
Preserving the Independence of Flows in

General Topologies using Turn-Prohibition

Markus Fidler1, Oliver Heckmann2, and Ralf Steinmetz2

1 Centre for Quantifiable Quality of Service (Q2S), NTNU Trondheim, Norway
fidler@ieee.org

2 Multimedia Communications Lab (KOM), TU Darmstadt, Germany
{heckmann,steimetz}@kom.tu-darmstadt.de

Abstract. Various elegant and powerful theories for network perfor-
mance evaluation have to assume independence to be efficient. While
traffic sources are often supposed to be independent, the implications
of this assumption regarding flows in arbitrary networks are largely un-
known. Recently, turn-prohibition was proposed to solve a related prob-
lem concerning feed-forward networks.
In this paper we extend the concept of turn-prohibition to address the
issue of independence of flows in general topologies. To this end we evolve
an algorithm which derives a set of critical turns that provide full con-
nectivity while conserving the independence of flows up to multiplexing
points. In an iterative procedure further turns are added to improve con-
nectivity. The developed algorithm is proven and exemplified.

1 Introduction

Emerging quality of service architectures gave rise to various new approaches to
network performance evaluation. Beyond classical queuing theory, for example [2,
8], methods like the theory of effective bandwidths, see [4, 11, 18] and references
therein, and deterministic network calculus, for a comprehensive overview see [4,
12], were developed. Recently, network calculus extensions towards a probabilis-
tic equivalent started to evolve, for example [3, 4, 6, 13, 17, 19].

Independence of flows is critical for the applicability, accuracy, and efficiency
of a variety of these methods. While statistical multiplexing of independent flows
is known to smooth out burstiness, dependent flows are still subject to worst-
case analysis where bursts are cumulated. Yet, adequate preconditions that en-
sure independence have not been devised for general topologies. A related is-
sue concerning feed-forward networks has recently been solved [7, 15, 16]. The
feed-forward property facilitates inductive analyses, for example applying net-
work calculus and its probabilistic extensions. While networks usually are not
of a feed-forward type, turn-prohibiting algorithms [15, 16] have been developed,
which allow modifying the routing [6] to ensure this property.

In this paper we extend the concept of turn-prohibition in a way such that
arbitrary routing algorithms can generate paths that conserve the independence
of flows in general topologies. We apply a network model where routers are

represented by vertices V and links and the belonging queuing and scheduling
units by directed edges E. Bidirectional links are presumed and often displayed
as such in figures, where each bidirectional link corresponds to two directed
and opposing edges in E. For brevity and ease of presentation, we assume that
the objective of the routing algorithm is to minimize the path length measured
in hops. Traffic sources are expected to be uncorrelated, that is traffic flows are
stochastically independent before entering the network. For clarity we distinguish
between two conditions under which dependencies are created:

1. Direct Dependencies: Consider two flows i and j that pass a common
queue. The flows i and j are dependent when leaving the queue.

2. Indirect Dependencies: Consider three flows i, j, and k. Let flows i and
j traverse a queue and afterwards j and k traverse another queue. When
leaving the queues, flows i and j respective j and k are directly dependent.
Further on flow k depends via flow j indirectly on the properties of flow i.

Dependencies can further on be classified as plain or cyclic, where in the latter
case a number of flows form a cycle of direct dependencies, such that the charac-
teristics of a flow when leaving a queue indirectly depend on themselves. In the
following we will introduce conditions under which dependencies cannot occur,
namely the feed-forward property and unique dependency paths.

The remainder of this paper is organized as follows: Section 2 briefly re-
calls known methods to ensure the feed-forward property and introduces the
concept of dependency graphs. In Sect. 3, we develop and prove an extended
turn-prohibition algorithm that allows ensuring unique dependency paths. An
example is discussed in Sect. 4 while Sect. 5 gives concluding remarks and rec-
ommendations for application.

2 The Feed-Forward Property

Definition 1 (Feed-Forward Property). In a feed-forward queuing network
the queues can be labeled in a way, such that whenever traffic flows from queue
i to queue j this implies that i < j [8]. That is the queues of a feed-forward
network cannot form any cycles, respective it is impossible for traffic flows to
create cyclic dependencies [4].

