maximum desired value to zero, the latter one means the rejection of the request.

The network topology consists of a directed graph G = (V,E), where V =
{1, . . . , N} is the set of network nodes and E ⊆ V ×V is the set of transmission
links. The capacity of link (i, j) is µij Kbps, and the time delay for transmitting
data through this link is denoted by cij . The goal is to maximize the throughput
weighted by the priority parameters. The variables define the paths and band-
width levels for the LSPs. More specifically, yl

k ∈ {0, 1} takes on value 1 if the
bandwidth level l is chosen for the kth LSP, while xkl

ij ∈ {0, 1} assumes value 1
if arc (i, j) appears in the path from the source to the destination node of the
kth LSP when transmission level l is chosen.

The flow parameters are: (1) the number of LSP requests (K); (2) the source
node of the kth LSP (sk ∈ V); (3) the destination of the flow originated from
sk (dk ∈ V); (4) the number of bandwidth levels of the kth LSP request (lk);
(5) the transmission rate of the kth LSP forwarded in the lth level (λl

k)3; (6) the
maximum end-to-end transmission delay tolerated by the kth LSP (hk); and (7)
the priority of LSP k (δk), where high values mean high priority.

The constraints comprise the bandwidth limits of the links, the limits on
transmission delay of the LSPs, and the connectivity constraints that ensure

3 We assume that the LSP levels are arranged in increasing order, that is, λl
k < λl+1

k

for l = 1, . . . , lk − 1, thus λ1
k = 0 is used to reject admission of the LSP request.

linkage between source and destination nodes. After introducing the terminology,
we can formulate TEP in mathematical programming:

z = Max
K∑

k=1

lk∑
l=1

δkλl
kyl

k (1.1)

S. to :
lk∑

l=1

yl
k = 1, ∀k ∈ K (1.2)

K∑
k=1

lk∑
l=1

λl
kxkl

ij ≤ µij , ∀(i, j) ∈ E (1.3)

lk∑
l=1

∑
(i,j)∈E

cijx
kl
ij ≤ hk, ∀k ∈ K (1.4)

∑
{j:(i,j)∈E}

xkl
ij −

∑
{j:(j,i)∈E}

xkl
ji = bk

i yl
k, ∀i ∈ V,∀k ∈ K,∀l ∈ Lk (1.5)

xkl
ij ∈ {0, 1}, ∀(i, j) ∈ E,∀k ∈ K,∀l ∈ Lk (1.6)

yl
k ∈ {0, 1}, ∀k ∈ K,∀l ∈ Lk (1.7)

where: bk
i = 1 if i = sk, bk

i = −1 if i = dk, and bk
i = 0 otherwise. Further,

K is a shorthand for {1, . . . ,K} and Lk denotes the set {1, . . . , lk}. Expression
(1.2) ensures that each LSP is configured in precisely one transmission level.
Expression (1.3) imposes bandwidth constraints on the communication links.
Expression (1.4) models the maximum delay limits of each LSP. Expression (1.5)
spells out the connection-oriented constraints of LSPs (i.e., LSP k is configured
along one path). Expressions (1.6) and (1.7) define the Boolean constraints of
the decision variables.

3 Centralized Solution of TEP

This section shows a heuristic-based centralized solution for TEP called purely
heuristic procedure (PHP). The steps of the PHP algorithm are detailed below.

Note that PHP forwards a set of flows in the MPLS network at a time, as
opposed to approaches driven by one-by-one flow admission and forwarding [4].
By letting N = |V | denote the number of vertices of G and M = |E| denote
the cardinality of its edge set, it is straightforward to verify that the running
time of PHP is O(

∑K
k=1 lk(N log N + M)) if we use Dijkstra’s algorithm and a

Fibonacci heap as the priority queue to compute shortest paths.

