
A Self-Tuning Fuzzy Control Approach for End-to-End
QoS Guarantees in Web Servers?

Jianbin Wei and Cheng-Zhong Xu

Department of Electrical and Computer Engineering
Wayne State University, Detroit, Michigan 48202

Email:{jbwei, czxu}@wayne.edu

Abstract. It is important to guarantee end-to-end quality of service (QoS) un-
der heavy-load conditions. Existing work focus on server-side request processing
time or queueing delays in the network core. In this paper, we propose a novel
frameworkeQoS to monitoring and controlling client-perceived response time in
Web servers. The response time is measured with respect to requests for Web
pages that contain multiple embedded objects. Within the framework, we pro-
pose an adaptive fuzzy controller, STFC, to allocating server resources. It deals
with the effect of process delay in resource allocation by its two-level self-tuning
capabilities. Experimental results on PlanetLab and simulated networks demon-
strate the effectiveness of the framework: it controls client-perceived pageview
response time to be within 20% of a pre-defined target. In comparison with static
fuzzy controller, experimental results show that, although the STFC has slightly
worse performance in the environment where the static fuzzy controller is best
tuned, because of its self-tuning capabilities, it works better in all other test cases
by 25% in terms of the deviation from the target response time. In addition, due
to its model independence, the STFC outperforms the linear proportional integral
(PI) and adaptive PI controllers by 50% and 75%, respectively.

1 Introduction

In the past decade we have seen an increasing demand for provisioning of quality of ser-
vice (QoS) guarantees to various network applications and clients. There existed many
work on provisioning of QoS guarantees. Most of them focused on Web servers without
considering network delays [1, 6], on individual network router [7], or on clients with
assumptions of QoS supports in networks [8]. Recent work [11] on end-to-end QoS
guarantees in network cores aimed to guarantee QoS measured from server-side net-
work edges to client-side network edges without considering delays incurred in servers.

In practice, client-perceived QoS is attributed by network delays and by server-side
request queueing delays and processing time. The objective of this paper is to guarantee
end-to-end QoS in Web servers. To provide such QoS guarantees, service quality must
be accurately measured in real time so that server resources can be allocated promptly.
Most recently, the ksniffer approach presented in [14] realized such on-line real-time
measurement and made such guarantees possible.

? This work was supported in part by US NSF grant ACI-0203592 and NASA grant 03-OBPR-
01-0049.

The first contribution in this paper is a noveleQoS framework to monitoring and
controlling client-perceived QoS in Web servers. To the best of our knowledge, the
eQoS is the first one to guarantee client-perceived end-to-end QoS based on the ksniffer
ideas of real-time QoS measurement. Moreover, because more than 50% of Web pages
have one or more embedded objects [9], the guaranteed QoS is measured with respect
to requests forwhole Web pages that contain multiple embedded objects, instead of
requests for a single object [1, 2] or connection delay in Web servers [19].

The second contribution of this paper is a two-level self-tuning fuzzy controller
(STFC) that requires no accurate server model to allocate server resources within the
eQoS. Traditional linear feedback control has been applied as an analytic method for
QoS guarantees in Web servers because of its self-correcting and self-stabilizing be-
havior [1]. It adjusts the allocated resource of a client class according to the differ-
ence between the target QoS and the achieved one in previous scheduling epochs. It
is well known that linear approximation of a nonlinear system is accurate only within
the neighborhood of the point where it is linearized. In fast changing Web servers, the
operating point changes dynamically and simple linearization is inappropriate.

In Web servers, resource allocation must be based on accurately measured effect
of previous resource allocation on the client-perceived response time of Web pages.
According to the HTTP protocol, on receiving a request for the base (or container) of
a Web page, the server needs to schedule the request according to its resource alloca-
tion. At this point, it is impossible to measure the client-perceived response time of the
Web page because the server needs to handle the request and the response needs to be
transmitted over the networks. An accurate measurement of resource-allocation effect
on response time is thus delayed. Consequently, the resource allocation is significantly
complicated because it has to be based on an inaccurate measurement. We refer to the
latency between allocating server resources and accurately measuring the effect of the
resource allocation on provided service quality asprocess delay.

