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Abstract. Most congestion control algorithms try to emulate processaring
(PS) by giving each competing flow an equal share of a bottletiak. This
approach leads to fairness, and prevents long flows fromihgggsources. For
example, if a set of flows with the same round trip time sharettidmeck link,
TCP’s congestion control mechanism tries to achieve PSpsuast of the pro-
posed alternatives, such as eXplicit Control Protocol (X@&wt although they
emulate PS well in a static scenario when all flows are lovedli they do not
come close to PS when new flows arrive randomly and have a &imtunt of
data to send, as is the case in today’s Internet. Typicatlywsfltake an order of
magnitude longer to complete with TCP or XCP than with PSgesting large
room for improvement. And so in this paper, we explore how\a oengestion
control algorithm — Rate Control Protocol (RCP) — comes meiciser to em-
ulating PS over a broad range of operating conditions. In,RGButer assigns a
single rate to all flows that pass through it. The router dadskeep flow-state,
and does no per-packet calculations. Yet we are able to dhawwuhder a wide
range of traffic characteristics and network conditionsPR@erformance is very
close to ideal processor sharing.

1 Introduction

Congestion control algorithms try to share congested laffisiently and fairly among
flows. In the absence of information such as the size, roupditne (RTT) and path
of each flow, it is natural to share a congested link equallpragrall flows. In fact,
if the routers in the Internet had unlimited buffering, afhdt was simple to emulate
Processor Sharing (PS), then the solution to the congegstaiyiem would be simple:
Let a source send data at maximum rate, and use a PS schedsiar¢ link bandwidth
equally among flows.

But routers have limited buffers, and per-flow schedulingde-trivial. And so con-
gestion control algorithms send feedback to the sourcertih the amount of traffic
admitted into the network, allowing simple FIFO queuing lre trouters. Most no-
tably, TCP’s congestion control mechanism provides feeklbg dropping packets (or
through explicit congestion natification); and is quitesegsful at emulating processor
sharing in a static scenario when a fixed number of flows hausfimite amount of data
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Fig. 1. The plot on left shows the average flow duration versus flow sizder TCP and XCP
from a simulation with Poisson flow arrivals, flow sizes areepa distributed with mean = 30
pkts (1000 byte/pkt) and shape = 1.4, link-capacity = 2.43IRY T = 100 ms, offered load =
0.9. The plot on right shows the the number of active flowsugtame. In both plots the PS
values are computed from analytical expressions.

to send®. But in practice flows arrive randomly, and transfer a finitecaint of data.
Simple experiments withs-2indicate that with typical Internet flow sizes, TCP does
not come close to emulating processor sharing. For exarRjgare 1 compares TCP
(as well as XCP, which we’'ll discuss shortly) with ideal P& case of Poisson flow
arrivals with pareto distributed flow sizes. The left plotquares the mean duration of
flows (how long they take to complete) as a function of flow sizee values for PS are
computed analytically [7] and show that flows would complete an order of magnitude
faster than for TCP.

There are several reasons for the long duration of flows wW@P. TFirst, it takes
“slow-start” several round trip times to find the fair-shaage. In many cases, the flow
has finished before TCP has found the correct rate. Second aoifow has reached the
“congestion-avoidance” mode, TCP adapts slowly becauseditive increase. While
this was a deliberate choice to help stabilize TCP, it haseffext of increasing flow
duration. We'll see later that we can design stable congrestontrol algorithms that
don’t require additive increase. A third reason TCP flows $aslong is because of
buffer occupancy. TCP deliberately fills the buffer at thdtleaeck, so as to obtain
feedback when packets are dropped. Extra buffers meandetag, which add to the
duration of a flow.

Our plots also show eXplicit Control Protocol (XCP) [2]. X@Pdesigned to work
well in networks with large bandwidth-delay products. Thaters provide feedback,
in terms of incremental window changes, to the sources owudtipte round trip times,
which works well when all flows are long-lived. But as our glahow, in a dynamic

% We assume here that all flows have the same RTT. TCP appr@tinsitares bandwidth as
ﬁ_ wherep is loss probability ands is a constant [1].
p

* Flow duration in PS = RTT % L is flow length,C is link capacity,p is offered load.



environment XCP can increase the duration of each flow evehefurelative to ideal
PS, and so there are more flows in progress at any instant.