Purely Heuristic Procedure (PHP)

Let L = (k1, . . . , kK) be a permutation of K s.t. δkj λ
lkj

kj
≥ δkj+1λ

lkj+1
kj+1

, ∀j < K

Let t = 1 be the iteration number
Let Gt = G be the residual network modeling the remaining transmission capacity

Let ΨH = {xkl
ij , yl

k} be the initial, candidate solution to TEP

where xkl
ij = 0 and yl

k = 0 for all k ∈ K, (i, j) ∈ E, and l ∈ Lk

For t = 1, . . . , K do
Let k ← kt

For l = lk, . . . , 1 and while a path has not been found do
Use Dijkstra’s algorithm to find a path pk in Gt where (i, j)’s cost is:

ct
ij =∞ if µt

ij < λl
k, and otherwise ct

ij = cij

If a path pk has been found and
P

(i,j)∈pk
ct

ij ≤ hk then

Setup LSP k to follow path pk and update ΨH

Reduce the capacity of Gt along pk by λl
k units to obtain Gt+1

3.1 Using TEP for Dynamic Operations

This section aims to present a solution for the Dynamic Traffic Engineering
Problem (referred to as DTEP). Our procedure consists of solving a sequence of
TEP problems, {TEPt}, which are instantiated over time as flow requests arrive
at the computer network and other ones terminate. Consider the time iterate
t = 0 and the first element TEP0 of the series {TEPt}. By solving TEP0 with
PHP , a solution (x(0), y(0)) is obtained and implemented by the network: the
network rejects every LSP request k whose transmission bandwidth allocation is
zero, while forwarding the remaining LSPs with the chosen bandwidths along the
prescribed paths. During the time interval that elapses while TEP0 is solved and
its solution is implemented, all of the requests received by the computer network
are enqueued in a waiting list. These unprocessed requests will be reconsidered
for admission when TEP1 is solved.

3.2 An Experimental Analysis

To validate PHP as a viable procedure to solve TEP and assess the network
operation quality resulting from the solution of {TEPt}, we considered three
experiments. (i) Performance analysis: it consists of the computation of the run-
ning time of PHP and the assessment of its solution quality for a representative
instance of TEP , obtained by way of a comparison with the optimal solutions
(or upper bounds computed via linear programming relaxation) produced by the
CPLEX solver4. (ii) Quality of service (QoS) analysis: it is intended to evaluate
the impact of PHP in a representative scenario as a computational tool for LSP
request admission and routing; the analysis covers the typical QoS parameters of
throughput and end-to-end transmission delay. (iii) Admission control analysis:
its purpose is to evaluate admission-control parameters induced by the solution
of a representative DTEP instance with PHP .
4 ILOG CPLEX 9.0: Getting Started, ILOG Corporation, October, 2003.

Performance Analysis The flows of the experiments were of constant bit rate
(CBR) type and consisted of two priority types: (i) low priority flows: trans-
mission rate between 20 and 150 Kbps with end-to-end delay constraint varying
between 100 and 150 ms; (ii) high priority flows: transmission rate ranging from
380 to 870 Kbps with end-to-end delay constraint varying from 30 to 150 ms.

Each flow can be configured in one of 7 levels of transmission rate, i.e. lk = 7
for k = 1, . . . ,K. The number of levels is an administrative decision that should
take into account the traffic patterns. In our experiments, the use of 7 levels
improved admission of low priority flows. The lowest level is set to zero Kbps,
λ1

k = 0, which corresponds to rejecting the admission of the flow. The transmis-
sion rate of the subsequent levels increases exponentially up to the maximum
desired transmission rate. The set of flow requests are generated randomly, ac-
cording to a uniform distribution over the range of the parameters that define
the requests. The optimal solution to each TEP instance was found by CPLEX
solver, one of the leading optimization packages for mixed integer linear program-
ming optimization. The network adopted for experimental analyses consists of
32 nodes and 18 transmission links, whose topology was taken from [4].

Figure 1 (left) gives the computation time5 taken by PHP and CPLEX opti-
mizer to solve a number of TEP instances in which we varied the workload (e.g.
the number of flow requests). As expected, the computation time to obtain opti-
mal solutions with CPLEX is high—TEP is an NP-Hard problem whose integer
linear programming formulation has several decision variables and constraints.
On the other hand, PHP is reasonably fast even for the largest instances.

Figure 1 (right) depicts the objective values of the solutions produced by
PHP and CPLEX (optimal). The figure reveals that PHP can find nearly
optimal solutions within a short time window, thereby supporting the claim
that PHP can be effective at solving dynamic traffic engineering problems.

