Avoiding Transient Loops through
Interface-Specific Forwarding

Zifei Zhong', Ram Keralapura?, Srihari Nelakuditi!, Yinzhe Yu?3,
Junling Wang!, Chen-Nee Chuah?, and Sanghwan Lee3

! Department of Computer Science & Engineering,
University of South Carolina,
Columbia, SC 29208, USA
{zhongz,srihari,wang257}@cse.sc.edu
2 Department of Electrical & Computer Engineering,
University of California at Davis,
Davis, CA 95616, USA
{rkeralap, chuah}@ece.ucdavis.edu
3 Department of Computer Science & Engineering,
University of Minnesota,
Minneapolis, MN 55414, USA
{yyu,sanghwan}@cs.umn.edu

Abstract. Under link-state routing protocols such as OSPF and IS-IS,
when there is a change in the topology, propagation of link-state an-
nouncements, path recomputation, and updating of forwarding tables
(FIBs) will all incur some delay before traffic forwarding can resume on
alternate paths. During this convergence period, routers may have in-
consistent views of the network, resulting in transient forwarding loops.
Previous remedies proposed to address this issue enforce a certain order
among the nodes in which they update their FIBs. While such approaches
succeed in avoiding transient loops, they incur additional message over-
head and increased convergence delay. We propose an alternate approach,
loopless interface-specific forwarding (LISF), that averts transient loops
by forwarding a packet based on both its incoming interface and desti-
nation. LISF requires no modifications to the existing link-state routing
mechanisms. It is easily deployable with current routers since they al-
ready maintain a FIB at each interface for lookup efficiency. This paper
presents the LISF approach, proves its correctness, discusses three alter-
native implementations of it and evaluates their performance.

1 Introduction

The widely used link state routing protocols such as OSPF and IS-IS distribute
link states so that each router has a complete description of the network topology.
When a link fails due to a faulty interface or a fiber cut [1], the nodes adjacent to
the failure detect it and flood this change in link state to the rest of the network
so that all the routers can recompute their routing tables. These routing table
entries are then pushed onto Forwarding Information Base (FIB) at all line

cards. Each of these steps — failure detection, link state propagation, routing
table recomputation and FIB updates — incur some delay. Only after these steps
are complete, packets, for which the shortest paths to their destinations are
affected by the failed link, are guaranteed to be forwarded correctly along the
new alternate paths. The interval between the failure detection and the FIB
updates at all the routers, is referred to as the convergence delay. During the
convergence period, routers may have inconsistent views of the network and
therefore can cause forwarding loops [2]. While these loops last for only a short
time and their effect is mitigated by the TTL field in IP datagrams, they can
still overwhelm high capacity links and render them unusable. Therefore, it is
desirable to avoid any forwarding loops even if they are only transient.

Several remedies for the transient looping problem have been suggested in the
literature [2-6] 4 and an IETF working group has been addressing this issue [9].
Path locking with safe neighbors approach [2] categorizes routes into three types
A, B, or C, and installs new routes for B and C types after a fixed configurable
delay such that delay for type B is greater than delay for type C routes. While
this approach decreases the likelihood of loops, it does not completely elimi-
nate them. Moreover, it introduces additional delays in the installation of new
routes compounding the convergence delay. A loop-free path-finding algorithm
proposed in [3] blocks a potential loop when it detects that a loop can be formed.
To achieve this, a router first reports to all its neighbors that its distance to reach
the destination is infinity, and then waits for those neighbors to acknowledge its
message with their own distances and predecessor information before updating
its successor in the forwarding table. Recently, similar methods have been pro-
posed in [4, 5], where the forwarding table updates in the network are ordered
such that a node updates its forwarding table only after all its neighbors that
use the node to reach different destinations through the failed link update their
forwarding tables. Although these schemes do avoid transient loops, they require
additional messages to be exchanged among routers, to enforce the ordering of
the updates of forwarding tables, resulting in increased convergence delay.