The goal of our work is to identify a simple and practical cestipn control algo-
rithm that emulates processor sharing irrespective didreliaracteristics and network
conditions. Our approach is very different from TCP and Xl@Btead of incremental
window changes in every round trip time, we want to know ifrthis an explicit rate
that the router can give to the flows so as to emulate procsssoing. Furthermore,
we would like to achieve this without per-flow state, per-flqueues, or per-packet
calculations at the routers.

2 Rate Control Protocol (RCP): An Algorithm to Achieve
Processor Sharing

2.1 Picking the Flow Rate

We are going to address the following question:

Is there a rate that a router can give out to all flows, so as tolkate processor sharing?
If the router has perfect information on the number of ongdiows at timet, and
there is no feedback delay between the congested link andotlmee, then the rate
assignment algorithm would simply be:

R(t) = %

whereR(t) is the rate given out to the flows by the router at titfe C is the link ca-
pacity andN (¢) is the number of ongoing flows at timeBut the router does not know
N(t) and it is complicated to keep track of. And even if it coulcerthis a feedback
delay and so by the tim&(¢) reached the sourcéV () would have changed. So, we
propose that the routers have an adaptive algorithm thattapdhe rate assigned to the
flows, to approximate processor sharing in the presenceedbfick delay, without any
knowledge of the number of ongoing flows. RCP is a particutarristic designed to
approximate PS. It has three main characteristics that srinkemple and practical:

1. The flow rate is picked by the routers based on very litderimation (the current
gueue occupancy and the aggregate input traffic rate).

2. Each router assignssinglerate for all flows passing through it.

3. The router requires no per-flow state or per-packet catliculs.

2.2 The Algorithm

The basic RCP algorithm operates as follows.

1. Every router maintains a single fair-share rdtét), that it offers to all flows. It
updatesik(t) approximately once per RTT.

® The sources are informed at what rate to transmit. We wilitsheee how this is done.



2. Every packet header carries a rate fi¢lg, When transmitted by the sourde, =
oo or the desired sending rate. When a router receives a p#ck&t) at the router
is smaller thanRk,, thenR, < R(t); otherwise it is unchanged. The destination
copiesR,, into the acknowledgment packets, so as to notify the soilitue packet
header also carries an RTT fiel®I'T,, whereRT'T,, is the source’s current es-
timate of the RTT for the flow. When a router receives a padkesésR1T), to
update its moving average of the RTT of flows passing throtjghy i

3. The source transmits at rafg,, which corresponds to the smallest offered rate
along the path.

4. Each router periodically updates its loda(t) value according to Equation (1)
below.

Intuitively, to emulate processor sharing the router sti@ifer the same rate to every
flow, try to fill the outgoing link with traffic,and keep the queue occupancy close to
zero. We want the queue backlog to be close to zero sincevatieeif there is always a
backlog then at any instant, only those flows which have thaikets in the queue get
a bandwidth share, and the other flows do not. This does ngemap ideal PS where
at any instant every ongoing flow will get it's fair share. Tledlowing rate update
equation is based on this intuition:

a(C —y(t)) — pLt
R(t) = Rt —dy) + TV =P (1)

whered, is a moving average of the RTT measured across all padkéts; dy) is the
last updated rat&] is the link capacityy(¢) is the measured input traffic rate during the
last update intervald in this case)q(t) is the instantaneous queue si2&(t) is the
router’s estimate of the number of ongoing flows (i.e., nunab@ows actively sending
traffic) at timet anda, 3 are parameters chosen for stability and performance.

The basic idea is: If there is spare capacity available, e y(¢t) > 0), then
share it equally among all flows. On the other hand; i- y(¢) < 0, then the link is
oversubscribed and the flow rate is decreased evenly. ¥inadl should decrease the
flow rate when the queue builds up. The bandwidth needed o tira queue within
an RTT is%ﬁ). The expression(C — y(t)) — 6%) is the desired aggregate change

in traffic in the next control interval, and dividing this exgsion byN(t) gives the
change in traffic rate needed per flow.

