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Abstract. Object detection quality and network lifetime are two con-
flicting aspects of a sensor network, but both are critical to many sensor
applications such as military surveillance. Probabilistic coverage is an
appropriate approach to balancing the conflicting design requirements
of monitoring applications. Under probabilistic coverage, we present an
analytical model to analyze object detection quality with respect to dif-
ferent network conditions and sensor scheduling schemes. Our analytical
model facilitates performance evaluation of a sensing schedule, network
deployment, and sensing scheduling protocol design. Applying the model
to real sensor networks, we design a set of sensing scheduling protocols
to achieve targeted object detection quality while minimizing power con-
sumption. The correctness of our model and the effectiveness of the pro-
posed protocols are validated through extensive simulation experiments.

1 Introduction

Sensor networks are used for a range of object detection and tracking applica-
tions, such as vehicle detection in military surveillance and wild animal habitat
monitoring [9]. These applications, by their nature, enforce certain detection
quality and lifetime requirements. The first requirement determines how fast a
sensor network should detect the intrusion of a moving vehicle, or how often
the data about a wild animal should be sampled and collected. The second re-
quirement specifies the working duration a sensor network should sustain. These
two requirements, however, are two conflicting optimization goals due to the
stringent energy constraints of sensor nodes.

Full sensing coverage is mandatory for sensor monitoring applications that
require either immediate response to detected events or information of all points
in the sensing field. Full sensing coverage, however, is too restricted and expen-
sive to support long-time monitoring applications. More often those applications
do not need zero response time or information at all points of a sensing field.
They may be willing to sacrifice some event detection delay or sensing fidelity
to increase the network lifetime. Full sensing coverage gives little leverage to
tune object detection quality and battery power consumption. A relaxed sensing
coverage—probabilistic coverage where any point in a sensing field is sensed with
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a certain probability at any time—is a more appropriate approach to balancing
object detection quality and battery power consumption.

Probabilistic coverage scheme allows sensor nodes to periodically wake up
and go back to sleep. A node in sleep mode cannot sense events; its sensing ca-
pability is resumed after it wakes up. Therefore, the sensor network provides only
a fraction of the maximal coverage of all the sensors. Battery power, however,
is conserved for the nodes in sleep mode. How much time and how frequently a
sensor node should stay in active mode determine detection quality and power
saving. Our study aims to characterize the interplay among the sensor schedul-
ing, detection quality and power saving.

In this paper, under probabilistic coverage, we present a mathematical model
to analyze the object detection quality with respect to various network conditions
such as the node density and the object moving speed, and sensor scheduling
schemes including random sensing schedules and synchronized sensing schedules.
Note that the full coverage can be incorporated into our model since it is just
a special case of the probabilistic coverage. We define two metrics to assess the
object detection quality: the sensor detection probability (DP), and the stealth
distance (SD) that an object can stealthily pass. Applying the model to real sen-
sor networks, we further design distributed random and localized algorithms to
achieve targeted object detection quality while minimizing the power consump-
tion. We validate the correctness of our model and the effectiveness of sensing
scheduling protocols through extensive simulation experiments.

The contributions of our analytical model are threefold. First, this analyti-
cal model gives solid and thorough understanding about various protocols and
provides insights into the pros and cons of each protocol. Even if some protocols
are not amenable to easy analysis, we can approximate them and incorporate
many of them into the model.

Second, the analytical model helps to plan a sensor network with certain
object detection quality requirements and power budget. The model is flexible
enough to capture the interaction among the system parameters (e.g., sensor
density, sensing range, object moving speed, etc.), object detection quality re-
quirements, and network energy constraint. Thus, it can provide accurate guide-
lines for optimal sensor network deployment, and can also derive the necessary
speed of an object wanting to evade sensor detection.

Third, in sensing scheduling protocol design, aside from determining the pa-
rameters for sensing scheduling protocols, the analytical model can direct new
sensing scheduling protocol design.