Fig. 1. Running time of PHP versus ILOG CPLEX for varying workloads (left) and
quality of PHP solution compared with optimal solutions (right)

5 Note that the computation times are in logarithmic scale.

Table 1. QoS parameters for high priority flows

Flow Throughput (Kbps) Delay (ms) QoS
Id Desired Granted Maximum Incurred level

102 567 567 50 20 optimal
014 608 450 60 50 good
391 680 500 40 15 good
154 753 390 60 50 satisfactory

QoS Analysis The purpose of the analysis herein is to assess the potential of
PHP to solve DTEP . As a means to analyze simulation results qualitatively, we
define three levels of QoS satisfaction: (i) optimal, when the maximum through-
put is attained; (ii) good, when the throughput is at least 70% of the maximum;
and (iii) satisfactory, when the throughput is at least 50% of the maximum. For
a sample of the high priority flows, Table 1 shows the mean values of throughput
and end-to-end transmission delay measured in the simulation time interval and
compared with the respective maximum values. It is worth mentioning that the
end-to-end delay constraints of all of the flow requests were not violated. The
table shows that no delay violations are incurred to the high priority flows whose
majority obtains good or optimal QoS level.

Admission Control Policy Analysis Herein, we discuss some results regard-
ing the admission control policy implemented by DTEP . In the experimental
scenario, the mean of flow rejection in PHP solutions was small: about only 3%
of the total number of flow requests were rejected, all of which had low priority.

The high priority flows were forced to wait less than 5 ms before being ad-
mitted by the network, which is sufficient time for PHP to find a solution to
any problem of the sequence {TEPt} instantiated by DTEP . Around 3% of the
low priority flows wait a time varying from 5 to 10 s before admission, but only
about 12% of these low priority requests were dropped from the admission queue
after 60 s due to time out.

The simulation results showed that the low priority flows experience a small
QoS degradation under highly loaded operating conditions.

4 Distributed Solution of TEP

Heretofore, we have formulated the problem of operating a network as a series
{TEPt} of problems, which are periodically solved to respond to the arrival
and termination of LSP requests. Despite the fast speed of PHP , its reliance
on central computations may become a liability with respect to fault tolerance,
flexibility, and scalability. To this end, we will develop a framework to solve
TEPt approximately but distributively, whereby TEPt is broken down in a set
of decoupled Lagrangean subproblems. Section 4.1 deals with the decomposi-
tion rendered by relaxing constraints on bandwidth and maximum delay—this

leads to a weaker decomposition but the subproblems are quickly solved with a
modified Dijkstra’s shortest-path algorithm. Section 4.2 addresses the decompo-
sition obtained by relaxing only the bandwidth constraints—this decomposition
is stronger and the computations can be carried out by distributed processes, but
it entails solving singly constrained shortest-path problems which are NP-Hard.

4.1 Relaxing Bandwidth and Maximum Delay Constraints

By relaxing the bandwidth constraints (1.3) with Lagrangean multipliers v =
[vij : (i, j) ∈ E], v ≥ 0, and the maximum delay constraints (1.4) with w = [wk :
k ∈ K], w ≥ 0, we obtain the Lagrangean dual subproblem L1(v, w):

z1(v, w) = Max
K∑

k=1

lk∑
l=1

δkλl
kyl

k +
∑

(i,j)∈E

vij

(
µij −

K∑
k=1

lk∑
l=1

λl
kxkl

ij

)
(2.1)

+
K∑

k=1

wk

hk −
lk∑

l=1

∑
(i,j)∈E

cijx
kl
ij


S. to : constraints (1.2), (1.5), (1.6), and (1.7) (2.2)

Variable vij acts as a penalty for bandwidth excess on arc (i, j), while wk is the
penalty for violation of the maximum transmission delay constraint on LSP k.

From the above formulation, it is evident that the variables of different
LSPs are decoupled—the couplings originated from the constraints that now
appear in the objective function, enabling us to search for LPS routes in paral-
lel. Let L(n) = {k : sk = n} be the LSPs whose source node is n. Notice that⋃N

n=1 L(n) = K. Then, we can break L1 into a set {L1(v, w, n)} of subproblems,
one for each n ∈ V , such that L1(v, w, n) is the restricted version of L1(v, w)
including only the LSP requests originating from node n (the elements of L(n)).
Let z1(v, w, n) denote the objective value of an optimal solution to L1(v, w, n).