Certain network topologies, for example sink-tree networks [4], are generally of a
feed-forward nature. However, considering general topologies, few approaches are
known which allow ensuring the feed-forward property. Among these are edge-
prohibiting methods, for example based on spanning trees, and turn-prohibiting
approaches, like up-down routing [15] and the turn-prohibition algorithm [16]
where a directed turn (a, b, c) refers to the concatenation of two successive edges
(a, b) and (b, c). Generally, turn-prohibiting methods may have significantly less
performance impact then edge-prohibiting ones [16] since a prohibited turn only
bans the combination of the belonging edges but not the edges themselves.

Here, we apply the turn-prohibition algorithm [16] and a related data struc-
ture referred to as dependency graph [5] respective turn network [7] which we
briefly introduce in the following subsections.

2.1 Turn-Prohibition

The turn-prohibition algorithm [16] generally breaks all cycles in networks with
bidirectional links. The steps of the basic version are summarized in Alg. 1 where
Pre(.) denotes the set of predecessors of a vertex and Suc(.) the set of successors.
Given a network graph G = (V,E) with vertices V and edges E and an empty
set of turns P , the algorithm inspects all turns around each of the vertices in
increasing order of their degree that is the cumulated capacity of the connected
edges. While inspecting a vertex, all turns around it are included in the set of
prohibited turns P and the vertex and all adjacent edges are removed from the
graph before the next vertex for inspection is determined.

Algorithm 1 Calculate prohibited turns P

Require: G = (V, E), P = ∅
while V 6= ∅ do

Select a vertex b ∈ V with minimal degree
for all a ∈ Pre(b), c ∈ Suc(b), a 6= c do

P ← P ∪ {(a, b, c)}
for all a ∈ Pre(b) do

E ← E \ {(a, b)}
for all c ∈ Suc(b) do

E ← E \ {(b, c)}
V ← V \ b

Figure 1 gives an example. In (a), four flows are displayed which create a
cyclic dependency. In (b) and (c), turn-prohibition breaks this cycle. The vertices
are investigated in the order of their labelling. No turns exist around vertex 0,
thus vertex 0 and edges (0, 2) and (2, 0) are removed. The same applies for vertex
1. In case of vertex 2 the turns (3, 2, 5) and (5, 2, 3) are prohibited as indicated
by the arc around vertex 2 before vertex 2 and the adjacent edges are removed
from the graph. The following steps do not prohibit further turns. Finally in (d),
shortest paths that do not utilize the prohibited turns are shown for the flows
from the initial problem. Clearly turn-prohibition resolved the cyclic dependency.

0

2 5

1

3 4

0

2 5

1

3 4

0

2 5

1

3 4

0

2 5

1

3 4

(a) (b) (c) (d)

Fig. 1. Example application of turn-prohibition

2.2 Dependency Graphs

A structure which allows for efficient analysis of both cyclic and non-cyclic depen-
dencies is the so-called dependency graph [5], also referred to as turn network [7]
since it essentially consists of edges and turns. The graph of the turn network
G∗ = (E, T) results from transformation of the initial network graph G = (V,E)
where edges become vertices and turns become edges. Thus, the notation of the
set of predecessors Pre(.) and successors Suc(.) naturally extends to edges where
it becomes Pre((., .)) and Suc((., .)) respectively. Since each edge in G respec-
tive vertex in G∗ symbolizes a link including a queuing and scheduling unit, the
edges in the graph G∗ indicate dependencies that occur if traffic flows along the
belonging turn in G. The transformation is summarized in Alg. 2.