In this paper, we propose an alternate approach — loopless interface-specific
forwarding (LISF) — that exploits the existence of one forwarding table per
interface to avoid transient loops without requiring any changes to the existing
link state routing mechanisms. When all the routers in a network have the same
view of the network, there would not be a forwarding loop. Only in the presence
of discrepancies in the views of different routers, a packet might get caught in a
loop. In such a case, the packet would have arrived through an unusual interface
of at least one of the routers involved in the loop. Therefore, a forwarding loop
can be avoided if the packet were to be discarded in such a scenario rather
than forwarded to the usual next hop. LISF does precisely that by selectively
discarding packets that arrive through unusual interfaces. The key advantages of
LISF are that it avoids transient loops without increasing the convergence delay

4 Many other schemes have been proposed to deal with failures through fast local
rerouting [5,7,8]. However, the focus of this paper is on schemes specifically designed
for loop avoidance during convergence after a network-wide link state update.

and without employing any additional mechanisms to synchronize the forwarding
table updates in different nodes.

The rest of this paper is structured as follows. In Section 2, we illustrate the
problem of transient loops. Our LISF approach for avoiding forwarding loops
and three possible implementations of it are described in Section 3. In Section 4,
we prove that the proposed LISF methods prevent loops in case of symmetric
single link failures. The results of our simulations evaluating the LISF methods
are presented in Section 5. We finally conclude the paper in Section 6.

2 Transient Looping Problem and Existing Approaches

We now illustrate the occurrence of transient loops, discuss a recently proposed
approach for avoiding them, and point out the need for an alternate approach.

We use an example to illustrate the problem of transient loops. Consider the
topology shown in Fig. 1(a), where each directed link is labeled with its weight.
For the purpose of illustration, let us assume that all the nodes have similar
characteristics with a failure detection time of 50ms, a failure notification time
between neighboring nodes of 100ms, and route computation and update time of
400ms at a node (100ms for nodes that are not affected by the failure).

Consider a scenario where link E—D fails at time 0s. We examine how this
failure impacts the forwarding of packets from source node A to destination node
D. Table 1 summarizes the routing events under the traditional OSPF and the
corresponding changes in the packet’s forwarding path from node A to node
D. The resulting convergence delay (i.e., the total time for all the nodes in the
network to converge after the failure) is 0.65s, and the service disruption time
(i.e., the total time for which the service between A and D is disrupted due to
the failure) is 0.55s. During the interval between the forwarding table updates
in nodes E and F (i.e, between 0.45s and 0.55s), both the nodes have a different
view of the network, resulting in a forwarding loop.

Fig. 1. Topologies used for illustration

Table 1. Summary of routing events under OSPF, ORDR, and LISF

OSPF LISF ORDR

Time Events A to D pkts A to D pkts Events
Os | Failure of link E-D A-F-E-drop A-F-E-drop || Failure of link E-D

0.05s|D,E: failure detected A-F-E-drop A-F-E-drop ||D,E: failure detected
0.15s| C,F: failure notified A-F-E-drop A-F-E-drop || C,F: failure notified
0.25s| A B: failure notified A-F-E-drop A-F-E-drop || A,B: failure notified
0.35s| B: route update A-F-E-drop A-F-E-drop B: route update
0.45s| D,E: route update |A-F-E-F-...(loop)|A-F-E-F-drop
0.558| C,F: route update A-F-B-C-D A-F-B-C-D C: route update
0.65s| A: route update A-B-C-D A-B-C-D A: route update
1.05s D: route update
1.15s F: route update
1.65s E: route update

To avoid transient loops during the convergence after a planned link failure
or an unplanned failure of a protected link, a method was proposed in [4] that
ensures ordered installation of forwarding table entries by exchanging messages
between neighboring nodes. Here, we consider a similar approach (which we refer
to as ORDR) for avoiding loops in case of unplanned failures (around 80% of all
failures according to [1]) of unprotected links. The routing events under ORDR
corresponding to Fig. 1(a) are shown in Table 1. Note that with this method, F
updates its forwarding table 500 ms (assuming update time of 400 ms and the
message propagation and processing time of 100 ms) after A updates its table.
While this method avoids forwarding loops, its drawback is that it increases the
network convergence delay. For the scenario discussed here, this method extends
the convergence delay to 1.65s.