It so happens that each subproblem L1(v, w, n) consists of a set of decoupled
subproblems L1(v, w, n, k), namely a subproblem for each k ∈ L(n) defined by:

z1(v, w, n, k) = Max
lk∑

l=1

δkλl
kyl

k −
lk∑

l=1

∑
(i,j)∈E

(vijλ
l
k + wkcij)xkl

ij (3.1)

S. to : constraints (2.2) restricted to all l ∈ Lk (3.2)

Clearly, z1(v, w, n) =
∑

k∈L(n) z1(v, w, n, k). An optimal solution to L1(v, w, n, k)
can be obtained by computing lk shortest paths with a modified Dijkstra’s al-
gorithm6. With a Fibonacci heap as priority queue, L1(v, w, n, k) can be solved
in O(lk(N log N +M)) time. Thus, the router at node n can solve L1(v, w, n) in

6 Notice that Dijkstra’s algorithm can be applied because the cost of each arc (i, j)
is given by (vijλ

l
k + wkcij) > 0. If costs could be negative, then we would have to

resort to slower Bellman-Ford’s or Johnson’s algorithm.

O(
∑

k∈L(n) lk(N log N +M)) time. Because z1(v, w) establishes an upper bound
for z, the natural course of action is to solve the Lagrangean Dual:

LD1 : z1 = Min z1(v, w) = Min
∑

n∈V

z1(v, w, n) +
∑

k∈K
wkhk +

∑
(i,j)∈E

vijµij

= Min
∑

n∈V

∑
k∈L(n)

(z1(v, w, n, k) + wkhk) +
∑

(i,j)∈E

vijµij

Although the Lagrangean dual LD1 is not likely to produce a lower upper bound
than linear relaxation of TEP (Section 10.2 of [1]), the dual solution tends to
inherit features of the optimal solution to TEP , in that penalties are incurred
for constraint violation. The issues that remain to be resolved are how we (ap-
proximately) solve LD1 and whether the dual solution is satisfactory. Below, we
present a distributed implementation of the subgradient algorithm [1] to solve
LD1 and thereafter assess the quality of the dual solutions numerically.

Distributed Subgradient Algorithm The Lagrangean dual LD1 is convex
but nondifferentiable, making it unsuitable to apply efficient gradient-based pro-
cedures. The subgradient algorithm can be applied to solve LD1, which can be
viewed as a modified steepest-descent algorithm for nondifferentiable functions.
The good news is that the subgradient algorithm can be implemented in a dis-
tributed fashion, not unlike the way the Lagrangean subproblem L1(v, w) can be
solved distributively. Put simply, the subgradient algorithm uses the Lagrangean
multipliers vij and wk as penalty factors to discourage constraint violations: if
the bandwidth constraint of a link (i, j) is not violated, then its Lagrangean
multiplier vij is decreased by an amount that depends on the value of the sub-
gradient; or else, the multiplier value is raised. The process is similar for the
multipliers wk. Iterations are performed until convergence is attained.

To implement the subgradient algorithm distributively, it suffices to have
each network node i measuring the excess on bandwidth of each link (i, j) and
broadcast this excess. This excess is the subgradient πij associated with the
multiplier vij : vij will decrease if πij < 0 and increase otherwise. The multiplier
θk for the delay constraint of an LSP k, k ∈ L(n), can be computed locally by
router n. A sketch of the distributed subgradient algorithm follows below.

Notice that πt
n,j , as computed by router n, is the subgradient associated with

arc (n, j): πt
nj = (µnj −

∑K
k=1

∑lk
l=1 λl

kxkl
nj). At termination, the subgradient al-

gorithm yields multipliers v and w that induce an upper bound z1(v, w) for z1.
The solution (x, y) to L1(v, w) is an approximate solution to TEP that, in the
absence of constraint violation, is an optimal solution. Because the distributed
subgradient algorithm is essentially a decentralized implementation of the stan-
dard subgradient algorithm, convergence to optimal Lagrangean multipliers can
be ensured if certain rules for decreasing the step length δt are followed [1].