Algorithm 2 Calculate dependency graph G∗ = (E, T)

Require: G = (V, E), T = ∅, Pre((., .)) = ∅, Suc((., .)) = ∅
for all b ∈ V do

for all a ∈ Pre(b), c ∈ Suc(b), a 6= c do

T ← T ∪ {(a, b, c)}
Pre((b, c))← Pre((b, c)) ∪ {(a, b)}
Suc((a, b))← Suc((a, b)) ∪ {(b, c)}

Figure 2 shows the corresponding dependency graph for the example network
in Fig. 1. The vertices are labeled by the source and destination vertices of the
corresponding edges from Fig. 1 and whenever traffic can flow from one edge to
another in Fig. 1, the corresponding turns are represented by edges in Fig. 2. The
edges that correspond to the prohibited turns (3, 2, 5) and (5, 2, 3) are indicated
by dotted lines. The dependency graph clearly shows the cyclic dependencies
that are broken by prohibition of these turns.

While allowing for a demonstrative analysis of dependencies, the turn net-
work can immediately be applied for routing. In [7] it is shown that routing
algorithms, like Dijkstra’s algorithm, might not find optimal paths in a network
with prohibited turns whereas optimal paths are found in the corresponding turn
network from where they can be transformed back to the original network.

0,2

2,5

2,3 3,4 4,5

5,1

5,4 4,3 3,2

5,2

2,01,5

Fig. 2. Dependency graph after turn-prohibition

3 Unique Dependency Paths

Definition 2 (Unique Dependency Paths). In a queueing network with
unique dependency paths, traffic flows span at most one path from any queue
i to any queue j. Flows span a path from queue i to queue j if a set of flows
exists, where the first flow passes queue i, each pair of subsequent flows traverse
at least one common queue, and the last flow passes queue j.

A network which fulfills both, the feed-forward and the unique dependency path
property, conserves the independence of initially independent flows until they are
multiplexed. While the feed-forward property has been investigated for general
topologies, we are not aware of corresponding methods regarding unique depen-
dency paths. So far, many authors leave the problem open whereas few address
the issue either by restricting the topology, for example applying sink-tree net-
works [4], or by assuming independence only at the ingress and dependence
throughout the core of the network [3, 13].

Figure 3 (a) extends the example from Fig. 1 to show how indirect dependence
can occur in a network without unique dependency paths. In the sequel we use
the path of a flow as a synonym for the flow. The two flows (0, 2, 5, 1) and
(0, 2, 3, 4) create a direct dependence at edge (0, 2). Then, at edge (3, 4) the
flows (0, 2, 3, 4) and (3, 4, 5, 1) become dependent. Due to indirect dependence
the flow (3, 4, 5, 1) also depends on flow (0, 2, 5, 1). Thus, when multiplexing flows
(3, 4, 5, 1) and (0, 2, 5, 1) at edge (5, 1) they are not independent. Obviously, the
network does not have unique dependency paths since the chain of the two
flows (0, 2, 3, 4) and (3, 4, 5, 1) – connected by the common edge (3, 4) – spans a
different path from edge (0, 2) to edge (5, 1) than flow (0, 2, 5, 1).

An immediate though suboptimal solution to the problem is to use only edges
that belong to a spanning tree where the shortest path spanning tree with root
vertex 5 is shown in Fig. 3 (b). Removing the edges (2, 3) and (3, 2) solves the
problem as displayed in (c). However, a considerably better solution shown in (d)
can be obtained as derived in the sequel where only the turns (2, 3, 4), (4, 3, 2),
(3, 2, 5), and (5, 2, 3) but not the edges (2, 3) and (3, 2) have to be prohibited.

5

421

300

2 5

1

3 4

0

2 5

1

3 4

0

2 5

1

3 4

(a) (b) (c) (d)

Fig. 3. Example application of extended turn-prohibition

3.1 Extended Turn-Prohibition Algorithm

Our solution applies the turn-prohibition algorithm [16] to ensure the feed-
forward property in a first step before switching over to the dependency graph.
Certainly, the feed-forward property could also be ensured applying cycle-break-
ing methods to the dependency graph, however, the turn-prohibition algorithm
is assumed to be efficient [16]. Our extended turn-prohibition algorithm derives
a set of turns T ′ which can be used without violating the feed-forward and the
unique dependency path properties. It comprises the following steps:

1. Apply Alg. 1 to the graph G = (V,E) to calculate a set of prohibited turns
P that ensure the feed-forward property.

2. Construct the shortest path spanning tree SPST = (V,E′) from the last
vertex visited by turn-prohibition without using any of the turns in P and
compute the dependency graph SPST ∗ = (E′, T ′) with Alg. 2.

