WXCP: Explicit Congestion Control for
Wireless Multi-Hop Networks

Yang Su and Thomas Gross

Department of Computer Science, ETH Zurich
Zurich Switzerland

Abstract. TCP experiences serious performance degradation in wire-
less multi-hop networks with its probe-based, loss-driven congestion con-
trol scheme. We describe the Wireless eXplicit Congestion control Proto-
col (WXCP), a new explicit flow control protocol for wireless multi-hop
networks based on XCP. We highlight the approaches taken by WXCP
to address the difficulties faced by the current TCP implementation in
wireless multi-hop networks. Simulations with ns-2 show that WXCP
outperforms current TCP implementations in terms of efficiency and
fairness.

1 Introduction

With the progress in wireless technology, wireless networks become a potential
candidate for constructing a broadband wireless backbone to provide ubiquitous
low cost Internet connection [11,2]. We need an efficient transport protocol for
this new network architecture that should also deal with multi-hop networks and
their variants (e.g., meshes).

Currently, the most widely-deployed TCP implementation is TCP Reno and
its variations. However, recent studies have shown that TCP Reno suffers fairness
and efficiency problems in wireless ad hoc network environment [9,16,8,18].
There are several reasons for those problems.

1. TCP couples congestion control with reliability control. It detects congestion
by packet loss events. Packet loss is strongly correlated to congestion in wire-
line networks but not a reliable congestion signal in wireless networks, where
packet loss can also be introduced by medium related errors [6] and mobility
related routing failures [9].

2. TCP relies on the AIMD (Additive-Increase Multiplicative-Decrease) ad-
justment of its congestion window to converge to a fair sharing of network
bandwidth. It cannot acquire spare bandwidth efficiently after re-routing
events [16, 5].

3. The throughput of multi-hop wireless networks is highly dependent on the
traffic load. When traffic load increases over some threshold, the link error
rate increases, and throughput drops down. TCP’s flow control aims to fill
the bottleneck interface queue and often puts too many packets into the
network. [13, 8].

We attempt to improve the performance of the transport protocol in wireless
multi-hop networks by designing a new congestion control scheme that tack-
les the second and third problems. Our solution adopts an explicit congestion
control architecture where intermediate stations make congestion estimations
and send rate feedback to senders. The senders adjust their transmit rate based
on the received rate feedback. This protocol called WXCP (Wireless eXplicit
Congestion Control Protocol) is inspired by XCP (eXplicit Congestion control
Protocol) [12], a window-based explicit congestion control scheme designed for
high bandwidth-delay networks. We integrate a number of mechanisms, both at
intermediate stations and the sender, to adopt XCP to the wireless network en-
vironments. At intermediate stations, WXCP makes more precise estimation of
congestion conditions than current approaches and computes the rate feedback
based on multiple congestion metrics. By using explicit rate feedback instead of
probing the available bandwidth, WXCP flows are able to converge to a trans-
mission state where better throughput is achieved. At the same time, WXCP
flows converge to the equilibrium more quickly than TCP. In addition, loss dis-
covery and pacing mechanisms are introduced at the sender to deal with the tiny
window and burst problem.

The rest of the paper is organized as follows. Section 2 discusses the related
work. In Section 3, we describe the design of WXCP in details. Section 4 contains
an evaluation of the protocol. We conclude the paper in Section 5.

2 Related Work

WXCP is an extension of XCP, which was developed for high bandwidth-delay
product networks [12].

Many research contributions address improving TCP performance or design
new schemes for reliable data transmission over multi-hop wireless networks.

1. A first group of approaches is based on end-to-end measurement. Wang and
Zhang [17] explore the approach to improve TCP performance by detecting
and responding to out-of-order packet delivery events. Fu et al. [7] present
a TCP-friendly transport protocol that tries to distinguish events such as
mobility-introduced disconnection, reconnection, high out-of-order delivery
ratio, or channel error from network congestion by performing multi-metric
joint identification for packet and connection behaviors based on end-to-end
measurements.