RCP doesn't exactly use the equation above for two reas@ss. the router cannot
directly measure the number of ongoing flowé(t), and so estimates it a§(¢) =
%. Second, we would like to make the update rate interval ti@v oftenR(t)
is updated) a user-defined parametef his is in case we want to drain a filling queue
more quickly than once per RTT. The update interval is abti8l= min(r, dy) since
we want it to be at least equal to average Rd{J., The desired aggregate change in
traffic over one average RTT igC' — y(t)) — %), and to update the rate more often

than once per RTT, we scale this aggregate chang&/by. And, N (t) = C/R(t—T).
Then the equation becomes:



T (O — w(t)) — L8
R(t) = R(t — Ty + 2 yg)) Fa)

] (2)

2.3 Understanding the RCP Algorithm

How good is the estimateN = C/R ? When the router updates the rate, it knows
precisely the spare capacity and the queue size it needaito &o the accuracy of the
algorithm depends on how well/ R estimatesV (¢).

0.06 1

RCP (alpha=0.1, beta=1.0) —— s
0.05 r (ap & ) £ 08 [ [
o 004 AN /
Q S 06
T 003 = {
> 0.02 § 04 /
’ <
001 / £ 02 - -
o @ 0 RCP (alpha=0,1, beta=1.0) ——
0 20 40 60 8 100 120 140 160 0 20 40 60 80 100 120 140 160

simulation time (second) simulation time (second)

Fig. 2. The time evolution of RCP rate factg(t) = R(t)/C and measured bottleneck utilization
under long-lived flows. At = 0, 20 flows start; at = 40s, 20 more flows start; at= 100s, 20
flows finish. In each casé€]/R(t) converges tav (¢).

In the simplest scenario with only long-lived flows/ R(t) converges to the correct
number of flows)N. An example is shown in Figure 2 where 20 flows start at tirae0
and 20 more flows start at time 40, and 20 flows complete at tidfe [h each case,
C'/R(t) converges taV(¢). The values ofv and only affect the rate of convergence;
we will examine the stability region far and shortly.

When flows are not long-lived,’/R(t) can still be a good estimate of the num-
ber of active flows. In particular, when flows correspond toent Internet conditions
(Poisson flow arrivals, pareto flow size distributions, areamflow sizeF[L] is close
to or greater than bandwidtRTT), thenC/R(t) is a good estimate. It is a smoothing
estimate ofN(¢) since flows arrive and depart quickly at(t) changes rapidly. An
example of this case is shown in Figure 3.

When E[L] < bandwidthx RTT, most of the flows fit in the bandwidth-delay
“pipe” and most do not have sufficient data to send for an emtiund trip. In this case
C/R(t) represents an “effective” number of flows, (¢) < N(t), where each flow has
at least a round trip time worth of data to send. Underestilgabe flows (and hence
increasing the rate for each flow) is actually the right thioglo because when each
flow has less than an RTT of data to send, giving exaCtlyV (¢) to each flow means
the pipe will never be filled.

Stability and Convergence: Stability of RCP depends on it's parametearands. We
can think about RCP stability under the following two verifelient regimes:

1) Deterministic scenario of long-lived flows: In this scanawith N long-lived
flows the equilibrium state of the RCP system#s: (equilibrium rate)= C'/N andg.
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Fig. 3. Comparison of the number of measured active flows and theati(C'/ R). Bottleneck
capacity,C = 10Mb/s, RTT = 50ms, flow arrival rate = 400 flows/sec, and fles are pareto
with mean = 25 pkts (1000 byte/pkt) and shape parameter.is 1.2