The Distributed Subgradient Algorithm

Let t = 0 be the iteration number, T be the max. number of iterations,
ε > 0 be a small constant, δt > 0 be the initial decrement step,

vt ∈ RM
+ and wt ∈ RK

+ be arbitrary Lagrangean multipliers
For t = 1 to T do

Wait the routers coordinate to use the same values of t, δt, vt, and wt

Each router n solves L1(v
t, wt, n) to obtain a solution (xt

n, yt
n),

where xt
n = [xkl

ij : k ∈ L(n), l = 1, . . . , lk,∀(i, j) ∈ E] and

yt
n = [yl

k : k ∈ L(n), l = 1, . . . , lk]
Let πt be a subgradient for vt, whereby each router n computes πt

nj

for all (n, j) ∈ E: πt
nj is the excess on transmission in (i, j)

Let θt be a subgradient for wt. Each router n computes θt
k

for all k ∈ L(n): θt
k ← (hk −

Plk
l=1

P
(i,j)∈E cijx

kl
ij)

Let vt+1 be the next Lagrangean multip. for bandwidth. Each router n
computes distributively: vt+1

nj ← max{0, vt
nj + δtπt

nj}, ∀(n, j) ∈ E

Let wt+1 be the next multipliers for maximum-delay. Each router n
computes distributively: wt+1

k ← max{0, wt
k + δtθt

k},∀k ∈ L(n)
Let the routers obtain δt+1 by decreasing δt and set t← t + 1
If δt < ε then stop

Computational Experiments We intend to evaluate the upper bounds from
the approximate solutions to LD1 and, last but not least, assess their quality
as approximate solutions to TEP with respect to objective function, bandwidth
constraint violation, and maximum delay. We adopted a decreasing schedule for
the subgradient step whereby δ0 = 2 and δt+1 = 0.9875δt. The initial multipliers
vt and wt were selected at random within [0, 10]. The algorithm was allowed to
iterate while δt ≥ 10−6 = ε.

Table 2 depicts the results obtained with the (distributed) subgradient al-
gorithm to the instances discussed in Section 3.2. For each instance, let (ṽ, w̃)
and (x̃, ỹ) be the Lagrangean multipliers and solution to L1(ṽ, w̃), respectively.
The 1st row gives the upper bound z1(ṽ, w̃). The 2nd row has the objective value
induced by (x̃, ỹ): f(ỹ) =

∑K
k=1

∑lk

l=1 δkλl
kỹl

k. The 3rd row gives the objective of
the optimal solution to TEP . The 4th row gives the relative excess on bandwidth:
eb(x̃) = [

∑
(i,j)∈E max{

∑K
k=1

∑lk
l=1 λl

kx̃kl
ij−µij , 0}] /[

∑K
k=1

∑lk
l=1

∑
(i,j)∈E λl

kx̃kl
ij].

The 5th row gives the delay excess: ed(x̃) =
∑K

k=1

∑lk
l=1 max{

∑
(i,j)∈E cij x̃

kl
ij −

hk, 0}. The 6th row depicts the average computation time taken by the routers
located at backbone nodes to run the subgradient algorithm.

From the table, we can infer that the objective value of the solutions produced
by the subgradient algorithm are not significantly inferior to the optimal ones,
and they can be attained far more quickly than using CPLEX. The results show
that the excess on bandwidth capacity is significant, of the order of 23% of the
total bandwidth allocation, while the excess on transmission delay is quite low.

4.2 Relaxing Bandwidth Constraints

Here we look into the decomposition of TEP yielded by relaxing only the band-
width constraints (1.3). Given a set of Lagrangean multipliers v = [vij ∈ R+ :

Table 2. Quality of the solution to the Lagrangean dual LD1

Number of LSP Requests (K)
Parameters 50 100 150 200 250 300 350 400 450 490

z1(ṽ, w̃) 2354 4539 7222 9503 12276 13178 14996 16430 17585 18020
f(ỹ) 2354 4539 7217 9227 11996 13178 14909 16200 16358 16995
Optimal objective 2354 4539 7217 9227 11955 13173 14771 16134 17150 17898
eb(x̃) (%) 0 0 20.11 24.26 23.88 33.25 29.62 23.26 23.83 25.22
ed(x̃) 0 0 0 8 0 0 14 13 0 1
Comp. time (s) 0.215 0.324 1.418 1.986 2.451 2.923 3.505 3.994 4.483 4.870