The remainder of this paper is organized as follows. Section 2 sketches related
work. Section 3 presents the system metrics and parameters. Section 4 details
the analytical models. We design a set of sensing protocols in Section 5. Section
6 studies energy consumption and system working time properties of different
schedules and protocols. Section 7 shows analytical results and their simulation
validations. In Section 8 we apply our model to two formerly proposed protocols
in the literature. Finally, we conclude our work in Section 9.
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2 Related Work

Detecting and tracking a moving object in sensor networks has been extensively
studied from different perspectives: maintaining high tracking precision [2, 5,
11], utilizing node collaborations [8, 15], and reducing energy consumption [10].
A large number of sensing coverage maintenance protocols, aiming to conserve
energy under various conditions, have been proposed [1, 6, 12, 13]. The closest
previous work to ours is [4], which is the first we believe to consider the trade-
off between power conservation and quality of surveillance in target detection
and tracking by using non-full coverage. [7] is an interesting work that gives the
bound and asymptotic results on detectability. In [3], Cao et al. presented an
optimized framework for rare event detection that compromises between event
detection delay and lifetime while maintaining point coverage.

3 Object Detection Under Probabilistic Coverage
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Fig. 1. An object detection and tracking
scenario.

parameter definition

d density of sensors

R sensing radius of a sensor

v object moving speed

P sensing period of sensors

f active ratio of sensors in P

H active duration H = f · P
ta observation duration

Fig. 2. System modeling parameters.

In order to evaluate the object detection quality of a sensor network, we
define two metrics detailed as follows:

• Detection Probability (DP). The detection probability is defined as the prob-
ability that an object is detected in a certain observation time.
• Stealth Distance (SD). The stealth distance is defined as the average distance

an object travels before it is detected for the first time.

Taking energy constraints into account, we further define other two metrics.

• Lifetime (LT ). The system lifetime is the elapsed working time from system
startup to the time when the object detection quality requirement cannot
be met for the first time when live nodes continue sensing with their current
periods.
• Maximum Working Time. The maximum working time is the longest pos-

sible working time of the system that satisfies the object detection quality
requirement. When some nodes deplete their power, the remaining nodes
can adjust their schedules to sustain the object detection quality.
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Figure 1 shows a typical scenario of the object detection in a sensor network.
A number of sensors with density d are randomly and independently distributed
in a sensing field; the sensing radii of sensors have the same value R; the sensors
have the same sensing period P and the same active ratio f . There is a small
moving object crossing over the field with a constant speed v along a speci-
fied direction. Note that the object size can be neglected considering the large
dimensions of the sensing field. The observation duration is ta. These system
parameters of a sensor network are summarized in Figure 2.

Object detection applications may have different DP requirements and SD
requirements. For given sensing scheduling schemes, we assess their object de-
tection quality using DP and SD with respect to these system parameters. We
study how each parameter affects the metrics, and how we can adjust them to
reach the object detection quality goal while minimizing the energy consump-
tion. Our simplified theoretical model can be easily applied to real applications
because the real moving path can be approximated by a set of line segments, to
each of which the analytical results can be directly applied.

4 Detection Quality Analysis under Different Schedules

In this section, we present the theoretical analyses on how different scheduling
schemes affect the object detection quality in terms of DP and SD. More specif-
ically, we study random sensing schedules and synchronized sensing schedules.
In a random sensing schedule, a node independently and randomly chooses the
starting time of its active duration H in a sensing period P ; while in a syn-
chronized sensing schedule, all nodes start their active duration H at the same
time in every sensing period P . We compare these two schedules, and find that
the random schedule performs better generally, while the synchronized sched-
ule has a better worst case object non-detecting traveling distance in multiple
experiments.

4.1 Random Sensing Schedule Analysis

A random sensing schedule is a simple but usually efficient schedule due to its
distributed nature. It can serve as a baseline for analysis of and comparison to
other schedules.

We first analyze the DP and the SD when sensors have the same sensing
period P . Then we study the DP for a special case of fast objects. We introduce
this special case analysis because it yields more simplified numerical results,
which eases choosing appropriate network parameters to achieve required object
detection quality while minimizing energy consumption. Finally we study how
nodes can sense with different periods to achieve the same DP as those having
the same period for fast objects.

Detection Probability We study random sensing schedules in which all the
nodes have the same sensing period P and the same active duration H .
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Consider a moving object moves from left to right on x-axis. Suppose it starts
at the point −vta2 , travels a distance of vta, and arrives at the point vta

2 during
the observation duration ta. Define the active area AA of this object as the
oblong area in Figure 3, including the rectangle area with length vta and width
of 2R, and the two half disks with radius R attached to the rectangle. We can
see that AA = vta · 2R+ πR2.

