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Abstract. Previous work have assumed an independent model for overlay net-
works: a graph with independent link capacities. We introduce a model of over-
lays (LCC-overlay) which incorporates correlated link capacities by formulating
shared bottlenecks as linear capacity constraints. We define metrics to measure
overlay quality. We show that LCC-overlay is perfectly accurate and hence enjoys
much better quality than the inaccurate independent overlay. We discover that
even the restricted node-based LCC yields significantly better quality. We study
two problems in the context of LCC-graphs: widest-path and maximum-flow. We
also outline a distributed algorithm to efficiently construct an LCC-overlay.

1 Introduction

The proliferation of research on overlay networks stems from their versatility, ease of
deployment, and applicability in useful network services such as application-layer mul-
ticast [1, 2], media streaming and content distribution [3]. Previous studies have uni-
formly taken the view of an overlay network as merely a weighted network graph; the
nodes are end systems, the links are unicast connections, and the links are weighted by
unicast delay and bandwidth. Overlay networks are therefore treated exactly as a flat
single-level network, in which the overlay links are independent. In particular, link ca-
pacities are independent of each other. This model is inaccurate as the overlay network
encompasses two levels: a virtual network of end systems residing on top of an under-
lying IP network. An overlay link maps to a path, determined by the routing protocols,
in the underlying network. When two or more overlay links map to paths that share
an underlying link, the sum of the capacities of the overlay links are constrained by
the capacity of the shared link, i.e., these overlay links are correlated in capacity. This
obvious but crucial observation leads us to conclude that an accurate model of overlay
networks must include link correlations.

In this paper, we propose the model of overlay network with linear capacity con-
straints (LCC). An LCC-overlay is a network graph in which the capacities of overlay
links are represented by variables and link correlations are formulated as linear con-
straints of link capacities (i.e., LCC). The LCC-overlay model is a succinct way to
accurately represent the true network topology with all its link correlations, requiring
only the addition of a set of linear capacity constraints to the simple overlay graph.

We address the following questions. How do we qualitatively measure the quality
of an overlay? Why do we prefer LCC-overlays instead of a simple network graph
with independent links? Our analysis and simulations reveal the necessity of LCC-
overlay in assuring the quality of overlay networks and we introduce two qualitative
metrics — accuracy and efficiency — to measure overlay quality. We also study a
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restricted class of LCC, node-based LCC, that is more efficient and of a distributed
nature. Surprisingly, we find that even with such restricted and incomplete LCC, the
accuracy and efficiency are much better than overlays with no LCC, and they are close
to overlays with complete LCC. We propose a distributed algorithm for constructing an
LCC-overlay based on node-based LCC. We further study two network flow problems,
widest-path (i.e., maximum-bandwidth single-path unicast) and maximum-flow (i.e.,
maximum-bandwidth multiple-path unicast), with the addition of LCC. Traditional al-
gorithms cannot be used to solve them in a network graph with LCC. We show that
widest-path with LCC is NP-complete. We formulate the problem of maximum-flow
with LCC as a linear program and propose an efficient algorithm for solving it.

The remainder of the paper is organized as follows. Sec. 2 will introduce the con-
cept of overlays with LCC; provide formal definitions of the LCC-overlay and the qual-
ity metrics; and show the necessity of LCC-overlay in ensuring high overlay quality,
through analysis and simulations. In Sec. 3, we present the problem of widest-path with
LCC and show that it is NP-complete. In Sec. 4, the problem of maximum-flow with
LCC is presented and formulated using linear programming; an efficient algorithm for
solving it is proposed. Then, in Sec. 5, we outline an algorithm for constructing an
LCC-overlay. Sec. 6 describes the related work and Sec. 7 concludes the paper.

2 Overlay with linear capacity constraints

In this section, we will define an overlay with linear capacity constraints (LCC), and
two metrics for measuring overlay quality — accuracy and efficiency. We will moreover
demonstrate through analysis and simulation that LCC are necessary for ensuring high
quality of overlay networks.