2. Several researchers have attempted to improve the performance of reliable
data transmission in wireless networks by using explicit feedback from the
routing layer. Holland and Vaidy [9] investigates the effects of link break-
age due to mobility on TCP performance and propose an explicit link fail-
ure notification technique (ELFN). Chandran et al. [4] present a similiar
mechanism called TCP-Feedback. Liu and Singh [15] introduce a thin layer
between transport and underlying routing layers which deals with explicit
notifications from intermediate stations and shields TCP from the underly-
ing behavior of an ad hoc network.

These approaches [15,17,7,4,9] improve the performance of TCP by dis-
tinguishing congestion related packet losses from packet losses caused by
medium errors or routing failures. They solve the first problem listed in Sec-
tion 1.

3. Recently, researchers also proposed to use explicit rate feedback from inter-
mediate stations to deal with the second and third problems in Section 1.
Sundaresan et al. [16] present a rate-based transport layer protocol called
ATP. In ATP, the sender adjusts its transmission rate based on explicit
rate feedback from the bottleneck station. Chen et al. introduce EXACT
(EXplicit rAte-based flow ConTrol), which adapts the rate-based feedback
framework of ATM’s ABR (Available Bit Rate) congestion control to ad
hoc networks [5]. Our scheme, which shares the same target and also makes
use of explicit rate feedback, differs from these approaches in that we de-
ploy window-based congestion control instead of pure rate-based congestion
control at the sender. In contrast to [5], intermediate stations in WXCP do
not maintain per flow information. Therefore implementation and deploy-
ment of WXCP are much simplified. [16] also does not maintain per-flow
information, but it does not take into account the spatial characteristics
of the wireless medium, whereas WXCP maintains time fairness instead of
throughput fairness among flows to different next hop stations. Consequently
WXCP achieves an higher aggregate throughput.

3 Explicit Congestion Control Protocol for Wireless

3.1 Motivation

In this paper, we make two assumptions about the MAC protocol: 1. It is based
on CSMA/CA. 2. Unicast packets are acknowledged. As shown in [19], it is chal-
lenging to apply XCP to shared media wireless networks. To accurately calculate
feedback, the XCP router must know the precise link capacity in advance. How-
ever, in shared media wireless networks, all the stations contend for the media.
The true output capacity is changing depending on the contention traffic load.
XCP takes the link capacity at interface to compute the rate feedback. That
introduces capacity overestimation with which XCP will generate inflated feed-
back, the senders will send more than the link can transfer, and the queue will
build up. Instead of using a fixed interface capacity, WXCP estimates how much
capacity that it has fair access to by locally monitoring the channel conditions
at intermediate stations. In addition, at the sender, loss discovery and pacing
mechanisms deal with the tiny window and burst problem.

In the rest of this section, we describe congestion metrics used to estimate the

available capacity and calculate the rate feedback. Then we present the design
of WXCP for intermediate stations and for the sender.

3.2 Congestion Metrics

WXCP uses three metrics to measure the state of resource usage and the level
of congestion at a station:awvailable bandwidth, interface queue (IFQ) length and
average link layer retransmission (ALR).

We use available bandwidth to represent how much network capacity is still
available. The less bandwidth is available, the more probable it is that congestion
will happen. Available bandwidth can be estimated based on local observation
without exchange of additional control packets. If the estimation is made peri-
odically, channel free time represents network capacity still available during the
estimation period. To convert channel free time to a rate, we need the link layer
throughput. Since the wireless medium condition at different locations might
be different, link layer throughput to different neighboring stations might also
be different. Hence, although the same channel is used, the available bandwidth
estimation to different destination stations might be different. The available
bandwidth we use in WXCP is the average available bandwidth of all the paths.