Our objective is to develop a scheme that combines the best features of OSPF
and ORDR, i.e., low convergence delay and disruption time of OSPF and loop
avoidance of ORDR. Such a scheme would ideally respond to the failure of E—D
as shown in Table 1. Its behavior would be effectively similar to OSPF except
that a packet is dropped if it would loop otherwise (as in the case of packets
destined to D from F or E during the interval from 0.45s to 0.55s). Consequently,
the ideal scheme would have the convergence delay of 0.65s and service disruption
time of 0.45s while also avoiding forwarding loops. In the following sections, we
present and evaluate a scheme that closely approximates this ideal behavior.

3 Owur Approach

Our approach for avoiding forwarding loops is based on the notion of interface-
specific forwarding, where a packet’s forwarding depends on the incoming inter-
face in addition to the destination address. In this section, we first briefly explain

interface-specific forwarding and argue how it can be exploited to avoid loops.
We then present three methods of computing interface-specific forwarding table
entries and illustrate the differences between these methods in terms of loop
avoidance and computational complexity.

3.1 Interface-Specific Forwarding

A packet in an IP network is traditionally routed based on its destination ad-
dress alone regardless of its source address or the incoming interface. Therefore,
a single forwarding table that maps a destination address to a next hop and
an outgoing interface is sufficient for current routers to perform IP datagram
forwarding. Nevertheless, routers nowadays maintain a forwarding table at each
line card of an interface for lookup efficiency. However, all these forwarding
tables at each interface are identical, i.e., these forwarding tables are interface-
independent. For example, interface-independent forwarding tables at node B of
Fig. 1(a) are as given in Table 2.

Instead of maintaining the same forwarding table at each interface, it is pos-
sible to avoid forwarding loops by making the entries of these forwarding tables
interface-specific. Table 3 gives the possible set of interface-specific forwarding
table entries at node B of Fig. 1(a). Each entry is marked with '—’, X, or a
nexthop node. The entries marked '—’ are obviously never used. The entries
marked X are not referenced normally, i.e., when there is no failure and all
nodes in the network have the same consistent view. For example, in Fig. 1(a),
a packet with destination D should not arrive at B from any of its neighbors
since B is not the next hop for them. Similarly, B should not receive from A, a
packet destined for F, since A is along the path from B to F. However, in the
presence of link failures and inconsistent forwarding tables at different nodes
(during the convergence period), a packet may arrive at a node through an un-
usual interface. Interface-specific forwarding enables special treatment of such
packets that arrive through unusual interfaces without introducing any changes
to the forwarding plane of the current network infrastructure. Here, we study
how interface-specific forwarding can be exploited for the purpose of avoiding
loops during the convergence period after a link state change in the network.

Table 2. Interface-independent for- Table 3. Interface-specific forwarding
warding tables at node B tables at node B
destination destination
A|C|DIE| F A|C|D|E|F
EAHBACCAA gAaB—CXXX
ECHBACCAA ECHBA—XXA
E|F-B|A[C|C|A| A E|F-B|A|C|X|X |-

3.2 Loopless Interface-Specific Forwarding

It is clear that under link state routing, when all the routers in a network have
the same view of the network, there would not be a forwarding loop. Only in
the presence of discrepancies in the views of different routers, a packet might get
caught in a loop. However, in such a case, under interface-specific forwarding,
the packet would have arrived through an unusual interface of at least one of the
routers involved in the loop. So a forwarding loop can be avoided if the packet
were to be discarded in such a scenario rather than forwarded to the usual
next hop. We refer to this approach of avoiding forwarding loops by selectively
discarding packets that arrive through unusual interfaces as loopless interface-
specific forwarding (LISF).