As a result of the two-level hierarchical structure, overlay links are virtual links that
correspond to paths in the lower-level network. We define link correlation as follows:
Overlay links are correlated if they map to underlying paths that share one or more phys-
ical links. Link correlation is a fundamental property of overlay networks. Yet, in the
current prevailing independent overlay model of a graph in which each link is weighted
by its unicast capacity, the underlying assumption is that overlay links have indepen-
dent capacities. Suppose two overlay links both map to a bottleneck physical link of
capacity c, then each has the unicast bandwidth c; however, when data flows on these
overlay links simultaneously, each has a capacity of only c/2. Thus, the independent
overlay may be egregiously inaccurate in representing the network in reality.

We propose an overlay model, LCC-overlay, that accurately represents the real net-
work topology, by using linear capacity constraints to succinctly formulate link corre-
lations. Essentially, it is a regular overlay graph, but the link capacities are variables,
and a set of LCC express the constraints imposed by shared bottlenecks. The formal
definition will be presented in Sec. 2.2.

2.1 Worst-case analysis of overlays with no LCC

For the purpose of illustration, we examine a simple example of a two-level network, as
seen in Fig. 1(a). The mapping of overlay links to physical paths is the obvious one in
the graph. We adopt a simplified overlay construction algorithm, denoted by OC, that
is nevertheless representative of such algorithms proposed in previous work. In OC,



every node selects d neighbors to which it has links with the highest bandwidth.1 With
d = 3, the overlay graph for our example network is shown in Fig. 1(b); it is not hard to
see that the results we reach below hold for d = 2, 1. The highest-bandwidth multicast
tree for this overlay graph, denoted TOC , is given in Fig. 1(c). Although the predicted
bandwidth of TOC in the overlay is 3, the actual achievable bandwidth of TOC is only
1 because all three tree links share the physical link (r2, r3) of capacity 3.

In contrast, under the LCC-overlay model, capacities of overlay links are variables
and link correlations are captured by linear capacity constraints. For instance, the four
links (A,C), (A,D), (B,C), (B,D) are correlated, hence the sum of their capacities is
constrained by the capacity of shared physical link (r2, r3), i.e., xAC + xAD + xBC +
xBD ≤ c(r2, r3). The linear capacity constraints for the overlay graph in Fig. 1(b) are
given below in matrix form:
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The overlay graph together with the linear capacity constraints (LCC) form an LCC-
overlay. For the LCC-overlay in our example, the highest-bandwidth multicast tree is
shown in Fig. 1(d), obtained by a greedy algorithm that is a variation of the one for
regular graphs, modified to take LCC into consideration. In this case, the predicted tree
bandwidth is equal to the achievable bandwidth; both are 2.

Taking a cue from the above simple example, we arrive at the following.
Proposition: For any fixed number of overlay nodes n, there exists a lower-level

network G such that the bandwidth of an optimal multicast tree in any overlay graph
constructed by OC residing over G is asymptotically 1/(n − 1) of the bandwidth of an
optimal multicast tree obtained in the LCC-overlay.

Proof: Consider a generalized graph G = (R ∪ S,E) of the one in Fig. 1(a), with
n overlay nodes, shown in Fig. 2(a). Any overlay graph constructed by OC will contain
the middle (β + ε)-link for every overlay link between the partitions, see Fig. 2(b). An
optimal multicast tree in the OC graph must include only the (β + ε)-links, because
otherwise its predicted bandwidth would be suboptimal. However, its achievable band-
width is only (β + ε)/(n− 1) since all n− 1 tree links traverse the same (β + ε)-link in
the middle. In the LCC-overlay, the optimal tree has bandwidth β, as shown in Fig. 2(c).
With ε approaching 0, the OC tree asymptotically achieves 1/(n − 1) of β. ��
2.2 Formal definitions of LCC-overlay and quality of overlay

From the above analysis, we observe that the extreme poor performance of the overlay
with no LCC (No-LCC overlay) is a consequence of its inaccuracy in representing the
true network topology. The LCC-overlay, on the other hand, represents the network
with perfect accuracy, and hence achieves the optimal bandwidth. Two questions now
arise naturally. (1) How do we quantitatively measure the quality of overlay networks?
(2) How does the quality (i.e., accuracy, performance) of LCC-overlays compare with
that of No-LCC overlays in realistic networks?