(equilibrium queue}= 0. We find that, if perturbed, the system will return to staili
so long asy, 5 are within the stable region shown in Figure 4. There are ®gons
shown in the figure: a) The stable region obtained by Bode aymglist analysis of
the linearized system. Details of the linear stability gail are given in the technical
report [3]. b) Stable region of the non-linear system. Ttad system is non-linear in
nature, the most important one being the queue saturatipa-dt. In general while do-
ing the stability analysis of congestion control protocalsh as TCP, this non-linearity
is ignored since the equilibrium point is away from it. Thengais not true of the RCP
system. Shown in Figure 4 is also the stable region obtaigeginbulations and phase
portraits of this nonlinear system. Using tools from narelr control theory, we ob-
tained a precise characterization of the non-linear stalglen and it matches well with
our simulated region. The details of the non-linear analgan be found at [4].
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Fig. 4. Region enclosed by the solid curve is the stability regiotaivled via Bode and Nyquist
analysis. The region to the left of the- +’ line is the stability region of the non-linear system
obtained from simulations and phase plane method.



The two key points of the stability analysis are: First, tlegivkd stability condi-
tions for (o, 8) guarantee global stability in the sense that irrespectivib@ initial
conditions| Ry, qo ), the system always converges to the equilibrium point; @edisd,
we can make the system stable by choosirandg independentf link RTT, capacity
and number of flows. Although these results are proved to tnoklincase of a single
bottleneck link, our simulations in [3] indicate that theg@hold true in a network
scenario with multiple bottlenecks.

2) Stochastic scenario with random flow arrival times and féizes: In this case,
convergence oR(¢) in the same sense as for long-lived flows is less meaningbaluoee
the input conditions are changing. Further, as discussfmtdee do not always want
R(t) to be equal t&”'/N (t) exactly: If N (t) is very large but each of the flows has very
little traffic to send (less than a RTT) then we actually wantmderestimatév (¢) and
thereby give a higher rate to each flow, since if we giygV (¢) exactly to each flow
we will never fill up the link.

What would be more meaningful would be convergence in thehststic sense like
E[N(t)] (mean number of flows) anff[D(l)] (mean flow completion time for flow
of length!) converge to finite equilibrium values. Proving such a redgbrously is
a notoriously hard problem specially for non-linear dethjeedback systems such as
RCP. The same is true for TCP, XCP and other algorithms. Aelaxgmber of simu-
lations indicate that under a variety of dynamic situati¢iie different flow arrival
distributions, different flow size distributions, offertmhd, link capacities, round trip
times...) RCP’s performance in termsBfN (¢)] and E[D(l)] converges to that under
ideal processor sharing for a wide rangé@f 3) > 0. These simulations are shown in
section 3 and a more exhaustive set is in [3].

The convergence of RCP’s performance meashié¥(!)] (and E[N (t)]) to that of
processor sharing is independent of the initial valug?¢f) chosen. The simulations
support this. For any particular simulation we observe B@) sweeps over the entire
space (min-rate, link-capacity), depending on the cood#ion the link. Any point
could have been the starting point of the experiment. An g@tarno illustrate this is
shown in Figure 5. Notice thak(¢) takes a wide range of values depending on the
input conditions. Starting with different initial value§ B(t) will give different sample
paths of the stochastic procesg€st) and D(l), but the key point is the underlying
statistical propertie¥' [N (¢)] and E[D(1)] converge to that in processor sharing.

Given that the algorithm is stable for a wide rangd@f3) > 0, we picked those
values for the RCP system to maximize performance for a waege of traffic and
network conditions.

Round Trip Time Estimation: Every packet passing through the router carries the
source’s estimate of it's RTT. The router uses this to upttetenoving averagely, as
follows:

last

do = gain X RTTpqcket + (1 — gain) x d;

where gain= 0.02. The running average gives an estimate of the average Rb&sal
packets passing through the router. This skews the RTT awitowards flows which
have a larger number of packets. This is what is desired shreéows with a large
number of packets will last many RTTs and will determine ttabiity of the control
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Fig. 5. The figure shows the normalized rafe(t)/C' versus time for Poisson flow arrivals with
pareto distributed flow sizes. Bottleneck capaditys 150 Mb/s, RTT = 100ms, offered load =
0.7, mean flow size = 30 pkts (1000 byte/pkt) and shape paraneete®i Initial rate,R(0) =
0.05C. R(t) sweeps over it’s entire range depending on the input camditi

loop. The control loop stability depends less on the shontdflavhich finish within one
orjust afew RTTSs.