The STFC overcome the existing approaches’ limitations with its two-level self-
tuning capability. On its first level is a resource controller that takes advantage of fuzzy
control theory to address the issue of lacking accurate server model due to the dynamics
and unpredictability of pageview request traffic. On the second level is a scaling-factor
controller. It aims to compensate the effect of the process delay by adjusting the resource
controller’s output scaling factor according to transient server behaviors. We note that
fuzzy control theory was recently used by others for QoS guarantees as well [12, 16].
Their approaches, however, are non-adaptive. They cannot guarantee client-perceived
pageview response time in the presence of the process delay.

We implement a prototype ofeQoS in Linux. We conduct experiments across wide-
range server workload conditions on PlanetLab test bed [18]. and on simulated net-
works. The experimental results demonstrate that provisioning of client-perceived QoS
guarantees is feasible and theeQoS is effective in such provisioning: it controls the
deviation of client-perceived average pageview response time to be within 20% of a
pre-defined target. For comparison, we also implement three other controllers within
theeQoS framework: a static fuzzy that uses similar as the one in [12], a linear PI con-
troller, and an adaptive PI controller that bears resemblance to the approach in [10].
Experimental results show that, although the STFC works slightly worse than the non-

adaptive fuzzy controller in the environment where the non-adaptive fuzzy controller is
best tuned, because of its self-tuning capabilities, it has better performance in all other
test cases by 25% in terms of the deviation from the target response time. The STFC
outperforms the linear PI and adaptive PI controllers by 50% and 75%, respectively.

The structure of the paper is as follows. Section 2 presents theeQoS framework.
Section 3 presents the two-level STFC. Section 4 evaluates the performance of theeQoS
in real-world and simulated networks and compares the performance between different
controllers. Section 5 reviews related work and Section 6 concludes the paper.

2 TheeQoS Framework

TheeQoS framework is designed to guarantee the average pageview response time of
premium clientsW (k) to be close to a targetD(k) in heavy-loaded servers. Because
the server load can grow arbitrary high, it is impossible to guarantee QoS of all clients
under heavy-load conditions. Client-perceived response time is the time interval that
starts when a client sends the first request for the Web page to the server and ends when
the client receives the last object of the Web page. In this work we use the Apache Web
server with support of HTTP/1.1. We assume that all objects reside in the same server
so that we can control the processing of the whole Web page. The latency incurred in
resolving domain name into IP address is not considered because it is normally negli-
gible. As shown in [15], 90% of the name-lookup requests have response time less than
100msfor all of their examined domain name servers except one.

TheeQoS framework consists of four components: a Web server, a QoS controller,
a resource manager, and a QoS monitor. Fig. 1(a) illustrates the components and their
interactions. The QoS controller determines the amount of resource allocated to each
class. It can be any controller designed for the provisioning of QoS guarantees. In
addition to the STFC, current implementation includes three other controllers: a non-
adaptive fuzzy, a PI, and an adaptive PI controllers for comparison. The QoS monitor
measures client-perceived pageview response time using ideas similar as those pre-
sented in [14].

The resource manager classifies and manages client requests and realizes resource
allocation between classes. It comprises of a classifier, several waiting queues, and a
processing-rate allocator. The classifier categorizes a request’s class according to rules
defined by service providers. The rules can be based on the request’s header informa-
tion (e.g., IP address and port number). Without theeQoS, a single waiting queue is
created in the kernel to store all client requests for each socket. In theeQoS, requests
are stored in their corresponding waiting queues in the resource manager. The requests
from the same class are served in first-come-first-served manner. The process-rate al-
locator realizes resource allocation between different classes. Since every child process
in the Apache Web server is identical, we realize the processing-rate allocation by con-
trolling the number of child processes that a class is allocated. In addition, when a Web
server becomes overloaded, admission control mechanisms [25] can be integrated into
the resource manager to ensure the server’s aggregate performance.

waiting queue

responses

requests

requests

processing rate

error

processing
rate

allocator

change
of error

Apache
web server

Resource Manager

average
response

time

classifier

Self-tuning
fuzzy controller

QoS Monitor

QoS Controller

(a) Implementation structure of theeQoS

Fu
zz

ifi
ca

ti
on

D
ef

uz
zi

fic
at

io
n

fuzzified inputs fuzzy conclusions

d
dt

r(k) e(k) ∆u(k)
+

−

∑ ∫ u(k)
∆e(k)

Ke

K∆e

αK∆u

Inference
mechanism

Rule-base

α

y(k)

from
QoS

monitor

to
resource
managerResource controller

Scaling-factor controller

(b) The structure of the STFC

Fig. 1.The structure of theeQoS framework.