If the estimation period is 7', average available bandwidth B is:

Tfree'bw
B = fre’ 7% 1
T (1)

where T¢,¢. is channel free time during period T'; bw is the average link layer
throughput to all the different destinations. The model can be implemented with
the IEEE 802.11 DCF MAC protocol, where CSMA /CA mechanism is used to
control multiple stations visiting the same channel. By monitoring the radio
state, we can get Thysy, which is the sum of “time used by station itself”, “phys-
ical carrier sense time”, and “virtual carrier sense time” during the observation
interval T'. Then, T'tre. can be computed as T — Tpysy. In IEEE 802.11 DCF,
any non-broadcasting data packet is always companied with an acknowledgment
packet. bw is an average of each link layer throughput measurement sample,
which is computed as: .
J
P— (2)
where s; is the size of packet j, t; is the time when the packet is delivered to the
MAC layer, t, is the time when the corresponding ACK packet is received.

The second metric is the state of the output interface queue (IFQ). When the
input traffic rate is greater than the output rate, packets start to be buffered in
IFQ and the length of the queue increases. When the queue is full, further packets
coming to the queue are dropped. TCP uses this event to infer the existence of
congestion in the network.

Because of the hidden terminal problem [1], without any coordination, sender
contends for a channel around the receiver against stations out of its sensing
range, but still in the receiver’s sensing range. If the hidden traffic comes from
the flow itself, it is the well-known self-interference. When a flow puts too many
packets in the network, self-interference happens, transmission delay increases
and throughput drops down. By adjusting the transmission rate, a flow can
change the degree of self-interference. However the length of a sender’s IFQ is

not sensitive enough to detect this condition [20]. Hence, we use the average link
layer retransmission (ALR) from successfully transmitted packets as the third
congestion metric to detect the degree of self-interference.

There are many noise sources for using ALR to sense self-interference, because
packet losses in wireless ad hoc networks are caused not only by self-interference
but also by other kinds of wireless medium errors (such as interference due to
multi-path reflection and signals from other kind of sources, attenuation and path
dispersion[21,6]) and route failures. It is difficult to distinguish self-interference
from other kinds of wireless medium errors. It is possible that when network
experiences severe wireless medium errors, a station gets a number of high re-
transmissions and hence infers the existence of a high degree of self-interference,
but in fact, there is no self-interference at all. In this case, a transmission protocol
that uses this metric becomes too conservative. WXCP deals with this problem
by following the convention of TCP implementations that keep the minimum
CWND greater or equal to one packet. From Section 3.4 and Section 4, we see
that a CWND of one packet is close to the optimal value for most network set-
tings. In the worst case, when severe wireless medium errors happen and WXCP
senses the self-interference incorrectly, it can at least work with a CWND of one
and achieve reasonable performance.

3.3 Explicit Congestion Feedback Computation in WXCP

In WXCP, intermediate stations make congestion control and fairness control
decisions separately, based on flow information carried in data packet headers
and the estimation of congestion metrics described in the last section. Because
in wireless networks, link layer throughputs over different paths are different, to
achieve higher overall throughput, the WXCP fairness controller maintains time
fairness instead of throughput fairness among flows. Every control interval T,
which is the average of RTT of all the flows over this station, WXCP calculates
the aggregate feedback:

T-B

d=q-
@ n—+1

— B Qifqg — - Retryau, 3)

where B is the estimation of available bandwidth that is shared by n neighboring
stations and the station itself. n can be obtained by counting the number of
different sources from packets overheard during the last control interval. Q;zq
represents the minimal length of interface queue observed during the control
interval. Retryqyg represents the average ALR from successfully transmitted
packets over all the destination stations during last control interval. a, 3, (are
constants.

When aggregate feedback is positive, we want to increase the active time of all
flows by the same amount. Thus At;, the change of active time of any flow i, will
be proportional to the same constant. Assume that flow i flows over path k with
link layer throughput bwy,. Since At; is proportional to the change in throughput
of the flow Athroughput;, and inversely proportional to link throughput bwy

(i.e.,At; = W) the change of throughput of flow 7 is proportional

to the link layer throughput of the path. In addition, the change in congestion
window of flow ¢ is the change in its throughput multlphed by its RTT. Hence,
the change in the congestion window of flow ¢ should be proportional to the
flow’s RTT and link layer througput,(i.e., Acwnd; o rtt; x bwyg).