We find from our large number of simulations that RCP is rolbwushe RTT distri-
bution of the flows. An example is shown in section 3.3 wheredlavith RTT ratios
up to two orders of magnitude co-exist on a single link and RG&tessfully emulates
processor sharing.

Handling Packet Losses: RCP retransmits lost packets just like TCP. Losses were
rare events for RCP in all our simulations, which is not sisipg since RCP drives the
queue towards empty. A queue only builds up because of the tghm “mistakes” in
rate estimation, resulting from the feedback delay andrthedlsamount of information
the algorithm is working with. Although the current form o€R in Equation (2) does
not explicitly account for losses, we note that it can eaddyso by replacing(¢) with
q(t)+ (number of packet losses in intervg) — i.e. this would have been the queue we
wanted to drain if we had enough buffering to accept the laskpts.

Comparison with XCP: Both XCP and RCP try to emulate processor sharing among
flows, which is why their control equations are similar. Thamer in which they con-
verge to PS is quite different; the main difference betwe@®>nd RCP is in the kind
of feedback that flows receive. XCP gives a window incremertezrement over the
current window size of the flow (which is small for all newlasing flows). At any
time XCP flows could have different window sizes and RTTs dretdfore different
rates. XCP continuously tries to converge to the point wiadirflows have the fair-
share rate, by slowly reducing the window sizes of the flowth wates greater than
fair-share and increasing windows of the flows with rates bagn fair-share (while
avoiding over-subscription). New flows start with a smakhdow, and the convergence
could take several RTTs especially if there is little or nargpcapacity. If the flows ar-
rive as a Poisson process with heavy-tailed flow sizes, thest of the flows finish by
the time they reach their fair share. In RCP, all flows (newaldjireceive the same rate
feedback which is theiequilibriumrate. This helps flows finish quickly. We will see in



Section 3 that this difference between RCP and XCP congtbit a big difference in
their performance.

XCP is computationally more complex than RCP since it giviflerént feedback
values to each flow, and involves multiplications and addgifor every packet. RCP
maintains a single rate for all flows and involves no per-packmputation®

2.4 RCP for the Internet

This is an outline of how RCP can be implemented in the InteMe assume that
— as with TCP — flows continue to have the connection set-upeptmestablish state
at both ends of the connection. This allows the initial ratéé calculated during the
initial handshake by piggy-backing on the SYN and SYN-ACKssages. This is very
important for short-lived flows, which could last less tharedRTT. Current feedback-
based algorithms do not work well for short-lived flows, yaisnflows in the Internet
are of this type [5]. An example of the RCP startup mechanssituistrated in Figure

6.
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Fig. 6. The SYN message sent by the source indicates the rate at hiahts to send the flow
(which could be infinite). As detailed in the last sectiorgleeouter maintains a single rate(t),
that it assigns to all flows. As the message passes througtetherk, if the current rat&(t) at
arouter is lower than the value in the SYN packet, the routerwrites it. When the SYN packet
reaches its destination, it has the lowest rate correspgridithe most congested link along the
path. This value is sent back to the source in the SYN-ACK agss$o set the starting rate. When
the flows last longer than an RTT then they are periodicalty explicitly told a new rate by the
network. This rate is piggy-backed on the data and the ACKsages.

3 RCP Performance

3.1 Simulation Setup

In this section we study RCP’s performance using ns-2 [6fg/dm 2.26) augmented
with RCP end-host and queue modules.

% The router uses the RTT information in the packets to updat®TT estimate — our stability
analysis and simulations indicate that it is sufficient fog touter to have a “rough” estimate
of the feedback delay, and so it can even just sample a fewefmakd update its estimate of
RTT.