3 The Self-Tuning Fuzzy Controller

To guarantee client-perceived QoS effectively, the QoS controller must address issues
of the process delay in resource allocation without any assumption of pageview request
traffic model. To the end, we present a self-tuning fuzzy controller, STFC. Fig. 1(b)
presents its structure.

3.1 The Resource Controller

As shown in Fig. 1(b), the resource controller consists of four components. The rule-
base contains a set ofIf-Thenrules about quantified control knowledge about how to
adjust the resource allocated to premium class according toe(k) and∆e(k) in order
to provide QoS guarantees. The fuzzification interface converts controller inputs into
certainties in numeric values of the input membership functions. The inference mech-
anism activates and applies rules according to fuzzified inputs, and generates fuzzy
conclusions for defuzzification interface. The defuzzification interface converts fuzzy
conclusions into the change of resource of premium class in numeric value.

The resource controller presented in Fig. 1(b) also contains three scaling factors: in-
put factorsKe andK∆e and output factorαK∆u. They are used to tune the controller’s
performance. The actual inputs of the controller areKee(k) andK∆e∆e(k). In the out-
put factor,α is adjusted by the scaling-factor controller. Thus, the resource allocated to
premium class during the(k + 1)th sampling periodu(k + 1) is

∫
αK∆u∆u(k)dk.

The parameters of the control loop as shown in Fig. 1(b) are defined as follows.
The reference input forkth sampling periodr(k) is D(k). The output of the loop is
the achieved response timeW (k). The errore(K) and the change of error∆e(k) are
defined asD(k)−W (k) ande(k)− e(k − 1), respectively.

It is well known that the bottleneck resource plays an important role in determining
the service quality a class receives. Thus, by adjusting the bottleneck resource a class
is allocated, we are able to control its QoS: The more resource it receives, the smaller
response time it experiences. The key challenge in designing the resource controller is
translating heuristic control knowledge into a set of control rules so as to provide QoS
guarantees without an accurate model of continuously changing Web servers.

In the resource controller, we define the control rules using linguistic variables.
For brevity, linguistic variables “e(k)”, “ ∆e(k)”, and “∆u(k)” are used to describe
e(k), ∆e(k), and∆u(k), respectively. The linguistic variables assume linguistic values
NL,NM, NS,ZE,PS, PM, PL. Their meanings are shown in Fig. 2(a).

∆e(k)

µ

1/3 2/3 1−1/3−2/3−1

1
ZE PS PM PLNSNMNL

0 e(k)

∆u(k)

NL: negative large
NM: negative medium
NS: negative small
ZE: zero
PS: positive small
PM: positive medium
PL: positive large

(a) Membership functions ofe, ∆e, and∆u

µ

1/3 2/3 1

1
ZE ML LG VLSMVS SL

0 α

ZE: zero
VS: very small
SM: small
SL: small large
ML: medium large
LG: large
VL: very large

(b) The membership functions ofα

Fig. 2.The membership functions of the STFC.

We next analyze the effect of the controller on the provided services as shown in
Fig. 3(a). In this figure, five zones with different characteristics can be identified. Zone 1
and 3 are characterized with opposite signs ofe(k) and∆e(k). That is, in zone 1,e(k)
is positive and∆e(k) is negative; in zone 3,e(k) is negative and∆e(k) is positive.
In these two zones, it can be observed that the error is self-correcting and the achieved
value is moving towards to the reference value. Thus,∆u(k) needs to set either to speed
up or to slow down current trend. Zone 2 and 4 are characterized with the same signs
of e(k) and∆e(k). That is, in zone 2,e(k) is negative and∆e(k) is negative; in zone
4, e(k) is positive and∆e(k) is positive. Different from zone 1 and zone 3, in these
two zones, the error is not self-correcting and the achieved value is moving away from
the reference value. Therefore,∆u(k) should be set to reverse current trend. Zone 5 is
characterized with rather small magnitudes ofe(k) and∆e(k). Therefore, the system
is at a steady state and∆u(k) should be set to maintain current state and correct small
deviations from the reference value.