Proposition 1 Let Pr(xs, ys) denote the detection probability of a sensor lo-
cated at (xs, ys) in the active area within ta, and P̃ r denote the probability that
one single sensor can detect this object within ta, then

P̃ r =
1

AA

∫ R

−R
dys

∫ vta
2 +R

− vta2 −R
Pr(xs, ys)dxs. (1)

Proof: For a specific sensor located at position (xs, ys) to detect this object,
two conditions must be satisfied: the sensor must be in the active area; the
sensor must be active when the object crosses its sensing range. The detection
probability of this sensor depends on the length of the segment that the object
moving path intersects its sensing range. As shown in Figure 3, when the sensor
is located at different parts in the active area, the intersecting length l(xs, ys) has
different representations. Then we have l(xs, ys) = min( vta2 , xb)−max(−vta2 , xa),

where xa = xs −
√
R2 − ys2 and xb = xs +

√
R2 − ys2 are the x coordinates of

two intersecting points.
According to Figure 4, the detection probability of this sensor is Pr(xs, ys) =

f + t
P when l(xs, ys) < (1− f)vP or Pr(xs, ys) = 1 when l(xs, ys) ≥ (1− f)vP ,

where t = l(xs,ys)
v . Notice that l(xs, ys) = 0 and Pr(xs, ys) = 0 when (xs, ys) is

outside the active area. Then, P̃ r can be obtained by computing the expectation
of Pr(xs, ys) over the active area as in (1). �

For the case of multiple sensors, since the nodes are randomly deployed,
the number of sensors in the active area follows a Poisson distribution with an
expected value of λ = d ·AA.

Theorem 1 The detection probability under the random sensing schedule is

DP = 1− e−λP̃r. (2)



6 Shansi Ren et al.

Proof: The probability that there are k sensors in the active area is Pr(k) =
e−λ·λk
k! , k = 0, 1, . . . ,∞, while the probability that there exists k sensors in the

active area and at least one of them can detect this object is Pr(dt ∧ k) =
e−λλk

k! [1− (1− P̃ r)k]. Particularly, when k = 0, we have Pr(0) = e−λ·λ0

0! = e−λ.

Because
∑∞

k=0
e−λ·λk
k! = 1, we have

∑∞
k=1

e−λ·λk
k! = 1 − e−λ. Also Pr(0) =

e−λλ0(1−P̃ r)0

0! = e−λ, and
∑∞

k=0
e−λλk ·(1−P̃ r)k

k! = e−λP̃r. Then, we get DP =∑∞
k=1 Pr(dt ∧ k) =

∑∞
k=1

e−λ·λk
k! [1− (1− P̃ r)k] = (1− e−λ)− (e−λP̃r − e−λ) =

1− e−λP̃r. �

Stealth Distance The stealth distance is an important metric to characterize
the object detection quality. Here we derive the stealth distance for the random
sensing schedule.

Theorem 2 The stealth distance under the random sensing scheme is

SD =

∫ ∞

0

ve−λP̃rdta. (3)

Proof: Denote cdf(x) and pdf(x) as the cumulative distribution function and
the probability density function of a numerical random variable x. We know
cdf ′(x) = pdf(x). Also define (1− cdf)(x) = 1− cdf(x).

The DP in (2) is a cdf function that can be written in the form of Pr(t ≤ ta),
where t is the point that the object is detected for the first time, and ta can

be viewed as a variable. Thus, (1 − cdf)(ta) = Pr(t > ta) = e−λP̃r. Be-
cause limta→∞cdf(ta) = 1, and limta→∞(1 − cdf)(ta) = 0, and they approach
their limits exponentially when ta approaches ∞ linearly, we have the expected
detecting time E(ta) =

∫∞
0
pdf(ta) · tadta =

∫∞
0

(1− cdf)(ta)dta. Therefore,

E(ta) =
∫∞

0 e−λP̃rdta. Thus, SD = vE(ta) =
∫∞

0 ve−λP̃rdta. �

Detection Probability For Fast Objects For fast objects, we can have more
simplified numerical results for the detection probability, as described in the
following corollary.