Ideally, a packet should be discarded by a router only if its forwarding would
definitely result in a loop. However, with only its own local view of the net-
work, a router cannot always determine the actual forwarding path of a packet
with certainty. Therefore, the design challenge of LISF is to ensure loop freedom
without unnecessarily discarding packets. In this paper, we study several imple-
mentation choices of LISF, ranging from conservative discarding of packets only
if there would certainly be a loop otherwise but forwarding even if there could
be a loop, to aggressively discarding of packets whenever there could be a loop
even if there may not actually be a loop.

Before we proceed to present various LISF methods, we first introduce some
notation that would help describe them. Let G = (V, &) be the graph with
vertices V and edges £ representing the network. We use Rf to denote the next
hop® from i to d in G. Let]—';-l_,i denote the forwarding table entry, i.e., the next
hop to d for packets arriving at ¢ through the interface associated with neighbor
j. We use P¢ to refer to the shortest path from i to d given the graph G. Similarly,
the cost of the shortest path is denoted by C¢.

We now present three different LISF methods. The difference between these
methods lies in which of the entries marked X in Table 3 are set to ©, meaning
discard. These methods are named according to the criterion they use to dis-
card a packet. The operation of these methods, when a packet for destination
d arrives at node 4 from neighbor j, is summarized in Table 4 and elaborated
in detail below. It should be noted that, under LISF, a node ¢ makes packet
forwarding/discarding decisions based solely on its own view of the network.

Table 4. Differences in LISF methods in discarding a packet to d arriving at ¢ from j

method discard condition |discard criterion

PIng-POng (PIPO) jeR? in and out interfaces are same
CYCLe (CYCL) jeps previous node along the path
NO Forward Progress (NOFP) C%d > C;i no forward progress

® Note that LISF works even with Equal Cost Multipath (ECMP) routing. But for
ease of explanation, it is assumed that there is only one shortest path per destination.

Table 5. Interface-specific forwarding tables at B under different LISF methods

destination destination destination
A|C|D|E|F| |A|C|D|E|F| |A|IC|D|E|F
A—-BI-ICICIOIO| |-|CICIOIO] |—-ICIO|0O
C—Bl|A|-|O|A A —|©|AA —6|A A
F—=B|A|C|C|A|—| |A|C|C|O|-| |AlICIOO]-
(PIPO) (CYCL) (NOFP)

>
>

interface

PIPO Discard a packet if its incoming and outgoing interfaces are the same,
Le., i, =Oif j e R

PIPO discards a packet only when it arrives at a node from its next hop, i.e.,
along the reverse shortest path to the destination. It is the most conservative of
all the methods listed here as it discards a packet only when there is a loop. Oth-
erwise, without PIPO, in such a scenario, packets will ping-pong between two
neighboring nodes. For example, in Table 5, a packet to destination D arriving
at B from C is discarded by PIPO since C is the next hop to D from B. PIPO is
also the simplest since it incurs no additional overhead for computing interface-
specific forwarding table entries beyond the currently used Dijkstra’s algorithm
for computing interface-independent forwarding tables. However, PIPO can en-
sure loop-freedom only when two nodes are involved in a loop, which is the case
when links are symmetric (bidirectional with equal weights in both directions)
and inconsistency in the views among routers is limited to a single link’s state.

CYCL Discard a packet if the previous node appears along the path from this
node to the destination, i.e., .7-"3‘-1_,1- =0 ifjePd

CYCL discards a packet when it arrives from a node which falls along the
shortest path from this node to the destination. When the links are symmetric,
CYCL behaves just like PIPO. Only when links are asymmetric and the resulting
paths are asymmetric, the operation of CYCL could be different from PIPO.
With a less stringent condition than PIPO, CYCL may discard a packet even
when there may not actually be a loop, but at the same time, it can avoid
some loops that are not avoided by PIPO. For example, in Table 5, a packet to
destination E arriving at B from F is forwarded by PIPO to A resulting in a
loop whereas it will be discarded by CYCL since F is along the shortest path
from B to E. The computational complexity of CYCL is similar to that of PTPO
as both require only a single shortest path tree computation.