The total change in congestion window of a flow is the sum of the per-packet
feedback it receives. The expected number of packets from flow i seen by the
router in a control interval T' is proportional to the congestion window of the
flow cwnd; and inversely proportionally to its round trip time rtt; and packet

size s; (i.e.,-- x “di) Thus, per-packet positive feedback p; is given by:
rtt? - s
=& bwy - —2 0 4
pi = &p - bwyg cwnd, (4)

where &, is a constant. Since the total increase of the aggregate traffic rate
is equal to the sum of the increase in the rate of all flows in the aggregate, &,
can be derived as:

¢
L T‘tti-si
T - 3" bwy, - Thicse

cwnd;

&= (5)

where L presents all the flows over the station. Similarly, we compute the
per-packet negative feedback when the aggregate feedback is negative. In this
case, we want the decrease in the active time of flow i to be proportional
to its current active time (i.e.,A t; o t;). At the same time, ¢; is propor-
tional to throughput; and inversely proportional to bwg. A t; is proportional
to A throughput; and inversely proportional to bwy. It can be derived that the
decrease in the throughput of flow ¢ is proportional to its current throughput
(i.e., A throughput; < throughput;), which is the same as XCP. From XCP
[12], per-packet negative feedback n; is given by:

n; =&n - rtti - 8 (6)
Constant &, can be derived as:
¢
= 7
O (7)

3.4 Loss Discovery

As with XCP, a WXCP sender maintains a congestion window of the outstanding
packets, cwnd, and an estimate of the round trip time, rtt. On packet departure,
the sender fills its current cwnd and rtt into the packet header. Whenever a
new acknowledgment arrives, the sender adjusts its cwnd according to feedback
contained in the acknowledgment:

cwnd = maz(cwnd + feedback, s) (8)

Retransmit timeout Etablished Receive 3rd Dup ACK
)

Loss discovery time out +
Small congestion window

Retransmit timeout (1,4) i Received 3rd Dup ACK (2)
Loss Discovery

Pacing
Retransmit lost packets
Slow start

time out Recieve new ACK (3)
Pacing out
packets .
Fast retransmission
Fast recovery
Established
Fig. 1. State machine for WXCP sender.

where s is the packet size. In addition to feedback, WXCP also responds to losses
in the similar manner to TCP.

[14, 3] show that when TCP works with a small congestion window the win-
dow size limits the number of returning ACKs the sender may receive. Because
TCP requires three duplicate ACKs to trigger fast retransmission, small windows
may prevent these algorithm from being effective.

WXCP keeps the congestion window with a size close to the optimal value
where better throughput is achieved. As shown in [8], the optimal window size
for window-based flow control over multi-hop wireless ad hoc networks remains a
small value (e.g., smaller than 5) in most of network settings. To avoid unneces-
sary timeouts, a WXCP sender needs to put enough packets into the network to
make a decision about current packet loss pattern. Hence we introduce loss dis-
covery state into sender side WXCP state machine. The basic idea is that when
the congestion window is small, if there is no new ACK received and there are
not enough duplicated ACKs returned, instead of waiting for a retransmission
timeout, the sender switches from window-based control to rate-based control
with reduced transmission rate. As shown in Figure 1, two timers, loss discovery
timer and pacing timer, are added to sender side implementation. Every time
when the retransmission timer is set, the loss discovery timer is also set with
timeout period equal to current smoothed RTT estimation. If there is no packet
lost, and RTT over the path does not increase dramatically, the loss discovery
timer will not time out before it is reset. Otherwise, when a loss recovery time-
out happens, the current congestion window size is checked. If the congestion
window is smaller than the threshold W,,;,, the sender enters the loss discovery
state. In loss discovery state, packets are paced out with a rate that is half to the
current transmission rate (e.g.,;.%%,). The sender keeps reducing the transmis-
sion rate to half when it paces out a CWND of packets. During loss discovery
period, CWND remains unchanged. RTT estimation is updated as normal. As

shown in Figure 1, the sender exits the loss discovery state under the following
conditions:

1. There have already been W,,;, packets inserted in the network but still no
new ACKs returned, and the number of duplicated ACKs is less than 3. Now
it is reasonable to infer that most of the packets are lost and the network is
in congestion. The sender will stop injecting new packets into the network
and wait for a retransmission timeout.