Corollary 1 We consider a special case, in which an object moves with a high
speed v such that vta > 2R and (1 − f)vP > 2R. Then, the probability of a
single sensor detecting this fast object is

P̃ r = f +
πR2ta

(vta · 2R+ πR2)P
. (4)

Proof: For this object, we get P̃ r = f + 1
AvP

∫ vta
2 +R

− vta2 −R
dxs

∫ R
−R l(xs, ys)dys if

we simplify (1).
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Consider a sensor s located at (xs, ys). Denote ξ1 =
∫∫
A1
l(xs, ys)dxsdys, and

ξ2 =
∫∫
A2
l(xs, ys)dxsdys, where A1 is the circle on the left and A2 is the unfilled

area in the middle as shown in Figure 5. Due to the symmetry of the integrating

area, we have
∫ vta

2 +R

− vta2 −R
dxs

∫ R
−R l(xs, ys)dys = 2ξ1 + ξ2.

Let xa and xb (xb > xa) be the x coordinates of the two intersecting points
between the object path and the sensing circle of node s. Notice that l(xs, ys) =
max(xb,− vta2 ) −max(xa,− vta2 ) when (xs, ys) ∈ A1. Now we compute l(xs, ys)
under following conditions:

• xb > xa > − vta2 . We have xs >
√
R2 − ys2 − vta

2 and l(xs, ys) = xb − xa =

2
√
R2 − ys2.

• xb > − vta2 and xa < − vta2 . We have − vta2 −
√
R2 − ys2 < xs < − vta2 +√

R2 − ys2 and l(xs, ys) = xb + vta
2 = xs + vta

2 +
√
R2 − ys2.

• xb < − vta2 and xa < − vta2 . We have l(xs, ys) = 0.
• xb < − vta2 and xa > − vta2 . Because xb > xa, this case is impossible.

We can get ξ1 =
∫ R
−R dys

∫√R2−ys2− vta2
−
√
R2−ys2− vta2

(xs + vta
2 +

√
R2 − ys2)dxs = 8R3

3 ,

and ξ2 =
∫ R
−R dys

∫ −√R2−ys2+ vta
2√

R2−ys2− vta2
2
√
R2 − ys2dxs = πR2vta − 16R3

3 . Therefore,

2ξ1 + ξ2 = πR2vta. We can get P̃ r = f + 1
AvP (2ξ1 + ξ2), which leads to (4). �

Sequential Schedule and k-Set Schedule As an extension of our previous
results, here we show two equivalent scheduling schemes that can achieve the
same detection quality as the random schedule with a constant sensing period
P . We assume 2R < (1 − f)vP , which implies that l(xs, ys) is always less than
(1 − f)vP , and H is a constant. Under these assumptions, according to (2),
we know P̃ r can be written in the form of a

P , where a is a variable that is
independent of P and λ. In the following analysis, we only vary P and λ while
leaving all other system parameters unchanged.

Lemma 1 Let A be a schedule with sensing period kP and λ, where k is a non-
negative value. We randomly divide the nodes into k equal-sized sets, and nodes in
each set are randomly distributed in the field. Consider a sequential schedule B,
where nodes in ith set are active only in the duration of [(i−1)P+nkP, iP+nkP )
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for 1 ≤ i ≤ k, then the schedule A and the schedule B have identical detection
probability, i.e., DPA = DPB .

Proof: In schedule B, all sets have identical detection probabilities. Consider

the ith set Si, the detection probability is DPB(Si) = 1 − e−λk P̃ r = 1 − e λakP ,
which is the same as that of schedule A. �

Lemma 2 We randomly divide the nodes into k sets S1, S2, · · · , Sk. For any set
Si with density xiλ, we associate a sensing period giP with it. Let DP (Si) denote
the DP for the nodes in set Si. If x1

g1
+ x2

g2
+ · · · + xk

gk
= 1, then the detection

probability DP of this k-set schedule is equal to that of the schedule with all nodes
having the same period P .

Proof: We know that DP (Si) = 1−e−xiλ· agiP . Let DP (Si) be the probability

that no node in Si detects this object, so DP (Si) = 1 − DP (Si) = e
−xiλ· agiP .