R
es

p
on

se
ti
m

e

Sampling period

reference response time

5

2 3

41

(a) Illustration of control
effect

PS

PMPL

ZE

NS

NM

NL

“∆e(k)”
“∆u(k)”

“e(k)”

PL

PL

PL

PL

PL

PL

PL

PL

PL

PL

PM

PM

PM

PM

PM

PM

PL

NL

NM

NS

ZEPS

PS

PS

PS

PS

PS

PS

ZE

ZE

ZE

ZE

ZE

ZE

ZE

NS

NS

NS

NS

NS

NS

NM

NM

NM

NM

NM

NL

NL

NL NL

NL

NL

NL

NL

NL

NL
1

3

4

2

5

(b) Rule-base of the re-
source controller

PS

SL VL

ZE

NS

NM

“∆e(k)”“∆u(k)”

“e(k)”

VL

LG

VL

VL

LG

VL

LG

SM
PL

VL

LG

ML

PM

PM

VSPL

NL

ML

SM

SM SM

ML

SL

PS

VS

VS

ZE

ZE
ZE

SL

NS

SM

NM

SL

NL

LG
3

2

SLVL

VL

VL

VL

VL

LG

SM

VL

LG

VS

SM

SMSM

ML

VS

VS

ZE

SM

SLVL

1

4

1 2

3

4

5

(c) Rule-base of the
scaling-factor controller

Fig. 3.Fuzzy control rules in the STFC.

By identifying these five zones, we design the fuzzy control rules as summarized in
Fig. 3(b). A general linguistic form of these rules is read as:If premiseThenconsequent.
Let rule(m,n), wherem andn assume linguistic values, denote the rule of the(m,n)
position in Fig. 3(b). As an example,rule(PS, PM) = NL reads that:If the error is
positive smallandthe change of error is positive mediumThenthe change of resource is
negative large. Note that the control rules are designed based on the analysis of resource-
allocation on achieved response time. It avoids the needs of an accurate server model.

In the resource controller, the meaning of the linguistic values is quantified using
“triangle” membership functions, which are most widely used in practice, as shown in
Fig. 2(a). In Fig. 2(a), thex-axis can bee(k), ∆e(k), or ∆u(k). Themth membership
function quantifies thecertainty (between 0 and 1) that an input can be classified as

linguistic valuem. The fuzzification component translates the inputs into corresponding
certainty in numeric values of the membership functions. The inference mechanism is to
determine which rules should be activated and what conclusions can be reached. Based
on the outputs of the inference mechanism, the defuzzification component calculates the
fuzzy controller output, which is a combination of multiple control rules, using “center
average” method.

3.2 The Scaling-factor Controller

To successfully design the resource controller discussed in Section 3.1, the effect of the
process delay must be compensated. To the end, we design a scaling-factor controller to
adaptively adjustαK∆u according to the transient behaviors of a Web server in a way
similar to [13]. The selection of output scaling factorαK∆u is because of its global
effect on the control performance.

The scaling-factor controller consists of the same components as the resource con-
troller. The membership functions of “α” (the corresponding linguistic variable ofα)
also have “triangle” shape as shown in Fig. 2(b). Becauseα needs to be positive to
ensure the stability of the control system, “α” assumes different linguistic values from
“e(k)” and “∆e(k)”. Fig. 2(b) also shows the linguistic values and their meanings.

The control rules of the scaling-factor controller are summarized in Fig. 3(c) with
following five zones.

1. Whene(k) is large but∆e(k) ande(k) have the same signs, the client-perceived
response time is not only far away from the reference value but also it is mov-
ing farther away. Thus,α should be set large to prevent the situation from further
worsening.

2. Whene(k) is large and∆e(k) ande(k) have the opposite signs,α should be set at
a small value to ensure a small overshoot and to reduce the settling time without at
the cost of responsiveness.

3. Whene(k) is small,α should be set according to current server states to avoid
large overshoot or undershoot. For example, when∆e(k) is negative large, a large
α is needed to prevent the upward motion more severely and can result in a small
overshoot. Similarly, whene(k) is positive small and∆e(k) is negative small, then
α should be very small. The large variation ofα is important to prevent excessive
oscillation and to increase the convergence rate of achieved service quality.