We compare the performance of RCP with processor sharing,ard XCP. We are
primarily interested in the average flow completion time G¥5 . Flow completion
time (FCT) is defined as the time from when the sender sendshafg¢ket until the
receiver receives the last packet of the flow, i.e. FCT = 1 RdrTilie connection set-
up plus the duration of the data transfer. For elastic flovis iharguably the most
important performance metric. We will use RTPD to abbreatind-trip propagation
delay AFCT is the average of FCT over all flows for the simulatiom.rilote that
AFCT > 1.5RTPD + % This is because (ignoring queuing delay) the minimum
FCT for any flow of sizelL is: 1 RTPD for SYN/SYN-ACK and (1/2 RTPD £/C) for
the data transfer. The analytical expression for FCT of a 8bsize L under processor
sharing is [7]:

FCTps =15 RTPD + 3)

L
C(1—p)
wherep is the offered load and’ is the link capacity. We will use Equation (3) to
compute the PS values for our simulation setups. As secpma@asures, in [3] we are
also interested in the link utilization, and the average benof ongoing or active flows
—which in PS can be simply computed by Little’s LawiN] = A x FCTps whereX
is the flow arrival rate.

We assume the usual rule-of-thumb that a router’s queudstingebandwidth-delay
product, i.e., link capacity multiplied by maximum RTPD adyis passing through it.
We also assume that packets are dropped from the tail of teeequr simulations
are run until the performance measures converge. In alllations so far, we have not
seen any packet drops with RCP and XCP. There are packetdithpECP.

Equation (2) is the rate update equation used in the RCPrrdute RCP param-
eters are: Control period; = min(10ms, dy) anda = 0.1,8 = 1.0. For TCP, we
used TCP Reno module ims-2with an initial window size of two packets. Thres-2
implementation of XCP (Version 1.1) is publicly availab&,[and the parameters are
set as in the paper [2].

All data packets are 1000 bytes and the control packets (SYMNI-ACK, FIN) are
40 bytes. Unless otherwise mentioned we will assume thatsflawive as a Poisson
process with raté\ and flow sizes are pareto distributed [5, 9]. The offered loag
link is p = AE[L]/C. In our simulations we vary the network and traffic paranster
from one extreme to the other and observe how RCP, TCP and ¥@Ppare with PS.

3.2 When Traffic Characteristics Vary

In this section our goal is to find out if RCP’s performancddse to PS under different
traffic characteristics. All simulations in this sectiore @aone with a single bottleneck
link in the network.

Average Flow Completion Time vs. Flow Size:In this section we will observe the
AFCT of RCP, XCP and TCP for an entire range of flow sizes in &iqdar simulation

" We will use the term “flow” here to represent the packets apoeding to a particular appli-
cation flow.



setup chosen to represent high bandwidth-delay product RTPD) environment.
This is the scenario that often differentiates the perforoesof protocols.
e Setup:C' = 2.4 Gbps, RTPD = 100 mg,= 0.9, pareto distributed flow sizes
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Fig. 7. AFCT for different flow sizes wher' = 2.4 Gb/s, RTPB=0.1s, andp = 0.9. Flows
are pareto distributed witl'[L] = 25 pkts, shape = 1.2. The top left plot shows the AFCT for
flow sizes 0 to 2000 pkts; the top right plot shows the AFCT fowfkizes 2000 ta0® pkts; the
bottom plot shows the maximum flow completion time among aW of the particular size.

AFCT is plotted against flow size in the top two graphs of Fegdr The AFCT of
RCP is close to that of PS and it is always lower than that of X8& TCP. For flows
up to 2000 pkts, TCP delay is 4 times higher than in RCP, and d&l#& is as much as
30 times higher for flows around 2000 pkts. Note the logschikey-axis.

With longer flows ¢ 2000 pkts), the ratio of XCP and RCP delay still remains
around 30, while TCP and RCP are similar. For any fixed sirmaraime, not only
was RCP better for the flows that completed, but it also firdghere flows (and more
work) than TCP and XCP.

The third graph in Figure 7 shows the maximum delay for a gil@m size. Note
that in RCP the maximum delay experienced by the flows is at3y ulose to the
average PS delay. With all flow sizes, the maximum delay foPRCsmaller than for
TCP and XCP. TCP delays have high variance, often ten tinreestan.