Thus, we haveDP = 1−DP (S1)·DP (S2) · · ·DP (Sk) = 1−e
−λa
P (

x1
g1

+
x2
g2

+···+ xk
gk

)
=

1− e−λaP . �

4.2 Synchronized Sensing Schedule Analysis

A synchronized sensing schedule has the benefit that the worst case object non-
detecting traveling distance is relatively small. Given that the field is fully cov-
ered by all active sensors, the worst case object non-detecting traveling distance
is bounded by the maximum distance this object travels in one sensing period.
Under synchronized sensing schedule, we first analyze the DP under the given
system parameters. Based on the DP analysis, we then derive the SD. Note that
all nodes have the same sensing periods here.

Detection Probability Similar to the random sensing analysis, we study the
active area under a synchronized sensing schedule to derive the detection prob-
ability.

Consider the traveling distance of a moving object in one sensing period P ,
we divide it into two parts: the first part is the distance the object travels in the
duration (1−f)P when all sensors are asleep; the second part is the distance the
object travels when all sensors are active. In the first part, the object cannot be
detected by any sensor; however, in the second part, the object can be detected
when there are active sensors within a distance of R to it. Define the active area
AA of a moving object as the set of points that are within a distance of R to
the second part traveling segments of this object.

As shown in Figures 6, AA is the set of periodically repeated areas, except
the last one when ta is not multiple times of P . Each repeated area is either
a rectangle plus two overlapped half circles (shown in Figure 6), or a rectangle
plus two disjoint half circles. Denote X0 = (1− f)vP as shown in Figures 6. We
assume that ta > P .
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Let IA(P ) be the total covering area of two half disks in one interme-
diate sensing period P . We consider whether there is overlapping in IA(P ).

When R ≥ X0

2 , intersecting points of two half disks are (X0

2 ,−
√
R2 − X0

2

4 )

and (X0

2 ,
√
R2 − X0

2

4 ). Then IA(P ) = 4
∫ X0

2

0

√
R2 − x2dx = X0

√
R2 − X0

2

4 +

2R2 arcsin X0

2R . When R < X0

2 , IA(P ) = πR2. Therefore, the active area in one
intermediate sensing period P is AA(P ) = IA(P ) + 2RvfP .

To calculate the detection probability, we have the following theorem.

Theorem 3 During the observation duration ta, the active area is AA(ta) =

πR2 − IA(P ) + taIA(P )
P + 2Rvfta. Let λs be the expected number of sensors in

the active area, λs = d ·AA(ta). Then

DP = 1− e−λs (5)

Proof: The probability that no sensor in the active area is e−λs . So, the detection
probability that at least one sensor can detect this object under the synchronized
sensing schedule is DP = 1− e−λs . �

Stealth Distance Based on the above DP result, we can immediately derive
the stealth distance for the synchronized sensing schedule. We have the following
theorem.

Theorem 4 The stealth distance SD under synchronized sensing schedule is

SD =
vP

d · (IA(P ) + 2RvfP )
e−d(πR2−IA(P )). (6)

Proof: Similar to the random sensing analysis, we can view ta in DP as a

variable. We know (1− cdf)(ta) = 1−DP = e−d(πR2+IA(P )) · e−d( IA(P )
P +2Rvf)ta .

Let F ′(ta) = (1− cdf)(ta), then F (ta) = −Pe−d(πR2−IA(P ))

d(IA(P )+2RvfP ) e
−d( IA(P )

P +2Rvf)ta +C,

where C is constant.
Let E(ta) be expected detecting time, we have E(ta) =

∫∞
0

(1− cdf)(ta)dta,

then E(ta) = F (ta)|∞0 = Pe−d(πR2−IA(P ))

d(IA(P )+2RvfP ) . So SD = vE(ta) = vP
d·(IA(P )+2RvfP )

·e−d(πR2−IA(P )). �

Now we study a special case of f = 100%, which means nodes wake up the
whole time and never sleep. We have (1− cdf)(ta) = e−dπR

2−2dRvta , therefore

SD =

∫ ∞

0

ve−(dπR2+2dRvta)dta =
e−dπR

2

2dR
. (7)

5 Design of Power Efficient Sensing Protocols

In this section, we design three practical sensing protocols that ensure: (I) the
object detection quality requirement is satisfied; (II) low sensing duty cycles
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are utilized to save sensing energy; and (III) only moderate communication and
computation overhead are incurred. The protocols are detailed as follows. Note
that H is fixed in these protocols and there are n sensors in the network.