(i, j) ∈ E] for bandwidth, the Lagrangean subproblem L2(v) can be cast as:

z2(v) = Max
K∑

k=1

lk∑
l=1

δkλl
kyl

k +
∑

(i,j)∈E

vij

(
µij −

K∑
k=1

lk∑
l=1

λl
kxkl

ij

)
(4.1)

S. to : constraints (1.2), (1.4), (1.5), (1.6), and (1.7) (4.2)

As in the above developments, L2(v) consists of K decoupled subproblems
of choosing the transmission level of each LSP k, yl

k, and selecting a path
from the source sk to the destination dk without exceeding maximum delay
in transmission—the bandwidth capacity constraints were dualized and placed
as penalty factors in the objective. First, let us break up L2(v) into N subprob-
lems to be solved at each backbone node n, hereafter denoted by L2(v, n) whose
optimal solution has value z2(v, n). Because a solution to L2(v) can be obtained
by aggregating the solutions to the elements of {L2(v, n)}, the objective value of
the Lagrangean subproblem becomes: z2(v) =

∑
n∈V z2(v, n) +

∑
(i,j)∈E vijµij .

Continuing the problem break up, each L2(v, n) can be spliced into |L(n)| de-
coupled subproblems, one for each k ∈ L(n). Let {L(v, n, k)} be the subproblems
obtained by decomposing L(v, n), with L(v, n, k) defined by:

z2(v, n, k) = Max
lk∑

l=1

δkλl
kyl

k −
lk∑

l=1

∑
(i,j)∈E

vijλ
l
kxkl

ij (5.1)

S. to : constraints (4.2) restricted to all l ∈ Lk (5.2)

The end result is the break up of L2(v) into a set {L2(v, n, k) : n ∈ V, k ∈ L(n)}
of subproblems that can be solved asynchronously. The subset {L2(v, n, k)} is
solved by router n and the solution to L2(v) is obtained by combining the dis-
tributed solutions. Thus: z2(v) =

∑
n∈V

∑
k∈L(n) z2(v, n, k) +

∑
(i,j)∈E vijµij .

Calculating z2(v, n, k) entails solving lk constrained shortest path problems.
So L2(v, n, k) is an NP-Hard problem [5]. One way of solving L2(v, n, k) consists
in computing lk constrained shortest path with dynamic programming, one for
each level of transmission of the kth LSP. Given the penalty vector v, a router
node n ∈ V , an LSP k ∈ L(n), and a transmission level l ∈ {1, . . . , lk}, the
problem of finding a shortest path from sk to dk subject to the maximum delay

Table 3. Quality of the solution to the Lagrangean dual LD2

Number of LSP Requests (K)
Parameters 50 100 150 200 250 300 350 400

Upper bound z2(ṽ) 2354 4539 7217 9283 12126 13455 14862 16336
Obj func f(ỹ) 2354 4539 7217 9227 11996 13379 14909 16107
Bandwidth excess eb(x̃) (%) 0 5.68 18.15 34.24 40.48 46.79 30.29 21.97
Comp time (s) 88.62 95.50 144.25 183.12 237.37 287.62 339.37 385.25

constraint can be expressed recursively, provided that the parameters hk are
integers. Let d(i, t, h) be the distance of a shortest path from node i to node dk

that contains at most t arcs and whose transmission delay is at most h. Having
introduced this terminology, the recurrences can be stated as:

d(i, 0, h) = +∞, ∀i ∈ V − {dk}, h = 0, . . . , hk

d(dk, 0, h) = 0, h = 0, . . . , hk

d(i, t, h) = min{d(i, t− 1, h),
min{vijλ

l
k + d(j, t− 1, h− cij) : (i, j) ∈ E, cij ≤ h}},

∀i ∈ V, t = 1, . . . , N − 1, h = 0, . . . , hk

(6)

An optimal solution to L(v, n, k) can be obtained by solving a set {L(v, n, k, l) :
l = 1, . . . , lk} of subproblems, where L(v, n, k, l) is the problem L(v, n, k) in
which yl

k = 1. It is straightforward to solve the recurrences (6) with dynamic
programming to reach a solution to L(v, n, k, l). For details on the steps of the
dynamic programming algorithm, the interested reader can refer to [5].