3. Substitute nonessential turns – that are turns for which edges exist – by the
respective edges using Alg. 3.

4. Add all remaining edges from the set E to SPST ∗.

5. Incrementally add all turns which are not in P to SPST ∗ if they do not
violate the unique dependency path property according to Alg. 4.

Step 1 applies the known turn-prohibition algorithm [16] to derive a set of
prohibited turns P ⊂ T to ensure the feed-forward property.

In step 2 we identify a set of critical turns T ′ ⊆ {T \P} which are required to
provide full connectivity among all vertices while ensuring unique dependency
paths. A valid set T ′ is given by all turns that belong to the shortest path span-
ning tree rooted from the last vertex visited by the turn-prohibition algorithm
which trivially ensures unique dependency paths. The shortest path spanning
tree can for example be computed using Dijkstra’s algorithm on the dependency
graph G∗ = (E, T \P) [7]. Figure 4 shows the dependency graph SPST ∗ where
the gray vertices correspond to the edges of the spanning tree in Fig. 3.

In step 3, Alg. 3 is applied to substitute turns by edges if applicable. Consider
the initial network graph G = (V,E) and the dependency graph of the shortest
path spanning tree SPST ∗ = (E′, T ′). If there exist edges (b, d) ∈ E and (b, d) /∈
E′ and corresponding turns (b, c, d) ∈ T ′, then the turns (b, c, d) are replaced by

0,2

2,5

3,4 4,5

5,1

5,4 4,3

5,2

2,01,5

2,3

3,2

Fig. 4. Dependency graph after extended turn-prohibition

Algorithm 3 Substitute nonessential turns

Require: G = (V, E), SPST ∗ = (E′, T ′), P
repeat

T ′′ ← ∅
for all b, c, d ∈ V, (b, c, d) ∈ T ′ do

if (b, d) ∈ E \ E′ then

T ′′′ ← ∅
for all a ∈ V, (a, b, c) ∈ T ′ do

T ′′′ ← T ′′′ ∪ {(a, b, d)}
for all e ∈ V, (c, d, e) ∈ T ′ do

T ′′′ ← T ′′′ ∪ {(b, d, e)}
if T ′′′ ∩ P = ∅ then

T ′ ← T ′ \ {(b, c, d)}, E′ ← E′ ∪ {(b, d)}, T ′′ ← T ′′ ∪ T ′′′

T ′ ← T ′ ∪ T ′′

until T ′′ = ∅

the edges (b, d) and for each turn (a, b, c) ∈ T ′ respective (c, d, e) ∈ T ′ a turn
(a, b, d) /∈ P respective (b, d, e) /∈ P is added to T ′ to connect the edge (b, d).

In Fig. 3 no such turns exist, thus we investigate the modified example in
Fig. 5. In (a), all turns belonging to the tree are indicated by arrows around
vertices and two edges that do not belong to the tree are given by dashed lines;
all turns that include these edges are assumed to be permitted. The result of
the first iteration is shown in (b). The edges (4, 5) and (5, 4) replace the turns
(4, 6, 5) and (5, 6, 4). Further on, the new edges are connected by turns (1, 4, 5),
(5, 4, 1), (2, 5, 4), and (4, 5, 2). In the second iteration, shown in (c), the turns
(2, 5, 4) and (4, 5, 2) are then replaced by the edges (2, 4) and (4, 2) which are
connected by turns (0, 2, 4), (4, 2, 0), (1, 4, 2), and (2, 4, 1).

In step 4, all edges are added to the dependency graph SPST ∗ since including
edges without connecting turns does not create dependencies. In Fig. 4 these are
the white vertices (2, 3) and (3, 2) which at this step are still unconnected.