(I) Global Random Schedule (GRS): The global density d is known to all
sensors. According to Theorem 1, each node senses the field with the maximum
sensing period Pmax that satisfies the DP requirement.

(II) Localized Asynchronous Schedule (LAS): This protocol is based on the
fact that sensors in a dense region can have a larger P than those in a scarce
region to reach the same object detection quality. After a node boots up, it
broadcasts beaconing messages and infers the relative distance to its neighbors
based on their signal strength. Then, it computes its local node density dl by
dividing the number of nodes in its communication range over the area of that
range. According to Theorem 1, each node uses its local density dl to compute
the maximum period Pmax that meets the object detection quality requirement
as its sensing period. So, this algorithm achieves an object detection quality close
to the targeted one.

(III) Power-Aware Asynchronous Schedule (PAAS): This protocol takes the
diversity of power capacity among sensor nodes into consideration. The whole
set of nodes is divided into k sets S1, S2, · · · , Sk, such that all nodes in set Si have
approximately the same power capacity Ei, where 1 ≤ i ≤ n. Based on Lemma

2, we can set gi =
Pk
i=1 xiEi
Ei

to achieve the same object detection quality as GRS
does with a constant sensing period P for each node. If each set has one and only
one node, given the sum of the power capacities E =

∑n
i=1Ei, we can schedule

a node that has a power capacity Ei with a sensing period E
nEi

P to achieve the
same object detection quality as GRS protocol does.

6 Energy Consumption and Working Time Analysis

We assume in all schedules the active duration H lasts long enough so that we
can ignore the wake-sleep transition energy cost. System lifetime is a critical
factor that indicates the quality of the sensor network, since the energy resource
is an extremely scarce resource in each node. Let T be the continuous working
time of a single node, and all nodes have the same T . Under the random sensing
schedule and the synchronized sensing schedule, if all nodes have the same P
and the same f , then one node spends H energy in a period P . This node will
last for T

H periods, thus its working time is T
H · P = T

f . Therefore, the system

lifetime is LT = T
f . Particularly, when H is constant, LT = T

f = TP
H , this means

that a small f or a large P can yield a long system lifetime.
Define the first failure time and the last failure time as the time when the

first live node and the last live node in the system deplete their power. For a
sensor network with n nodes, we denote Ti as the time when the ith node runs
out of its power for i = 1, 2, . . . , n , and define Tf and Tl as the first failure time
and the last failure time of the network. Note that H is fixed here.

In GRS, all nodes have the same sensing period P and the same active ratio
f . Therefore, Ti = Ei

f for i = 1, 2, . . . , n. So, Tf (GRS) = min(T1, T2, . . . , Tn) =
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min(E1

f ,
E2

f , . . . ,
En
f ). In PAAS, because nodes have different sensing period,

they have different active ratio as well. Let P and f be the fixed sensing period
and the fixed active ratio in the GRS protocol, respectively. Denote fi as the
active ratio of the ith node, where i = 1, 2, . . . , n, then we have fi = H

giP
. On

the other hand, because giP = E
nEi

P , we can get fi = nfEi
E . Note that in PAAS,

all nodes have the same elapsed working time, i.e., Tf = Tl = T1 = T2 = . . . =
Tn. Therefore, Tf (PAAS) = E

nf . Because E
n ≥ min(E1, E2, . . . , En), we know

Tf (GRS) ≤ Tf (PAAS). In other words, PAAS has a larger first failure time
than GRS.

The maximum working time is always longer than the lifetime in the previous
definition, thus it can better characterize the energy consumption property of
the network. Here we consider a simple random sensing schedule, in which all
nodes have identical sensing periods at any moment, and only wake up once in
one sensing period. We have the following theorem.

Theorem 5 With the same DP requirement, the simple random sensing sched-
ule and the PAAS have the same energy consumption rate, thus have the same
maximum working time.

Proof: We know DP = 1− e−λc/p, where c is a constant if H and other de-
tection parameters are fixed. The energy consumption per time unit that meets
the required detection quality is fixed and is proportional to λ/P . This is be-
cause the number of participating sensors is proportional to λ, and the energy
consumption of each sensor is proportional to 1/P . Therefore, for any simple
random sensing schedule with a given detection probability requirement, the en-
ergy consumption rate is nf , where n is the total number of nodes and f is the
active ratio of each sensor node.