The results above are representative of the large numbamafations we per-
formed. Now let's see why these protocols have such diftetelays.



RCP vs. TCP:In figure, 7 the TCP delay for most flows follows tBéow-startcurve.
The delay in TCP slow-start for a flow of siZeis [log2(L+1)+1/2] x RTPD+L/C
(excluding the queuing delay). With RCP the same flows getrgpjstart because the
routers set a higher initial rate close to what they wouldehgotten with PS. Hence
their delay is close to PS. This is clear from the time evolutbf a typical flow, as
shown in Figure 8 (left plot).

Next, consider the TCP flows which deviate from the Slowtstarve. These flows
experienced at least one packet drop in their lifetime anéred the additive increase,
multiplicative decrease (AIMD) phase. Once a flow is in th&B phase, it is slow in
catching up with any spare capacity and therefore lastselotingin it needs to. RCP on
the hand is quick to catch up with any spare capacity availabtl flows finish sooner.
An example of the time evolution of a flow is shown in Figure iglft plot).
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Fig. 8. Time evolution of the sequence numbers of two flows under XCH® and RCP, chosen
from the simulation set up of Figure 7. The flow size in the pgétt is 230 pkts, and in the right
plot is 3600 pkts.

RCP vs. XCP: The time evolution of XCP for two sample flows is shown in Fig8t
XCP is slow in giving bandwidth to the flows, giving a smallgdb newly starting
flows. It gradually reduces the window sizes of existing flamnd increases the window
sizes of the new flows, making sure there is no bandwidth subscription. It takes
multiple RTTs for most flows to reach their fair share rate iGhtis changing as new
flows arrive). Many flows complete before they reach their $hiare rate. In general,
XCP stretches the flows over multiple RTPDs, to avoid ovéasstibing the link, and
so keep buffer occupancy low. On the other hand, RCP triesviothe equilibrium
rate to every flow based on the information it has so far, aettpense of temporary
bandwidth over-subscription.

When mean flow size increasesFigure 9 compares AFCT when mean flow size gets
longer. Flow sizes are pareto distributed and the mean flpavisivaried from 30 pkts
(equalsﬁ -C - RTPD) to 30,000 pkts (equal§ - RT' P D). The left plot shows the
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Fig. 9. Comparison of AFCT as the mean flow size increases. Flowsaastqdistributed with
shape 1.2 and the mean flow size varies as shown on x@xis.2.4 Gb/s, RTPD= 0.1s and
p = 0.8. The left plot shows the AFCT for flows witkt 7000 pkts vs. mean flow size; the right
plot shows the AFCT for larger flows>( 7000pkts) vs. mean flow size.

AFCT averaged over flows witk: 7,000 pkts and the right one is for flows 7,000
pkts.8 There are two points to take away from the graph:

1. The AFCT of RCP is close to PS irrespective of the mean flaw si

2. The performance of XCP and TCP is reversed as the mean fmnirgireases:
when the mean flow size is small, XCP performs far worse thaR TfGr flows
with > 7000 pkts) and as the mean flow size gets larger, XCP’s performgeise
closer to PS while TCP deviates further from it — see right pfd=igure 9.

XCP vs. TCP: The reversal in performance of XCP and TCP is also cleatgtitated
in Figure 10. The top left plot shows a snap shot of the AFCTsHfL] = 30 pkts
and the other two plots are fdr[L] = 30000 pkts. In the bottom plot the AFCT
of TCP flows is more than an order of magnitude higher than in-RlSs is due to
the well known problem with TCP in high bandwidth delay protenvironments i.e.,
long flows are unable to catch up with spare bandwidth quiekigr experiencing a
loss. XCP and RCP are both close to PS. On the other hand, fat #ows, XCP’s
performance is worse than TCP’s because XCP is consenatgyieing bandwidth to
flows, especially to newly starting flows. This unnecesgamiblongs flows and so the
number of active/ongoing flows begins to grow. This in turduees the rate of new
flows, and so on. Our many simulations showed that new flowsG® Xtart slower
than with Slow Start in TCP.