2. Sender receives 3 duplicated ACKs. This situation indicates that there are
packets lost. Sender quits loss discovery state and starts fast retransmission
and fast recovery.

3. Sender receives new ACKs. There are no packets lost and there is no con-
gestion present in the network.

4. Retransmission timer expires. If RTT of the path is large, it is possible
that the retransmission timer times out before packets in the network are
increased to Wy,in- In this case, the sender enters retransmission timeout
state and retransmits lost packets in the same manner to TCP.

3.5 Pacing

Window-based transmit schemes have the advantage that they make use of the
ACK self-clock instead of relying on a fine grained timer. They also have the
drawback that they introduce bursts when many ACKs are received and the
sender sends out back-to-back packets. Those packets would interfere with each
other over the wireless medium. To smooth this burst, a pacing mechanism is
introduced into the window-based WXCP sender. We define B; as maximum
tolerable burst. The WXCP sender shapes its outgoing traffic by B;. Normally,
when it has available congestion window space W,, the sender tries to send as
much packets as W, allows. In WXCP, the sender checks B;. If W, < By, packets
are sent out as usual, otherwise, packets belonging to one congestion window
are paced out with rate c‘r"t’zd, where cwnd is current congestion window, rtt
represents the last RTT sample. As soon as one of the acknowledgments for
paced out packets is received, the pacing phase ends. Further packets are sent
out with ACK self clocking.

3.6 Discussion of Parameter Settings

1. Loss discovery threshold W,,;,: When its congestion window reaches this
threshold, the WXCP connection is considered to be resilient to timeout and
always works with window-based rate control. When its congestion window
is below the threshold, the WXCP connection operates in the loss discovery
state to reduce unnecessary timeout. In this paper, we set the threshold to
be 7 packets.

2. Maximum tolerable burst B; for pacing: B; represents the burst that
a WXCP connection wants to tolerate in the network. To minimize the self-
contention, we set its value to 2.

3. Parameters for intermediate stations: There are three parameters con-
cerning the algorithms at intermediate stations. a controls the allocation of
available bandwidth to WXCP flows. Its value is between 0 and 1. With
large o, WXCP increases its rate quickly to fill the available bandwidth. To
reduce the transmission delay, WXCP tries to keep both short IFQ and low
self-interference at intermediate stations, which are controlled by £ and (.
Hence, these three parameters must be set to balance the increased protocol
responsiveness to available bandwidth with the increased delay from queuing
at IFQ and self-interference. Currently we set a, 3, ¢ to 0.20, 0.11 and 67.
A detailed discussion of parameters setting can be found in [20].

4 Evaluation

4.1 Experimental Setup

All the experiments in this paper rely on simulation. Unless explicitly mentioned,
all simulations use the configuration described here. The simulation platform
that we use is the ns-2 simulator (version 2.27). We use TCP Newreno as the
basis for comparison. In all the experiments, we use FTP as application traffic,
AODYV as routing protocol and at the MAC layer, the IEEE 802.11 DCF MAC
protocol with RTS/CTS enabled. Channel bandwidth is 2Mbps. The effective
transmission range is 250 meters, and the interference range is about 550 meters.
The active simulation time is 120s.

4.2 Chain topology

To provide insight into the protocol’s baseline behavior, we investigate the per-
formance of WXCP with stationary chain topologies where stations are arranged
in a chain and two adjacent stations are 200 meters apart. We repeat the experi-
ments with the length of chain changing from 1 hop to 16 hops. Each simulation
runs for 140 seconds. From 5s to 125s, an FTP traffic flows over the chain from
the first station to the last station.