For the PAAS, even though each node sets its P according to its remaining
power, the total power consumption of all nodes is still constant. Consider the
ith node in all n nodes, where 1 ≤ i ≤ n. Its energy consumption rate is eri = H

Pi
.

Because Pi = E
nEi

and H is constant, then eri = H
Pi

= H
E
nEi

P
= nHEi

EP . The total

energy consumption rate is
∑n

i=1 eri =
∑n

i=1
nHEi
EP = nfEP

EP = nf . Therefore,
the PAAS has the same maximum working time as the simple random schedule,
in which all nodes have fixed sensing periods. �

7 Analysis Validation and Protocol Evaluation

In our simulation experiments, we generated a 500×500 grid field, and randomly
placed d× 250, 000 sensors on it. Sensors use either random sensing schedule or
synchronized sensing schedule. A small object moves along a straight line with a
constant speed v. We run each simulation scenario for hundreds of times. Then,
we use the ratio of detection times over the number of experiments to estimate
DP, and use the average non-detecting distance to estimate SD.
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7.1 Evaluation of Random and Synchronized Schedules
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We plot both analytical curves and simulation results under different com-
binations of six parameters as shown in Figures 7, 8, and 9, respectively. Our
observations are summarized as follows: (I) The simulation results match the an-
alytical curves well, which validates the correctness of our derivations. (II) DP
monotonically increases, and SD monotonically decreases with the increase of
the parameters, as shown in Figure 10. (III) The random schedule outperforms
the synchronized schedule on both DP and SD, which is shown in Figure 9. This
is because the synchronized schedule causes more overlapping sensing areas than
the random schedule. (IV) The non-detecting distance distributions have long
tails: most non-detecting distances are short, while a few have large values. The
worst case of non-detecting distance in the random schedule is longer than that
of the synchronized schedule.

7.2 Evaluation of GRS, LAS, and PAAS Protocols

We use the DP to evaluate the effectiveness of the GRS, LAS, and PAAS proto-
cols, and use the first failure time, the last failure time, and the system lifetime
to compare their power consumption properties.



Analyzing Object Detection Quality 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

d
e

te
ct

io
n

 p
ro

b
a

b
ili

ty

elapsed working time

GRS
LAS

 PAAS

Fig. 12. DP comparison
between GRS, LAS, and
PAAS.

 0

 0.05

 0.1

 0.15

 0.2

 20  25  30  35  40  45  50  55
Q

o
S

v.
 (

1
/m

e
te

r)
probing range (meter)

Syn-1.0s
Syn-4.0s

Syn-10.0s
PECAS-1.0s
PECAS-4.0s

PECAS-10.0s
PEAS

Fig. 13. QoSv under the
synchronized schedule com-
pared to that in [4].

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 60  65  70  75  80  85  90  95  100

d
e

te
ct

io
n

 p
ro

b
a

b
ili

ty

grid size

Our MESH QoSv results
MESH QoSv results in [4]

Fig. 14. QoSv of the Mesh
protocol compared to that
in [4].

In our experiments to evaluate these three protocols, each sensor node’s en-
ergy follows a uniform distribution between [0, Emax]. We set system parameters
as follows: d = 0.2, R = 0.5, v = 5, ta = 2, P = 1.1, H = 0.55, r = 3, and
Emax = 30. Here r is the range to compute the local density in LAS. Given
the requirement of DP ≥ 60%, Figure 12 illustrates the degradation of DP as
nodes run out of power. Note that every data point in this figure is obtained by
averaging hundreds of experiment results.

Based on the simulation results, we have the following observations: (I) GRS,
LAS, and PAAS can achieve the same DP at the beginning when no sensor
depletes its energy. (II) The first failure time and the last failure time of PAAS
are the same; by contrast, GRS and LAS have smaller first failure time and
larger last failure time. (III) PAAS has a longer system lifetime than those of
GRS and LAS. (IV) The DP degradation curves of GRS and LAS in Figure 12
are exponential, instead of linear. This is because for a sensor whose energy is

uniformly distributed in [0, Emax], the DP at time t is DP (t) = 1 − e−λ(t)P̃ r,
where λ(t) = λ0 − qt, q is the death rate, and λ0 is the initial sensor density.

Thus, DP (t) = 1− eλ0P̃ r · eqtP̃ r.