We observe from a large number of simulations that the trémélew completion
times observed above for RCP, TCP and XCP hold true for othé#ictcharacteristics
such as different flow size distributions, as the offered learies, and under different
non-poisson flow arrival time distributions. Simulatiosués for these are in [3].

3.3  When Network Conditions Vary

In this section we explore how well the congestion contrgbathms match PS under
different network conditions. We show one particular scenhere when flows with

8 We consider these two different ranges because, with agdisgtibution, there are many more
short flows than long flows. Just taking the average AFCT oVéioas is more representative
of the short flows than the long flows.



-
1<)
=]

i
5]

AFCT [secs]
AFCT [secs]
-

0.1

Pt
N i fﬁx‘!&{.:’: i et

0.1 L L
100 1000 10000

Flow Size [pkts]
100

. .
10000 100000 1e+06
Flow Size [pkts]

10

1

AFCT [secs]

XCP -

10000 100000 1e+06
Flow Size [pkts]

Fig. 10. Comparison of AFCT as the mean flow size increases. The siiomilset up is the same
as in Figure 9. The top left graph shows the AFCT vs. flow sizem#i[L] = 30; the top right
(RCP) and bottom graph (TCP, XCP) show the AFCT vs. flow sizewi[L] = 30000 pkts.
RCP does close to PS irrespective of mean flow size. The peafure of XCP and TCP are
reversed with the increase in the mean flow size.

widely different round trip times share a common bottleni@dk Simulations for other

network conditions such as varying bottleneck link capesitRTTs, increasing number
of bottleneck links are shown in [3]. In each case, we find R@P matches PS closely
for a single bottleneck. In case of multiple bottlenecksPRLChieves max-min fairness.

Flows with different round-trip times: All three congestion control schemes depend
on feedback to adjust the window size and/or sending radféfrent flows have shorter
round trip times, we do not want them to benefit at the expehsthers.

To explore this effect we simulated flows that share a comnutttemeck link, but
with different RTPDs. The round-trip delay of the commontlewsteck link is 0.01 s and
its capacity is 640Mb/s. Arriving flows are classified into groups. Flows in the same
group have the same end-to-end RTPD, and each group has &hd®DR02, 0.04, ,..,
0.18, or 0.2s. All groups have the same flow arrival rate atad po= 0.9.

Figure 11 shows the AFCT for these different groups of flowse X-axis is each
group’s RTPD. For each RTPD, RCP is close to PS, suggestaidr@BP is not biased
in favor of flows with shorter RTPD.

4 Conclusion

TCP’s congestion control mechanisms work well in a statiwvoek with only long-
lived flows. With long lasting flows, small mistakes in cortlo not lead to a big drop
in performance. This is no longer true in a dynamic environhveith random flow
arrivals and arbitrary amounts of data to send. We saw inp@per the unnecessary
number of round trip times taken by the TCP slow-start and Bl&gorithm to find
the fair-share rate. Often, the flow has finished before tinesFare rate has been found.
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Fig. 11.Comparison of RCP, TCP and XCP when flows with different RTE@&xist on a single
bottleneck ofC = 0.64 Gb/s. Flows arrive as a Poisson process with pareto disadbilow
sizes,F[L] = 25 pkts, shape = 1.2. RTPD of flows vary from 0.02s to 0.2s. Thdilgire is the
AFCT of flows with flow size< 500 pkts and the right figure shows the AFCT for flows with
size> 500 pkts.

Unfortunately, making the network faster does not helpabee the flow duration is
dominated by the propagation delay. The same is true for XCP.

Itis the premise of this paper that it is better to design estign control algorithms
to closely emulate processor sharing. This way the algoritbales naturally with link
capacities, RTTs and other network conditions. The perémte is invariant of the flow
size distribution — so it will not matter what mix of flows apations generate. Flows
will complete sooner for a broad range of network and trafficditions.

RCP is designed to be a practical way to emulate processanghand appears
to come very close to doing so under a broad range of conditamd allows flow to
complete much faster than with TCP or XCP.
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