4. The scaling-factor controller also provides regulation against the disturbances. When
a workload disturbance happens,e(k) is small and∆e(k) is normally large with the
same sign ase(k). To compensate such workload disturbance,α is set large.

5. When bothe(k) and∆e(k) are very small,α should be around zero to avoid chat-
tering problem around the reference value.

The operation of the STFC has two steps. First, we tune theKe, K∆e, andK∆u

through trials and errors. In the step the scaling-factor controller is off andα is set to
1. In the second step, the STFC is turned on to control resource allocation in running
Web servers. The scaling-factor controller is on to tuneα adaptively. TheKe andK∆e

are kept unchanged and theK∆u is set to three times larger than the one obtained in
previous step to maintain the responsiveness of the STFC during workload disturbances.

Finally we remark that the STFC has small overhead because at most eight rules
are on at any time in the STFC. In addition, the controller only needs to adjust re-
source allocation once a sampling period. We conducted experiments with STFC-on
and STFC-off and observe their performance difference is within 1%. Furthermore, the
implementation of the STFC totaled less than 100 lines of C code.

4 Performance Evaluations

We define a metric of relative deviationR(e) to measure the performance of theeQoS:

R(e) =

√∑n
k=1 (D(k)−W (k))2 /n

D(k)
=

√∑n
k=1 e(k)2/n

D(k)
. (1)

The smaller theR(e), the better the controller’s performance. We have conducted ex-
periments on the PlanetLab test bed to evaluate the performance of theeQoS in a real-
world environment. The clients reside on 9 geographically diverse nodes: Cambridge
in Massachusetts, San Diego in California, and Cambridge in the United Kingdom. We
assume that premium and basic clients are from all these nodes for fairness between
clients with different network connections. The Web server is a Dell PowerEdge 2450
configured with dual-processor (1 GHz Pentium III) and 512 MB main memory and is
located in Detroit, Michigan. During the experiments, the RTTs between the server and
the clients are around 45ms(Cambridge), 70ms(San Diego), and 130ms(the UK).

The server workload was generated by SURGE [3]. In the emulated Web objects, the
maximum number of embedded objects in a given page was 150 and the percentage of
base, embedded, and loner objects were 30%, 38%, and 32%, respectively. The Apache
Web server was used to provide Web services with support of HTTP/1.1. The number
of the maximal concurrent child processes was set to 128. In the experiments with two
classes, we aimed to keep the average response time of premium class to be around 5
seconds. In the experiments with three classes, we assumed the target of class 1 was
5 seconds and that of class 2 was 11 seconds because they are rated as “good” and
“average”, respectively [5]. We aimed to provide guaranteed service when the number
of UEs was between 500 and 800. When the number of UEs is less than 500, the average
response time of all Web pages is around 5 seconds. When the number of UEs is larger
than 800, we have observed refused connections using unmodified Apache Web server
and admission control mechanisms should be employed.

To investigate the effect of network latency on the performance of theeQoS, we
have implemented a network-delay simulator in a similar way to [22]. With the RTT set
as 180ms, ping times were showing a round trip of around 182msusing the simulator.
In the experiments on the simulated networks, the RTT between clients and servers was
set to be 40, 80, or 180ms that represent the latency within the continental U.S., the
latency between the east and west coasts of the U.S., and the one between the U.S. and
Europe, respectively [20].

4.1 Effectiveness of theeQoS

To evaluate the effectiveness of theeQoS, we have conducted experiments under differ-
ent workloads and network delays with two and three client classes. In the experiments,
the system was first warmed up for 60 seconds and then the controller was on. The
size of sampling period was set to 4 seconds. The effect of the sampling period on the
performance of theeQoS shall be discussed in Section 4.3. Fig. 4 presents the experi-
mental results. Fig. 4(a) shows the relative deviations of the premium class relative to
the reference value (5 seconds). From the figure we observe that all the relative devi-
ations are smaller than 35%. Meanwhile, most of them are around 20%. It means the
size of deviations is normally around 1.0 seconds. Fig. 4(b) presents the results with
three classes. Because we observe no qualitative differences between the results with
different RTTs in the simulated networks, we only present the results where RTT was
set to 180msfor brevity. From the figure we see that most of the relative deviations are
between 15% and 30%. These demonstrate the effectiveness of theeQoS.