The issues regarding the solution of LD2 via a subgradient procedure and
convergence to an optimal value z2 are, in essence, identical to the ones raised
in Section 4.1. To divide the computational burden of solving LD2 among the
routers, we can design a distributed subgradient algorithm by discarding the
Lagrangean multipliers w of the preceding (distributed) subgradient algorithm,
and solving z2(v) distributively in each step rather than z1(v, w).

Computational Experiments We implemented the subgradient algorithm to
solve LD2 approximately. The numerical results reported in Table 3 provide ev-
idence that the upper bound z2(ṽ) is tighter than z1(ṽ, w̃). However, the dual
solution (x̃, ỹ) induced by solving LD2 is inferior to that obtained by solving
LD1, namely the bandwidth violation is higher than that incurred by the solu-
tion to LD1, and the computational cost far exceeds the cost of solving LD1.
An alternative to expedite the solution process is to resort to an approximate
algorithm to solve L2(v, n, k, l) such as those from [6]. An alternative to reduce
the duality gap is to solve the Lagrangean dual with the methods from [5].

5 Discussion and Concluding Remarks

Several works aim to solve similar network operating problems to ours. But the
differences among the models, mainly in the order of LSP admission, prevents

a quantitative comparison. In [7], the authors propose a load balancing scheme
based on an admission control policy that considers only the link bandwidth
capacity. But their proposal does not optimize the network performance. In [4],
the authors deal with a generalization of a multi-objective shortest path problem
subject to multiple constraints. To date, our developments do not handle multi-
ple objectives but they can be extended as in [4]. In [8], the authors propose a
distributed Lagrangean optimization approach to solve distributively a TE prob-
lem. However, they assume that the routes connecting source and destination
nodes are given and they consider only constraints on link bandwidth, whereas
we design paths and currently tackle link bandwidth and also transmission limits.

Our work has shown that the PHP framework attains a high degree of
optimality, demanding low computational cost and being simpler than alter-
native algorithms for solving TE problems. Unlike other solution approaches,
our framework implements an admission control policy to manage flows with
different levels of priority.

The Lagrangean relaxation of the constraints on bandwidth and end-to-end
transmission delay decomposed TEP into a set of smaller subproblems, {TEPn},
one for each router n. The preliminary analysis of the distributed solution of
{TEPn} has shown promise. The decomposition LD1, obtained by dualizing
bandwidth and end-to-end delay constraints, yielded tight upper bounds and
was relatively fast to compute. The decomposition LD2, obtained by dualizing
only the bandwidth constraints, yielded tighter upper bounds but at the expense
of higher computational cost and relying on a more complex, time-consuming
dynamic programming algorithm. Two possibilities are the design of heuristics to
keep the violations under limits and the application of multi-objective optimiza-
tion algorithms, which would simultaneously maximize weighted throughput and
minimize constraint violation.

References

1. Wolsey, L.A.: Integer Programming. John Wiley & Sons (1998)
2. Girish, M., Zhou, B., Hu, J.Q.: Formulation of the traffic engineering problems in

MPLS based IP networks. In: Proc. IEEE ISCC. (2000)
3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company (1979)
4. Banerjee, G., Sidhu, D.: Comparative analysis of path computation techniques for

MPLS traffic engineering. Computer Networks 40 (2002) 149–165
5. Ziegelmann, M.: Constrained Shortest Paths and Related Problems. PhD thesis,

Universitat des Saarlandes, Germany (2001)
6. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math-

ematics of Operations Research 17 (1992) 36–42
7. Salvadori, E., Batiti, R.: A load balancing scheme for congestion control in MPLS

networks. In: Proc. IEEE ISCC. (2003)
8. Xiaojun, L., Ness, S.B.: An optimization based approach for QoS routing in high

bandwidth networks. In: Proc. IEEE INFOCOM. (2004)