NOFP Discard a packet if there is no forward progress towards its destination
from its previous hop to the next hop of this node, i.e., }“J‘Li =Qif C%,i > C}i.

NOFP discards a packet if its previous hop is not farther from its destination
than the next hop of this node. In such a case, there is a potential for a loop and

NOFP discards such packets. For example, in Table 5, a packet to destination
D arriving at B from F is discarded by NOFP since the cost from F to D is 2
whereas the cost from the next hop C is 3. This is in contrast to both PIPO
and CYCL which forward the packet to C. While such discarding by NOFP
seems unnecessary, NOFP can prevent more loops than PIPO and CYCL even
when links are asymmetric and the state of multiple links change simultaneously.
For example, in topology shown in Fig. 1(b), suppose link F—E failed. Further,
assume that all nodes except nodes B and C are notified of the failure and their
forwarding tables reflect the failure. In this scenario, under PIPO and CYCL, a
packet from A to D is forwarded along a loop A—B—G—C—A—B- - -. On the other
hand, under NOFP, it is discarded by B since, according to B’s view, the cost of
3 from next hop G to D is not smaller than the cost from A to D which is also 3.
The downside however is that, a straightforward method to implement NOFP
requires a computation of O(%) times Dijkstra on the average (to compute the
shortest path trees rooted at each neighbor), whereas PIPO and CYCL have the
same complexity as Dijkstra.

Table 6. Differences among LISF methods in discarding packets arriving at node B

from|to|failed link|PTPO CYCL NOFP
C |D|IC-D discard discard discard
F E|F-E forward to A|discard discard
F D|F-E forward to C|forward to C|discard
Cc |E|C-D forward to A |forward to A |forward to A

The difference between the actions of the above three methods is clearly
evident in the presence of failures of links C—D and F—E in Fig. 1(a) as shown
in Table 6. Here it is assumed that B is not yet aware of the failed links and the
forwarding tables of B do not reflect the change. When only F—E fails, packets
from F to D arriving at B are discarded by NOFP whereas PIPO and CYCL
forward them along a loop-free path via C. Essentially these methods achieve
different tradeoffs between loop-avoidance and packet-discarding, which can be
summed up as follows.

— packet looping probability: PIPO > CYCL > NOFP
— packet discard probability: PIPO < CYCL < NOFP
— network convergence delay: PIPO = CYCL = NOFP

4 Proof of Loop-free Property of LISF

We now prove that the LISF methods described in the previous section ensure
loop-freedom when at most a single link state change is being propagated in a
network with symmetric links. It is clear that if PIPO is loop-free, other two

methods are also loop-free since whenever PIPO discards a packet, they would
too. Therefore, it suffices to provide the proof for PIPO which is given below.

We use the following notation in this section. Let 7 be the shortest path
tree with undirected links rooted at a destination D. Note that this tree contains
the shortest paths from every node to D since the links are symmetric. We use
S(i,7T) to denote the subtree of 7 below the node i. Since the forwarding to a
destination is independent of forwarding to other destinations, in the following
we prove it for a destination D.

L §glg—trée rooted at node F

Fig. 2. Scenarios for illustrating loop-freedom under PIPO

Theorem 1. A packet destined for D will not loop under PIPO in case of the
failure of a link £.

Proof. If £ ¢ TP, the forwarding path to D is the same with or without the
failure of £. Therefore, the forwarding to D is consistent at every node along the
path and hence packets destined for D will not be caught in a loop due to the
failure of £. In the rest of the proof, it is assumed that £ € TP.

Let £ = F—L and F be the upstream node to L on the path from F to D as
in Fig. 2. When £ is down, only those nodes in S(F, 7) will be affected (i.e., all
nodes outside the subtree will forward along the same path with or without F-L
for destination D). Now consider a packet originating from any node in S(F, 7).
That packet may be forwarded to node F' and then get rerouted, or get rerouted
somewhere in S(F,7P). Once the packet goes outside the subtree, it will be
forwarded to D consistently. So the only possible loop is the one consisting of
nodes which are all within S(F, 7). Thus, to prove loop-freedom under PIPO,
we only need to show that there will not be a loop within S(F,77P).