1 Though fictitious, this is only a slightly simpler variation of the neighbor selection rule in [4].
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Fig. 1. A simple example of the detrimental effect that the independent model of overlay has on
the overlay quality.
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Fig. 2. A worst-case example of the poor quality of an overlay with no LCC.

Before we directly address these questions, we must first formally define the LCC-
overlay and the metrics to measure overlay quality. We also will make more precise the
notions of predicted and achievable bandwidth of overlay flows.

The two-level hierarchy of an overlay network can be formulated as consisting of:
a low-level (IP) graph G = (V,E), each link e ∈ E has a capacity of c(e) ≥ 0; a
high-level (overlay) graph Ĝ = (V̂ , Ê), where V̂ ⊂ V ; a mapping P of every overlay
edge (v̂1, v̂2) ∈ Ê to a low-level path P (v̂1, v̂2) ⊂ G from v̂1 to v̂2.

The formulation of capacity constraints in the overlay graph Ĝ is where LCC-
overlay departs from No-LCC overlay. The No-LCC overlay is a pair (Ĝ, ĉ), where
ĉ is a capacity function such that each link ê ∈ Ê has a capacity ĉ(ê) ≥ 0. The LCC-
overlay is defined as follows.

Definition 1 (LCC-overlay): The LCC-overlay is a triplet (Ĝ, C, b), where the ca-
pacity of each link ê in Ĝ is a variable xbe; and (C, b) represent a set of m linear capacity
constraints Cx ≤ b: C is a 0-1 coefficient matrix of size m× |Ê|, x is the |Ê| × 1 vec-
tor of link capacity variables, b ∈ Rm is the capacity vector. Each row i in (C, b) is a
constraint of the form

∑
be:C(i,be)=1 xbe ≤ b(i).

A flow f from s to t in Ĝ, is an assignment of bandwidth to every link in Ê subject
to capacity constraints and flow conservation; the flow rate, |f |, is the total outgoing
bandwidth of s. We denote the achievable flow of f ⊂ Ĝ in the low-level G by σG(f)
and the achievable bandwidth of f by |σG(f)|. We now describe the procedure for
obtaining these.

Let f be a flow from node A to node C in the No-LCC overlay shown in Fig. 1(b),
with f(A,C) = 3, f(A,B) = 2, f(B,C) = 3, hence |f | = 3. The low-level graph
G = (V,E) is shown in Fig. 1(a). Suppose low-level link (r1, r2) is in P (A,C) ∩
P (B,C), then the true capacity of overlay links (A,C) and (B,C) in f is a fair share
of the bottleneck capacity, denoted by γf (A,C) = γf (B,C) = c(r1, r2)/2. For link
(A,B), P (A,B) = {(A, r1), (r1, B)}, thus γf (A,B) = f(A,B). Using the true ca-



pacities of these three links with respect to f , a maximum flow from A to C can be
obtained. This is the achievable flow of f , σG(f), in which a flow of 1.5 is assigned to
all three links, and |σG(f)| = 1.5 is the achievable bandwidth of f .

In general, given G and a flow f ⊂ Ĝ, the procedure of determining σG(f) is shown
in Fig. 3.

for each e ∈ E
use max-min fairness to allocate c(e) among {be : e ∈ P (be) and f(be) > 0},
let each allocation be denoted by γe

f (be)
for each be ∈ bE

if f(be) > 0 γf (be) ← min{γe
f (be) : e ∈ P (be)}

else γf (be) ← 0

σG(f) ← maximum-flow in ( bG, γf ), |σG(f)| ← bandwidth of σG(f)

Fig. 3. The procedure of determining σG(f).