6

45

12

6

45

12

6

45

12

000

3 3 3

(a) (b) (c)

Fig. 5. Shortest path spanning tree and substitution of turns

Finally, in step 5 all turns not in P and not yet in T ′ are tested by Alg. 4
and added to T ′, if they do not violate the unique dependency path property.
Preferably start with turns that are part of potential shortest paths between
sparsely connected vertices. In Fig. 4 turns (0, 2, 3) and (3, 2, 0) can be added,
whereas subsequently (2, 3, 4) and (4, 3, 2) fail the test and must not be used.

Algorithm 4 Test uniqueness of dependency paths

Require: G∗ = (E, T)
for all i ∈ E do

A← {i}, B ← {i}
repeat

C ← ∅
for all j ∈ B do

C ← C ∪ Pre(j)
if A ∩ C 6= ∅ then

The graph does not have unique dependency paths.
A← A ∪ C, B ← C

until C = ∅

3.2 Proof of Correctness

Proposition 1. The shortest path spanning tree SPST from the last vertex vis-
ited by the turn-prohibition algorithm provides full connectivity among all vertices
V without using any of the prohibited turns in P .

A spanning tree that consists of bidirectional edges trivially provides full con-
nectivity among all vertices. Note, however, that this is not an immediate result
if certain turns are prohibited. Consider the spanning tree in Fig. 3 (b). If the
turns (5, 2, 0), (0, 2, 5), (5, 4, 3), and (3, 4, 5) are permitted, the tree contains valid
paths from the root vertex 5 to any other vertex and vice versa. This holds also
if for example the turns (1, 5, 2) and (2, 5, 1) are prohibited, in which case the
tree, however, does not contain any paths between vertices 1 and 2.

Proof. Let the vertices be numbered in the order of inspection by turn-prohibition
starting with zero. Since the full version of the turn-prohibition algorithm pre-
serves connectivity [16], the tree SPST exists and there are valid paths in SPST
from the root vertex n = |V | − 1 to all other vertices and vice versa.

Yet, it remains to be shown that the tree SPST provides connectivity among
all of the remaining vertices. Clearly, since vertex n is the last vertex visited by
turn-prohibition, there cannot be any prohibited turns around it. Thus, full
connectivity among all direct children of the root vertex n is provided.

Consider a vertex i and a direct child of i with label j. If j < i vertex j
was removed from the graph G by the turn-prohibition algorithm before vertex i
was inspected. Consequently, turns around vertex i originating from or destined

for vertex j cannot be prohibited. Thus, as long as children have smaller label
values than parents, full connectivity among all vertices is ensured.

Let us now assume that a vertex with label i has a child with label j and
j > i. In this case vertex i has been inspected by the turn-prohibition algorithm
before vertex j and also before the root vertex n. If vertex i is a direct child
of the root vertex n this, however, means that the turns (n, i, j) and (j, i, n)
have been prohibited which means that vertex j cannot be a child of vertex i in
contradiction to the assumption.

If vertex i is not a direct child of the root vertex, then either the parent
vertex of i has a higher label k > i in which case the same argumentation applies
immediately, or it has a lower label k < i in which case the above argumentation
applies recursively for the parent vertex k. ⊓⊔

Proposition 2. The substitution of nonessential turns by edges does not intro-
duce new dependencies to the dependency graph SPST ∗ = (E′, T ′) and hence
preserves unique dependency paths.

Proof. Consider a turn t = (b, c, d) ∈ T ′ that is substituted by an edge s =
(b, d) ∈ E \ E′ where for each turn of type (a, b, c) ∈ T ′ respective (c, d, e) ∈ T ′

a turn (a, b, d) /∈ P respective (b, d, e) /∈ P is added to T ′.
The substitution is one-to-one. Any path that includes the turn (b, c, d) with

or without further connected turns of type (a, b, c) and (c, d, e) can be realized
using the edge (b, d) or the turns (a, b, d) and (b, d, e) and vice versa.

Because there exists at most one dependency path between any two edges,
all dependency paths that included t have to include s after substitution and all
dependency paths that include s had to include t before substitution, provided
s was not used before which is ensured by the condition s /∈ E′.