Suppose there is a loop in subtree S(F,7”). The loop must contain some
nodes that are aware and some that are unaware of the failed link F—L. Pick
an arbitrary node, Ai, in the loop that is aware of the failure. As shown in
Fig. 2, suppose the packet starts from A; and is routed along zero or more
“A” nodes (i.e., nodes that are aware of the failure and forward in consistence
as Ap), and reaches Aj, the last “A” node in this stretch. A} forwards the
packet to B, a node unaware of the failure. Note that from A; to Bj, the
forwarding is consistent (with P (€ \ ¢)). We use the dashed line to indicate
this subpath of P% (£\¢). By then reroutes the packet: instead of towards D via

the dashed path, it forwards the packet via the dotted path towards Bll, ie., it
chooses B wBi—>A2 ~F—L~»D. Similarly, the packet is rerouted at Ay, which
intends to forward it to D through the next stretch of dashed path. This process
continues until the packet is forwarded back to A; by B, (n > 1).

Now we show that there is a contradiction if such a loop exists. Note that in
such a loop, any B; can not forward a packet back to A; after getting the packet
from A; (e.g., A;—H #* A;)7 as the packet will get dropped under PIPO when being
forwarded back to A;. Then consider the reroute decision at node B;(1 < i < n).
Since the node B; chooses the path B;~A; 1~F over B;~A; _1~F, we have

n—1 n—1

Db+ i) <D (ai+ 1 1) (1)
i=1 i=1
by +18 +71 < ap+1% 41, 2)
Adding them together, we have

Db+ < (ai +1¢) (3)
i=1 i=1
Similarly, consider the rerouting decision made at node A;. Since it chooses
the path A; ~» B; ~ D over the path A; ~ B;_1 ~ D,

n—1 n—1
Z(aiﬂ =+ ngrl + 6i+1) < Z(bZ + lf + 6i> (4)
i=1 i=1

ar +1§ +er <b, +1° +ep (5)

Adding them together, we get

D (a1 <> (bi+10) (6)
i=1 i=1

Obviously, formula (6) above contradicts formula (3). Therefore, a forwarding
loop is not possible under PIPO in case of a single link failure.

Using similar arguments as above, we can show that PIPO avoids forwarding
loops during the convergence period after not only a failure but any change in
the state of a link.

5 Performance Evaluation

In this section, we evaluate the performance of LISF methods and compare them
against OSPF and ORDR. We first simulate single link failures and demonstrate
that LISF methods prevent a significant number of loops that are possible under
OSPF, and also have lower convergence delay than ORDR. We then experiment
with scenarios of multiple failures to further study the tradeoffs of LISF methods
between packet-discarding and loop-avoidance.

5.1 Single Link Failures

To evaluate LISF methods, we built a control plane simulator that emulates
intra-domain routing dynamics in the presence of link failures and measures
both service disruption (SD) time between different origin-destination (OD) pairs
and network convergence (NC) time as presented in [10]. We use a Tier-1 ISP
backbone (PoP-level) topology with 20 nodes and 42 links in our simulations
which was used earlier in [10]. We assign OSPF link weights to different links by
randomly picking integer values between 1 and 5. We consider both symmetric
links where X—Y has the same OSPF weight as Y— X, and asymmetric links
where the OSPF weight for X—Y could be different from Y — X. The forwarding
table at each node includes entries for all the prefixes in the Internet. We assume
that the rate of FIB update is 20 entries/ms and the number of prefixes is 161352.
The other parameters in the simulator are set based on the findings in [11]. In
every simulation run, we fail each link in the network exactly once. The results
presented below represent the effect of all the link failures in a simulation run.