500 600 700 800
Workload (number of UEs)

0
10
20
30
40
50

R
el

at
iv

e
de

vi
at

io
n

(%
)

PlanetLab
RTT = 40
RTT = 80
RTT = 180

(a) Two classes

500 600 700 800
Workload (number of UEs)

0
10
20
30
40
50

R
el

at
iv

e
de

vi
at

io
n

(%
)

PlanetLab
RTT = 180

class 1 class 2

(b) Three classes

Fig. 4.The performance of theeQoS with two and three classes.

We then investigate why it is feasible to guarantee end-to-end QoS from server side
under heavy-load conditions. The pageview response time consists of server-side wait-
ing and processing time and network transmission time. The waiting time is the time
interval that starts when a connection is accepted by the operating system and ends when
the connection is passed to the Apache Web server to be processed. The processing time
is the time that the Apache Web server spends on processing the requests for the whole
Web page, including the base HTML file and its embedded objects. The transmission
time includes the complete transfer time of client requests and all server responses over
the networks. We instrumented the Apache Web server to record the processing time.

Fig. 5 shows the breakdown of response time. From the figure we observe that, when
the number of UEs is larger than 400, the server-side waiting time is the dominant
part of client-perceived response time. This finding is consistent with those in [4]. It
is because that, when the server is heavily loaded, the child processes of the Apache
Web server are busy in processing accepted client requests. The newly incoming client
requests then have to wait. Furthermore, we also observe that the transmission time
is only a small part of response time when server workload is high. It indicates that,
although the service providers have no control over the network transmissions, they can
still control the client-perceived response time by controlling the server-side waiting
time and processing time.

0 100 200 300 400 500 600 700 800
Workload (number of UEs)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
) waiting time

processing time
transmission time

(a) RTT = 40ms

0 100 200 300 400 500 600 700 800
Workload (number of UEs)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
) waiting time

processing time
transmission time

(b) RTT = 180ms

Fig. 5.The breakdown of response time of Web pages under different RTTs.

4.2 Comparison with Other Controllers

Within the eQoS framework, we also implement three other controllers: a fuzzy con-
troller without self-tuning, a traditional PI controller, and an adaptive PI controller using
the basic idea of [10]. We have specifically tuned the fuzzy and the PI controllers in an
environment where the number of UEs was set to 700 and RTT was set to be 180ms
on the simulated networks. We define the performance differencePerDiff between the
STFC and other controller as(R(e)other−R(e)STFC)/R(e)STFC . TheR(e)other and
R(e)STFC are the relative deviations of other controller and the STFC, respectively.
Fig. 6 presents the performance difference due to compared controllers.

500 600 700 800
Workload (number of UEs)

0
20
40
60
80

100
120
140

Pe
rf

 D
if

f (
%

) fuzzy controller
PI controller
adaptive PI

(a) PlanetLab

500 600 700 800
Workload (number of UEs)

0
20
40
60
80

100
120
140

Pe
rf

 D
if

f (
%

) fuzzy controller
PI controller
adaptive PI

(b) RTT = 180ms

Fig. 6.The performance comparison in PlanetLab and simulated networks.

From Fig. 6(b) we observe that the STFC provides worse services than the non-
adaptive fuzzy controller when the number of UEs is 700 and the RTT is 180ms. The
behavior is expected because a self-tuning controller cannot provide better performance
than a non-adaptive controller that has been specifically tuned for a certain environ-
ment. Even under such environment, the performance difference is only -6%. Under all
other conditions, the STFC provides 25% better services than the non-adaptive fuzzy
controller in terms of performance difference because the STFC further adjustsαK∆u

adaptively according to the transient behaviors of the Web server. Such tuning is impor-
tant to compensate the effect of the process delay in resource allocation.