1. Throughput. We present overall throughput data over 120s simulation for
TCP and WXCP with packet size of 1000 bytes in Figure 2. Each plot
presents the average result of 10 independent simulations running with dif-
ferent random seeds. We observe that WXCP achieves the same through-
put as TCP in short chain scenarios (less than 3 hops) and realizes a 10%
to 25% throughput improvement over chains with medium length (3 to 7
hops). When it operates over long chains (more than 8 hops), WXCP can
achieve 34% to 110% more throughput than TCP. Due to different per-
packet overhead, the transport protocols achieve different throughput when
using different packet sizes. However, as shown in [20], both protocols, TCP
and WXCP, change their behavior in a similar way. Hence, in the following
experiments, we only show the results when the packet size is 1000 bytes.

1.2e+06

b Hops|TCP [WXCP|Ideal

1/120.6] 2.0 | 1.0

2 oo | 2[86.7] 1.9 | 1.0
H 3/31.0] 1.8 | 1.0
473 1.8 |10
6 79 | 2.0 |15
° 8/ 83| 30 |20
12] 88 | 5.0 | 3.0
T R e S 16/ 9.7 | 6.7 |40

Length of Chain (hops)

Fig. 2. Comparison of overall throughput Table 1. Average congestion window over
of TCP and WXCP over chain topology. chain topology.

2. Congestion window. From [8], we know that in multi-hop wireless net-
works, for window-based flow control, there exists a value for window size
such that spatial channel reuse is maximized. This window size results in best
channel utilization and consequently highest throughput. In the chain topol-
ogy, optimal throughput is achieved when the window size is h/4 packets, h
is number of hops, if the impact of ACK packets is omitted. The reason is
that stations can only transmit concurrently with stations 4 hops away with-
out interference. Table 1 shows the average congestion window of WXCP,
TCP and h/4 for chains of different lengths. We observe that by estimating
the channel condition more accurately, WXCP keeps the congestion window
to a reasonable size, whereas TCP makes the estimation by using the AIMD
adjustment of its congestion window. This behavior of TCP leads to too
many packets in flight. These packets interfere with each other and finally
hurt performance. For TCP over shorter paths (1 or 2 hops), chances for
packets from one flow to interfere with each other is small. Hence, although
TCP’s CWND is far from the optimal value, it still can achieve a throughput
close to WXCP, as shown in Figure 2. In Figure 3 we present snapshots of
the instantaneous congestion window for TCP and WXCP in a 6-hop chain.
The vibration of TCP’s congestion window is due to its frequent packet loss.
In contrast, WXCP shows a relatively stable behavior.

3. Packet loss. Figure 4(a) shows the number of packets dropped at the MAC
layer; this number presents the degree of contention for the wireless medium.
It includes all kinds of packets dropped at the MAC layer (MAC layer control
packets, routing layer control packets, and data packets). Packet loss at the
MAC layer does not always introduce packet loss observed by the transport
protocol, because of the local error control mechanism of IEEE 802.11. We
observe that in short chains there are fewer packets dropped at the MAC
layer using WXCP than using TCP. This result shows that WXCP can
keep the channel in a lower contention state while achieving a little better
throughput than TCP. When the length of the chain increases, the number
of packet losses at the MAC layer for WXCP approaches the number for

T T
top —— wxep ——

Congestion Window (packets)
o
5
T

Congestion Window (packets)
~

. h
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Time (s) Time (s)

(a) TCP. (b) WXCP.

Fig. 3. Instantaneous congestion window vs. time.

TCP. However, WXCP achieves much higher throughput than TCP. From
Figure 4(b), which shows the number of packets lost at MAC layer per
successfully transmitted packet, we conclude that WXCP maintains lower
contention for the wireless medium than TCP.

14000 10
12000 °
ﬁ 8
B 10000 g
Q. -~ T
g 52 s
O 8000 o E
° Qe
"@ 6000 g_ g
E SE -
E 4000 E =
3] 5 H
o]
2000 o
o . 0
1 2 3 4 6 8 12 16 1 2 3 4 6 8 12 16
Length of Chain (hops) Length of Chain (hops)
(a) Number of packet losses at MAC (b) Number of packet lost per suc-
layer. cessfully transmitted packet.