Since all dependency paths that formerly included t and only these paths
include s instead, the substitution does not introduce new dependencies. Again
there exists at most one dependency path between any two edges and the proof
applies inductively to all following iterations of the algorithm. ⊓⊔

4 Application to the DFN G-WiN Topology

In this section, we give an example applying our algorithm to the DFN G-WiN
topology as of 2000 [10] that is shown in Fig. 6 (a). More recent topologies are
available, see for example [9], however, the chosen topology reveals considerable
complexity while still being useful for demonstrative purposes.

The level one nodes have been investigated by Alg. 1 in order of their number-
ing. Note that the unnumbered level two nodes fulfill the feed-forward property
trivially. The resulting 7 bidirectional prohibited turns are marked by arcs in
Fig. 6 (b). Further on, the edges that belong to the considered shortest path
spanning tree rooted at the vertex with the highest label are indicated by solid
lines compared to dashed lines that are edges which do not belong to the tree.

Figure 7 shows the respective dependency graph where level two nodes and
corresponding edges and turns are left out for clearness. Note, however, that

1

3

4

8

7

2

0

391

4 87 2

0

5

6

6

5

9

(a) (b)

Fig. 6. G-WiN topology as of 2000, turn-prohibition, and spanning tree

given a level one node b, all edges (b, c) may share common predecessors (a, b)
that are not displayed, where a is a level two node, respective all edges (a, b)
may share common successors (b, c), where c is a level two node. While we take
the first into account to ensure independence in the level one core, we ignore the
latter such that flows when leaving the level one core may be dependent.

Solid lines in Fig. 7 indicate turns that belong to the graph after substitution
of nonessential turns by edges. In the first iteration of Alg. 3 turns (1, 9, 4) and
(4, 9, 1) have been substituted by edges (1, 4) and (4, 1) and turns (8, 9, 7) and
(7, 9, 8) have been replaced by edges (8, 7) and (7, 8) which have been connected
by turns (6, 8, 7) and (7, 8, 6). In the second iteration turns (6, 8, 7) and (7, 8, 6)
have been substituted by edges (6, 7) and (7, 6).

The vertices in Fig. 7 that are marked grey correspond to edges that are
part of the spanning tree in Fig. 6. The remaining vertices are marked white
and all further turns that did not violate the unique dependency path property
according to Alg. 4 are marked by dashed lines. The incremental procedure to
add these turns started with turns that are part of potential shortest paths
and processed these in the order of the numbering of the vertices, that is turns
starting or ending at the vertex with the lowest index were tested first.

We find that of the 86 possible directed turns 14 have to be prohibited to
ensure the feed-forward property and further 22 have to be prohibited to ensure
unique dependency paths, thus 50 permitted turns remain. To ensure unique de-
pendency paths the following bidirectional turns are prohibited: (0, 2, 5), (0, 6, 8),
(1, 4, 9), (2, 5, 9), (4, 6, 5), (4, 6, 8), (5, 6, 7), (5, 6, 8), (6, 7, 9), (6, 8, 7), (7, 8, 9).
Yet, only two paths with minimal hop count, (0, 6, 8) and (8, 6, 0), have to be
replaced by the longer paths (0, 6, 7, 8) and (8, 7, 6, 0), due to the prohibition of
turns (0, 6, 8) and (8, 6, 0) to ensure independence in the level one core.

0,2

2,3 2,5 1,48,7

0,64,65,6 7,6

6,8

1,9 4,9 3,95,9 7,9 8,9

9,7 9,8 6,79,1 6,09,4 6,49,39,5 6,5

7,8 4,13,2 5,28,6

2,0

Fig. 7. G-WiN dependency graph

5 Concluding Remarks

A variety of powerful and elegant methods for network analysis rely on the
assumption of independence of flows at multiplexing points. However, the cor-
rectness of this supposition is usually not investigated for specific topologies.
To this end, we developed an extended turn-prohibition algorithm that ensures
both the feed-forward and the unique dependency path property, under which
flows that are independent at the ingress of the network retain this attribute
throughout the core of the network until they are potentially multiplexed.