In comparison with the PI controller, the STFC achieves better performance even
when the PI controller operates under its specifically tuned environment, which can be
observed in Fig. 6(b). When the number of UEs is 700 and RTT is 180ms, their perfor-
mance difference is 28%. From Fig. 6 we observe that all performance differences of
the PI controller are larger than 60% and the average is around 75%. The poor perfor-

mance of the PI controller is due to its inaccurate underlying model. In the PI controller,
we follow the approach in [10] and model the server as anM/GI/1 processor sharing
system. It is known that the exponential inter-arrival distribution is unable to character-
ize the Web server [17]. Thus, the model is inaccurate. Similarly, although the adaptive
PI improves upon the non-adaptive PI controller, it still has worse performance than
the STFC and the fuzzy controller. Its average performance difference in relation to the
STFC is around 50%. The poor performance of these two controllers is because they
provide no means to compensate the effect of the process delay.

4.3 The Process Delay in Resource Allocation

Aforementioned, the process delay in resource allocation affects the performance of a
controller. We have conducted experiments to quantify it. For brevity, we only present
the results on simulated networks where the number of UEs was 700 and the RTT was
180 ms. Fig. 7(a) shows the percentage of requests finished within different numbers
of sampling period after being admitted. Fig. 7(b) depicts corresponding cumulative
distribution function of the service time, which is the time the Web server spends in
processing requests. Comparing Fig. 7(a) and Fig. 7(b) we observe that, although over
95% of the requests are finished in 8 seconds after being admitted, only 77.8% of them
are processed within the same sampling period when it is set to 8 seconds. Moreover,
it also indicates that 22.2% of the measured response time are affected by the resource
allocation performed more than one sampling periods ago. Consequently, the resource-
allocation effect cannot be accurately measured promptly.

0 1 2 4 8 16
Size of sampling period (second)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) finished in 1 period
finished in 2 periods
finished in 3 periods
finished in 3+ periods

(a) The percentage of processed requests as
a function of the size of sampling period

0 1 2 4 8 16
Service time (second)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

(b) The cumulative distribution function of
service time

Fig. 7.The process delay in resource allocation.

To provide QoS guarantees, however, the resource allocation in Web servers should
be based on an accurately measured effect of previous resource allocation on client-
perceived QoS. It in turn controls the order in which client requests are scheduled and
processed. The existing process delay has been recognized as one of the most difficult
dynamic element naturally occurring in physical systems to deal with [21]. It sets a
fundamental limit on how well a controller can fulfill design specifications because it
limits how fast a controller can react to disturbances.

The process delay also affects the selection of an appropriate sampling period. Due
to space limitation, we summerize our observation. From the results, we observe that

the deviation decreases with the increase of the sampling period. It is because that the
measured effect of resource allocation is more accurate using a large sampling period
than a small one. When the sampling-period size continues to increase, the relative
deviation turns to increases. It is because that, with the increase of sampling period, the
processing rate of premium class is adjusted less frequently. Consequently, theeQoS
becomes less adaptive to the transient workload disturbances. Based on the results, we
set the size of sampling period to 4 seconds.

5 Related Work

Early work focused on providing differentiated services to different client classes using
priority-based scheduling [2]. Although they are effective in providing differentiated
services, they cannot guarantee the QoS a class received. To guarantee the QoS of a
class, queueing-theoretic approaches have been proposed. The performance highly de-
pends on the parameter estimation, such as the traffic variance, which is difficult to be
accurate. To reduce the variance of achieved QoS, traditional linear feedback control has
also been adapted [1, 24]. Because the behavior of a Web server changes continuously,,
the performance of the linear feedback control is limited. In comparison, our approach
takes advantage of fuzzy control theory to manage the server-resource allocation.

Recent work have applied adaptive control [10] and machine-learning [23] to ad-
dress the lack of accurate server model. Although these approaches provide better per-
formance than non-adaptive linear feedback control approaches under workload dis-
turbances, the ignorance of the process delay limits their performance. Fuzzy control
theory has also been applied in providing QoS guarantees [12, 16]. The objective of the
STFC is different in that its focus is on providing end-to-end QoS guarantees. Moreover,
the STFC explicitly addresses the inherent process delay in resource allocation.

6 Conclusions

In the paper, we have proposed a novel frameworkeQoS to providing end-to-end pageview
response time guarantees. Within the framework, we have proposed a two-level self-
tuning fuzzy controller, which does not require accurate server model, to explicitly ad-
dressing the process delay in resource allocation. The experimental results on PlanetLab
and simulated networks have shown that it is effective in providing such QoS guaran-
tees. They also demonstrated the superiority of the STFC over other controllers with
much smaller deviations.