Fig. 4. Packet loss at MAC layer.

To study the interaction between WXCP flows, we create two WXCP flows
from station O to the last station in the chain. The flows share the same path.
These simulations are repeated with TCP flows in the same setting. Figure 5
shows the aggregate overall throughput. Depending on network configuration,
WXCP achieves 1% to 97% improvement over TCP. At the same time, different
flows sharing the same path are expected to obtain nearly the same throughput.
In this paper, we use the coefficient of variation as fairness index; this value will

be 0 under fair allocation of resources [10]. Table 2 shows the comparison of
fairness between TCP and WXCP. Each number represents the average coefli-
cient of the variation of throughput. We observe that WXCP guarantees better

fairness among two flows over networks with a chain topology than TCP.

1.2e+06

1le+06 |-

800000

600000

400000

Overall Throughput (bps)

200000

tc]

P
P

N
IV

Hops

TCP |WXCP

0.0007

0.0005

0.0018

0.0004

0.8985

0.0003

0.1336

0.0009

0.1097

0.0004

0.1132

0.0157

DN OCO| O | WO N —=

0.1620

0.0368

0.1122] 0.0281

0 L L L L L L L L
0 2 4 6 8 10 12 14 16

Length of Chain (hops)

of Table 2. Average coefficient of variation

of throughput over chain topology.

Fig. 5. Aggregate overall throughput
two flows over chain topology.

Congestion Window (packets)

Congestion Window (packets)

Time (s)

Time (s)

(a) TCP. (b) WXCP.

Fig. 6. Instantaneous congestion window dynamics.

While the scenarios discussed thus far comprise static traffic loads, to inves-
tigate the performance of WXCP’s rate adaptation mechanism in the event of
network traffic dynamics, we conduct an experiment over a 6-hop chain with two
flows f1 and f2. f1 exists in the interval between 5s and 85s, while f2 exits in
the interval between 35s and 125s. The instantaneous congestion windows of the
two WXCP flows are presented in Figure 6(b). We observe that after the arrival
of f2, the two flows converge to the fair sharing of available channel capacity in
a short time. After f1 leaves, f2 is able to catch up to the total available ca-
pacity again. The corresponding instantaneous congestion window dynamics for

two TCP flows is shown in Figure 6(a). It can be seen that when flow f2 joins,
the two flows cannot converge to a stable fair sharing of bandwidth. Instead the
congestion windows oscillate. When f1 leaves, f2 is unable to properly catch up
to the available capacity.

4.3 Grid topology

To evaluate WXCP in more complex topologies, we create a stationary wireless
ad hoc network whose nodes are arranged in a 13 x 13 grid topology as shown
in Figure 7. For TCP and WXCP, we run 2, 4, 6, 8,10 and 12 flows respectively.
In each of these cases, flows are spaced evenly in two directions (top-to-down
and left-to-right). The aggregate throughput is summarized in Figure 8. In all
cases, WXCP increases throughput by about 23% to 34% relative to TCP.

420000

350000 X

280000

210000

140000

Aggregate Overall Throughput (bps)

70000

13 nodes

O

0

0

0
O—0-O—0—0—0
o—0 O—(‘)—O—Oy

0 L L L L L
0 2 4 6 8 10 12 14
Number of Flows

Fig. 7. Grid topology. Fig. 8. Aggregate overall throughput vs.
Number of flows over grid topology.

5 Concluding remarks

WXCP is an explicit congestion control protocol for wireless multi-hop or ad hoc
networks. In WXCP, based on the estimation of multiple congestion metrics, in-
termediate stations maintain an estimate of congestion conditions and explicitly
notify flows about their available bandwidth. As a result, WXCP flows are able
to catch the available bandwidth quickly and precisely. WXCP also integrates a
new loss recovery algorithm at the sender to deal with the potential small-window
problem companied with window-based transfer. Simulation results show that
WXCP outperforms TCP in terms of both efficiency and fairness.