8 Applying the Model to PECAS Protocol and Mesh
Protocol

We further apply our analytical model to two sensing schedules in the literature,
namely PECAS and Mesh. We show that by choosing appropriate parameters
these schedules can be approximated by the random sensing schedule and the
synchronized sensing schedule. In particular, we present the analytical QoSv
results on the PECAS protocol, while in [4] only simulation results are given.

8.1 Analysis of the PECAS Protocol

The PECAS protocol [4] is an enhanced variance of the Probing Environment and
Adaptive Sleeping (PEAS) protocol [14]. In PECAS, each node remains active
only for a limited duration. Here we extract the network parameters out of the
PECAS experiments in [4]. Let the node density of the field be d, and the probing
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range of a node be r. In a circle area of πr2, the expected number of nodes is
d ·πr2. Because d ·f = 1

πr2 , on average the active ratio of a node is f = 1
dπr2 . The

system parameters in [4] are as follows: d = 800
400m×400m = 0.005/m2, R = 20m,

v = 10m/s, and r varies from 20m to 56m. Since f = 1
dπr2 , we know f changes

from 0.159 (when r = 20m) to 0.0203 (when r = 56m). The working time
duration in the three curves in [4] is 1.0sec, 4.0sec, and 10.0sec, respectively.
This duration is H in the random schedule and the synchronized schedule. On
the other hand, the QoSv is the reciprocal of the SD, i.e., QoSv = 1/SD.

With these parameter settings, we plot the corresponding QoSv under the
random and the synchronized sensing schedules as well as the PECAS curves
in [4]. A larger probing range r or a larger working time duration results in a
smaller QoSv. We find that the random sensing schedule has a better QoSv than
PECAS for the reason that a small node density d incurs a small chance of nodes
being close to each other. On the other hand, the synchronized sensing schedule
has a similar QoSv result to that of the PECAS protocol, as shown in Figure 13.
In the PECAS, once a node goes into sleep, there are several nodes around it
wake up. This is similar to the scenario where nodes all wake up simultaneously
in the synchronized schedule.

8.2 Analysis of the Mesh Protocol

In the Mesh protocol [4], nodes at planned locations remain active and form a
planned pattern of 2-D mesh by a set of horizontal and vertical solid lines. The
distance between adjacent horizontal or vertical lines is LG. Each uncovered
area in this sensor deployment is a square with a side length of Lu, where Lu =
LG − 2r − 2δ, as shown in Figure 11.

If the node density is high, for a randomly chosen point, its probability of not

being covered by any active sensor is Pruc =
(b LLG c)

2(LG−2r−2δ)2

L2 . As shown in
Figure 11, for the point with coordinate (xp, yp) in the uncovered square, we draw
a disk centered at it with a radius of vta. Denote ξ = Lu

2 . Suppose there are 2m
intersecting points between this disk and the four border lines, then the circle is
divided into arcs by the intersecting points, interleavingly inside and outside the
uncovered square. Let the angles of these arcs inside be θ1(xp, yp), . . . , θm(xp, yp).

By definition, the average DP at the point (xp, yp) is
Pm
i=1 θi
2π . We integrate the

average DP of a point over the whole uncovered square to obtain the DP in ta:

DPmesh =
(b LLG c)

2
R
ξ
−ξ dxp

R
ξ
−ξ(

Pm
i=1 θi(xp,yp)

2π )dyp

L2 .

We use the same parameter settings as that in [4], which are listed as follows:
l = 400m, R = 20m, v = 10m/s, lG varies from 60m to 100m, lU = lG − 10m,
and 2δ = 10m. The DP here is a cdf function of the variable ta. We integrate
the (1 − cdf) function over the time span of [0,∞) to obtain the SD, then
QoSvmesh = 1R∞

0
DPmeshdta

. The comparison between our results and the results

in [4] is illustrated in Figure 14. The close match of the two curves validates the
correctness of both analyses.



Analyzing Object Detection Quality 15

9 Conclusion

Balancing object detection quality and network lifetime is a challenging task in
sensor networks. Under probabilistic coverage, we present an analytical model
to fully investigate object detection quality with respect to various network con-
ditions and sensing scheduling protocols. Based on the model, we design and
analyze a number of sensing protocols. The correctness of our analytical model
and the effectiveness of the proposed scheduling protocols are justified through
extensive simulation experiments.
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