References

1. T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for Web server end-
systems: A control-theoretical approach.IEEE Transactions on Parallel and Distributed
Systems, 13(1):80–96, January 2002.

2. J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Providing differentiated levels of service
in Web content hosting. InProceedings of ACM SIGMETRICS Workshop on Internet Server
Performance, 1998.

3. P. Barford and M. Crovella. Generating representative web workloads for network and server
performance evaluation. InProceedings of ACM SIGMETRICS, 1998.

4. P. Barford and M. Crovella. Critical path analysis of TCP transactions.IEEE/ACM Transac-
tions on Networking, 9(3):238–248, 2001.

5. N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating user-perceived quality into Web server
design. InProceedings of WWW, 2000.

6. N. Bhatti and R. Friedrich. Web server support for tiered services.IEEE Network, 13(5):64–
71, 1999.

7. C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differentiated services: Delay
differentiation and packet scheduling.IEEE/ACM Transactions on Networking, 10(1):12–
26, 2002.

8. M. E. Gendy, A. Bose, S.-T. Park, and K. G. Shin. Paving the first mile for QoS-dependent
applications and appliances. InProceedings of IWQoS, 2004.

9. F. Hernandez-Campos, K. Jeffay, and F. D. Smith. Tracking the evolution of Web traffic:
1995-2003. InProceedings of MASCOTS, 2003.

10. A. Kamra, V. Misra, and E. Nahum. Yaksha: A self tuning controller for managing the
performance of 3-tiered websites. InProceedings of IWQoS, 2004.

11. J. Kaur and H. Vin. Providing deterministic end-to-end fairness guarantees in core-stateless
networks. InProceedings of IWQoS, 2003.

12. B. Li and K. Nahrstedt. A control-based middleware framework for quality of service adap-
tations. IEEE Journal on Selected Areas in Communications, 17(9):1632–1650, September
1999.

13. R. K. Mudi and N. R. Pal. A robust self-tuning scheme for PI- and PD-type fuzzy controllers.
IEEE Transactions on Fuzzy Systems, 7(1):2–16, February 1999.

14. D. P. Olshefski, J. Nieh, and E. Nahum. ksniffer: Determining the remote client perceived
response time from live packet streams. InProceedings of OSDI, 2004.

15. K. Park, V. S. Pai, L. Peterson, and Z. Wang. CoDNS: Improving DNS performance and
reliability via cooperative lookups. InProceedings of OSDI, 2004.

16. S. Patchararungruang, S. K. halgamuge, and N. Shenoy. Optimized rule-based delay propor-
tion adjustment for proportional differentiated services.IEEE Journal on Selected Areas in
Communications, 23(2):261–276, February 2005.

17. V. Paxson and S. Floyd. Wide area traffic: The failure of possion modeling.IEEE/ACM
Transactions on Networking, 3(3):226–244, June 1995.

18. L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing disruptive
technology into the internet. InProceedings of HotNets, 2002.

19. L. Sha, X. Liu, Y. Lu, and T. F. Abdelzaher. Queueing model based network server perfor-
mance control. InProceedings of RTSS, 2002.

20. S. Shakkottai, R. Srikant, N. Brownlee, A. Broido, and K. Claffy. The RTT distribution of
TCP flows in the Internet and its impact on TCP-based flow control. Technical report, The
Cooperative Association for Internet Data Analysis (CAIDA), 2004.

21. F. G. Shinskey.Process Control Systems: Application, Design, and Tuning. McGraw-Hill,
4th edition, 1996.

22. J. Slottow, A. Shahriari, M. Stein, X. Chen, C. Thomas, and P. B. Ender. Instrumenting and
tuning dataview—a networked application for navigating through large scientific datasets.
Software Practice and Experience, 32(2):165–190, November 2002.

23. V. Sundaram and P. Shenoy. A practical learning-based approach for dynamic storage band-
width allocation. InProceedings of IWQoS, 2003.

24. J. Wei, X. Zhou, and C.-Z. Xu. Robust processing rate allocation for proportional slowdown
differentiation on Internet servers.IEEE Transactions on Computers, 2005. In press.

25. M. Welsh and D. Culler. Adaptive overload control for busy Internet servers. InProceedings
of USITS, 2003.