While the turn-prohibition approach is considered to be efficient [16], it
clearly impacts routing performance. Yet, in case of the DFN G-WiN topol-
ogy which can be considered to be challenging in this respect, we presented a
solution where only one pair of shortest paths has to be replaced by paths with
one additional hop to ensure independence in the level one core of the network.

Areas of application are for example emerging MPLS [14] networks with
explicit routing and DiffServ [1] like aggregate service provisioning where turn-
prohibition can be applied to compose a premium service with defined service
guarantees. In this scenario, common best-effort traffic is unaffected and can still
be routed along any path, thus providing an efficient solution.

A particular advantage of our analysis using dependency graphs is given in
case of methods for performance analysis that make formulas available both
for multiplexing independent and dependent flows, for example [6, 19]. In this
case, individual decisions can be made, either to adapt the routing to ensure
independence or to apply rules for multiplexing dependent flows, whenever the
dependency graph indicates the necessity to do so, as in case of the outgoing
links from level one to level two nodes in the G-WiN example.

Acknowledgements

This work was supported in part by an Emmy Noether grant of the German Re-
search Foundation. The Q2S Centre of Excellence is appointed by the Research
Council of Norway and funded by the Research Council, NTNU and UNINETT.

References

1. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture
for Differentiated Services. RFC 2475, 1998.

2. G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and
Markov Chains: Modeling and Performance Evaluation with Computer Science Ap-
plications. Wiley, 1998.

3. R.-R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn. Statistical Service
Assurances for Traffic Scheduling Algorithms. IEEE JSAC, 18(12):2651-2664, 2000.

4. C.-S. Chang. Performance Guarantees in Communication Networks. Springer,
2000.

5. J. Duato, S. Yalamanchili, and N. Lionel. Interconnection Networks: An Engineer-
ing Approach. Morgan Kaufmann, 2003.

6. M. Fidler. Elements of Probabilistic Network Calculus Applying Moment Generat-
ing Functions. Preprint Series of the Institut Mittag-Leffler, Sweden, 2005.

7. M. Fidler and G. Einhoff. Routing in Turn-Prohibition Based Feed-Forwad Net-
works. LNCS 3042, Springer, Proceedings of Networking, pp. 1168-1179, 2004.

8. B. R. Haverkort. Performance of Computer Communication Systems: A Model-
Based Approach. Wiley, 1999.

9. O. Heckmann, M. Piringer, and R. Steinmetz. On Realistic Network Topologies for
Simulation. Proceedings of the ACM Sigcomm Workshops, pp. 28-32, 2003.

10. G. Hoffmann. G-WiN - the Gbit/s infrastructure for the German scientific com-
munity. Elsevier Computer Networks, 34(6):959-964, 2000.

11. F. Kelly. Notes on Effective Bandwidths, Stochastic Networks: Theory and Appli-
cations, Royal Statistical Society Lecture Notes Series, 4:141-168, 1996.

12. J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic
Queueing Systems for the Internet. Springer, 2001.

13. J. Liebeherr, S. D. Patek, and A. Burchard. Statistical Per-Flow Service Bounds
in a Network with Aggregate Provisioning. Proceedings of IEEE Infocom, 2003.

14. E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architec-
ture. RFC 3031, 2001.

15. M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M. Needham, and T.
L. Rodeheffer. Autonet: A High-speed, Self-configuring Local Area Network Using
Point-to-point Links. IEEE JSAC, 9(8):1318-1335, 1991.

16. D. Starobinski, M. Karpovsky, and L. Zakrevski. Application of Network Calculus
to General Topologies using Turn-Prohibition. IEEE/ACM ToN, 11(3):411-421,
2003.

17. D. Starobinski and M. Sidi. Stochastically Bounded Burstiness for Communication
Networks. IEEE TIT, 46(1):206-216, 2000.

18. D. Wischik. The output of a switch, or, effective bandwidths for networks. Queueing
Systems, 32(4):383-396, 1999.

19. Q. Yin, Y. Jiang, S. Jiang, and P. Y. Kong. Analysis of Generalized Stochastically
Bounded Bursty Traffic for Communication Networks. Proceedings of IEEE LCN,
pp. 141-149, 2002.