References

1. Allen, D.: Hidden Terminal Problems in Wireless LAN. IEEE 802.11 working Group
paper 802.11/93-xx

2. Bahl, V.: Self-Organizing Neighborhood Wireless Mesh Networks. Microsoft mesh
network homepage

3. Balakrishnan, H. and Padmanabhan, V. and Seshan, S. and Stemm, M. and Katz,
R.: TCP behavior of a busy internet server: Analysis and improvements. Proceedings
of IEEE INFOCOM, 1998

4. Chandran, K. and Raghunathan, S. and Venkatesan, S. and Prakash, R.: A
Feedback-based Scheme for Improving TCP Performance in Ad Hoc Wireless Net-
works. Proceedings of ICDCS, 1998

5. Chen, K. and Nahrstedt, K. and Vaidya, N.: The Utility of Explicit Rate-Based
Flow Control in Mobile Ad Hoc Networks. Proceedings of IEEE WCNC, 2004

6. Eckhardt, D. and Steenkiste, P.: Measurement and Analysis of the Error Character-
istics of an In-Building Wireless Network. Proceedings of ACM SIGCOMM, 1996

7. Fu, Z and Greenstein, B. and Meng, X. and Lu, S.: Design and Implementation of
a TCP-Friendly Transport Protocol for Ad Hoc Wireless Networks. Proceedings of
IEEE ICNP, 2002

8. Fu, Z. and Zerfos, P. and Luo, H. and Lu, S. and Zhang, L. and Gerla, M.: The
Impact of Multi-hop Wireless Channel on TCP Throughput and Loss. Proceedings
of IEEE INFOCOM, 2003

9. Holland, G. and Vaidya, N.: Analysis of TCP Performance over Mobile Ad Hoc
Networks. Proceedings of ACM Mobicom, 1999

10. Jain, R. and Chiu, D. and Hawe, W.: A Quantitative Measure of Fairness and Dis-
crimination for Resource Allocation in Shared Computer System. Technical Report
TR-301, Digital Equipment Corporation, 1984

11. Karrer, R. and Sabharwal, A. and Knightly, E.: Enabling Large-scale Wireless
Broadband: The Case for TAPs. Proceedings of the 2nd Workshop on Hot Topics
in Networks (Hot-Nets II), 2003

12. Katabi, D. and Handley, M. and Rohrs, C.: Congestion Control for High
Bandwidth-Delay Product Networks. Proceedings of ACM SIGCOMM, 2002

13. Li, J. and Blake, C. and Couto, D. and Morris, R.: Capacity of Ad Hoc Wireless
Networks. Proceedings of ACM MOBICOM, 2001

14. Lin, D. and Kung, H.T.: TCP Fast Recovery Strategies: Analysis and Improve-
ments, Proceedings of IEEE INFOCOM, 1998

15. Liu, J. and Singh, S.: ATCP: TCP for Mobile Ad Hoc Networks, IEEE Journal on
Selected Areas in Communications, 2001

16. Sundaresan, K. and Anantharaman, V. and Hsieh, H-Y. and Sivakumar, R.: ATP:
A Reliable Transport Protocol for Ad-hoc Networks, Proceedings of ACM MOBI-
HOC, 2003

17. Wang, F. and Zhang, Y.: Improving TCP Performance over Mobile Ad-Hoc Net-
works with Out-of-Order Detection and Response, Proceedings of ACM MOBIHOC,
2002

18. Xu, K. and Gerla, M. and Qi, L. and Shu, Y.: Enhancing TCP Fairness in Ad Hoc
Wireless Networks Using Neighborhood RED, Proceedings of ACM MOBICOM,
2003

19. Y.G. Zhang and Henderson,T: An Implementation and Experimental Study of the
eXplicit Control Protocol (XCP), Proceedings of IEEE INFOCOM, 2005

20. Su, Y. and Gross, T.: WXCP: Explicit Congestion Control for Wireless Multi-Hop
Networks, Technical Report, ETH Zurich, Feb.2005

21. Eckhardt, D. and Steenkiste, P.: Improving Wireless LAN Performance via Adap-
tive Local Error Control, Proceedings of IEEE ICNP, 1998