1 ;i T T T T T T 1 ;i
O PIPO O PIPO

+ el + cvel

09F| < NOFP @ 09F| < NOFP
OsPF . OSsPE

08| Note: All the LISF schemes & 08l
are identical o OSPF

Note: All the LISF schemes.
are identical to

ec)

SD Time Per Failure (sec)
SD Time Per Failure (st

) 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Different OD Pairs Different OD Pairs

(a) symmetric links (b) asymmetric links

Fig. 3. Average service disruption time per link failure for various O-D pairs

The total time during which a forwarding loop exists under OSPF is observed
to be 11.851s, whereas LISF methods, as expected, have no loops in case of

symmetric link failures. For the case of asymmetric link failures, OSPF has
loops for a duration of 6.989s, while it is 0.056s for PIPO. In both cases, there
are no loops under CYCL or NOFP. These results demonstrate the effectiveness
of LISF methods in avoiding loops. We proceed to show that this is achieved not
at the expense of larger convergence delay or longer service disruption.

Figure 3(a) represents the average SD time experienced by all OD pairs due
to a single link failure in this network with symmetric links. We can clearly see
that the average SD time for a particular OD pair remains the same when LISF
is implemented on top of OSPF. This shows that LISF does not add any extra
SD time. Figure 3(b) shows a very similar behavior of average SD time for this
network with asymmetric links.

o PIPO o PIPO

cycL + CYCL
20T 9 NoFp ° 201 9 NoFp
© ORDR © ORDR
18| |_«_osPF Note: All schemes are identical] 18] [_x_osPE Note: All schemes are identical
except ORDR except ORDR
16 Oo 16
8 ° g o°
E 140 E 14k
E o = o
L g oo
g o * g 12 o
& ¢ed % 000° o
Tl ge® g ©000° @wew
: : .
5, 00888 5, 00844ee®
co 4 s 8r P
§ 0gé4¢ 3 008t
6) 388« 6 000°
8¢ 00 . 4%
WL 8”888 . p00gaeees
000009984
0000000998°°° PINIE
.
0 5 10 15 20 25 30 35 40 45 o 5 10 15 20 25 30 35 40 45
OiferentLink s OifretLink Flures
(a) symmetric links (b) asymmetric links

Fig. 4. Network convergence time due to various single link failures

Let NC time represent the total time taken for the network to converge
after a link failure. Fig. 4(a) and Fig. 4(b) show the NC time due to different
link failures for the backbone network with symmetric and asymmetric links
respectively. Given that some nodes in the network have to wait for a longer
time to update their FIBs under ORDR, it is easy to see that a network with
ORDR exhibits higher NC times when compared to a network with LISF where
no synchronization is needed between nodes for updating their FIBs.

Fig. 5(a) shows the packet discard times due to various LISF methods in the
ISP network with symmetric links. As expected, with symmetric link failures, the
packet discard times of PIPO and CYCL are identical, and NOFP is quite close
to PIPO. A similar pattern is observed even with asymmetric links (Fig. 5(b)).
However, the packet discard times under PIPO and CYCL are not identical due
to the fact that more loops are avoided by CYCL compared to PIPO.

- - - - - - - ' j j j j j N
o PIPO cycL
03 4
2 0asl N
- 025 :7 % 0.25 I
2 o i't»— E o2f fo,
A5 ! F
- £ e 7 o
H + 3 f
i P oo /}» 1
& o P &
W 0051 ngﬁ
ocs s] 7
H
04 K 50 100 150 200 250 300 350 400
. 7t % s aw
oiterem 00 pars
(a) symmetric links (b) asymmetric links

Fig. 5. Average packet discard time per link failure for various OD pairs

5.2 Multiple Link Failures

To further evaluate LISF methods, we simulated failures of multiple links and
nodes. For this study, we did not use the control-plane simulator mentioned
above as it can only handle single link failures. Instead, we used a simplified
model to approximate link state propagation and route computation and FIB
update times. It is assumed that link state propagation takes 1 time unit per
hop and route computation and FIB update time is 3 units. We simulate single
node failures and also simultaneous failures of 2 nodes, and also 2 links and 3
links. In each failure scenario, we forward a packet between every pair of nodes
and count the number of node pairs for whom packets are undeliverable and also
those that get caught in a loop.

Table 7. Comparison of LISF methods and OSPF in case of multiple failures

looping probability % of undeliverable node pairs
failures| OSPF| PIPO |CYCL|NOFP||OSPF |PIPO|CYCL| NOFP
2 links [1072-3|10753| 10753 59 | 5.9 | 5.9 6.2
3 links [10721|107%2|107** 86 | 86 | 86 9.1
1 node [1073%| 0 0 43 | 43 | 4.3 4.4
2 nodes|10727|10737| 10737 81 | 81 | 81 8.2

o O O O

Table 7 shows the relative performance of different LISF methods and OSPF
in terms of their ability to avoid loops and deliver packets. ORDR is not included
here as it is not designed to deal with multiple failures. PTPO and CYCL yield
identical performance since the links are symmetric. Compared to OSPF, loops

are close to 1000 times less likely to happen with PIPO and CYCL, whereas no
loops occur under NOFP. In terms of packet delivery, both PIPO and CYCL
have the same performance as OSPF. The delivery ratio of NOFP is only slightly
worse than OSPF. Considering that NOFP prevents loops without excessive
discarding of packets, we believe LISF approach with NOFP method is a viable
alternative for avoiding transient loops during the convergence of intra-domain
routing schemes in IP networks.

6 Conclusions

In this paper, we proposed a simple interface-specific forwarding based approach
called LISF to avoid transient forwarding loops during the network convergence
periods. LISF approach selectively discards packets arriving through unusual
interfaces when they are likely to be caught in a loop. We have demonstrated
that LISF incurs no additional message overhead compared to OSPF and avoids
forwarding loops like ORDR without increasing the network convergence time.
We have presented several LISF methods and evaluated their performance. We
observed that simple PIPO is effective in eliminating most of the loops and
NOFP provides the best trade-off between packet-discarding and loop-avoidance.

References

1. Markopulu, A., Tannaccone, G., Bhattacharya, S., Chuah, C.N., Diot, C.: Charac-
terization of failures in an IP backbone. In: Proc. IEEE Infocom. (2004)

2. Zinin, A.: Analysis and minimization of microloops in link-state routing protocols
(2004) Internet draft, draft-zinin-microloop-analysis-00.txt, work in progress.

3. Garcia-Luna-Aceves, J., Murthy, S.: A path-finding algorithm for loop-free routing.
IEEE/ACM Transactions on Networking 5 (1997)

4. Francois, P., Bonaventure, O.: Avoiding transient loops during IGP convergence
in IP networks. In: IEEE Infocom. (2005)

5. Bryant, S., Filsfils, C., Previdi, S., Shand, M.: IP Fast Reroute using tunnels (2004)
Internet draft, draft-bryant-ipfrr-tunnels-00.txt, work in progress.

6. Bryant, S., Zhang, M.: A framework for loop-free convergence (2004) Internet
draft, draft-bryant-shand-lf-conv-frmwk-00.txt, work in progress.

7. Zhong, Z., Nelakuditi, S., Yu, Y., Lee, S., Wang, J., Chuah, C.N.: Failure Infer-
encing based Fast Rerouting for Handling Transient Link and Node Failures. In:
Global Internet Symposium, Miami (2005)

8. Atlas, A.: U-turn alternates for IP/LDP fast-reroute (2005) Internet draft, draft-
atlas-ip-local-protect-uturn-02, work in progress.

9. Routing Area Working Group: http://psg.com/ zinin/ietf/rtgwg (2004)

10. Keralapura, R., Chuah, C.N., lannaconne, G., Bhattacharrya, S.: Service availabil-
ity: A new approach to characterize IP backbone topologies. In: Proc. International
Workshop on Quality of Service (IWQoS). (2004)

11. Tannaccone, G., Chuah, C.N., Bhattacharyya, S., Diot, C.: Feasibility of IP restora-
tion in a tier-1 backbone. IEEE Network Magazine, Special Issue on Protection,
Restoration and Disaster Recovery (2004)