We introduce two metrics for measuring overlay quality: accuracy and efficiency.
With respect to a maximum flow f in the overlay, accuracy is the predicted flow rate
over its achievable bandwidth; it measures the degree to which the overlay over-estimates
a maximum flow. Efficiency is the achievable bandwidth of f divided by the low-level
maximum flow bandwidth; it measures how good an overlay maximum flow performs
in comparison with the low-level optimum (which cannot be attained in overlays). The
formal definitions are as follows.

Definition 2 (Accuracy): Accuracy of a maximum-flow f in overlay network Ĝ
residing over G, is αf

bG
= | maximum-flow f ⊂ Ĝ | / |σG(f)|.

Definition 3 (Efficiency): Efficiency of a maximum-flow f in overlay network Ĝ
residing over G, is εf

bG
= |σG(f)| / | maximum-flow f̄ ⊂ G |.

The overall accuracy and efficiency of an overlay are better measured by taking the
average of accuracy and efficiency over all possible maximum-flows.

Definition 4 (Accuracy and Efficiency of Overlay): Accuracy of an overlay Ĝ is
the mean of {αf

bG
: s-t maximum-flow f,∀s, t}. Efficiency of an overlay Ĝ is the mean

of {εf
bG

: s-t maximum-flow f,∀s, t}.

2.3 Comparing the quality of No-LCC overlay and LCC-overlay in realistic
Internet-like topologies

In practical terms, to discover a complete set of LCC incurs high cost, and also requires
centralized operations. Motivated by this, we consider a restricted class of LCC that
is naturally distributed: node-based LCC. A node-based LCC contains only capacity
variables of links that are adjacent to a single node. Therefore, we simulate three types
of overlays: No-LCC, All-LCC, and Node-LCC. Through simulations with realistic
network topologies, we compare the quality of all three types of overlays, using the
accuracy and efficiency metrics defined above. We use an Internet topology generator,
BRITE [5], which is based on power-law degree distributions. 2

First, we compare the accuracy and efficiency of the three overlays with various
overlay sizes relative to the low-level network size. We fix the number of low-level

2 A seminal paper [6] revealed that degree distribution in the Internet is a power-law.
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Fig. 4. Overlay quality versus ratio of overlay size to low-level size.

nodes to 100 and vary the number of overlay nodes from 10 to 90; the data are averaged
over numerous maximum flows with randomly selected source and destination nodes.
In Figure 4(a), accuracy is plotted against ratio of overlay over low-level size. The All-
LCC overlay always achieves its predicted maximum flows (accuracy of 1) because
it has all the bottleneck information. As the number of overlay nodes increases, the
accuracy of Node-LCC only deviates negligibly from 1. No-LCC fares much worse,
with much higher values for the accuracy metric, which indicate that it over-estimates
in predicting maximum flow values and the achievable bandwidths are substantially
lower than predicted.
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Fig. 5. Accuracy distributions for No-LCC (a) and Node-LCC (b), with the fixed ratio 30% of
overlay to low-level size.

Figure 4(b) shows efficiency versus overlay-to-low-level ratio for the three over-
lays. All-LCC has the highest efficiency, as expected, since it has the optimal overlay
efficiency, i.e., higher efficiency cannot be achieved by only using overlay links. The
surprise here is how closely the Node-LCC efficiency curve follows that of All-LCC
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Fig. 6. Efficiency distributions of No-LCC (a) and Node-LCC (b) for fixed ratio 30% of overlay
to low-level size.

for all realistic overlay ratios (less than 65%). No-LCC has much lower efficiency than
both All-LCC and Node-LCC. It should be noted that No-LCC efficiency is not as poor
as its accuracy, relatively to the two LCC. This can be explained by the fact that No-
LCC heavily over-estimates (indicated by its poor accuracy) link capacities, and thus
overloads low-level links to their full capacity and thereby benefiting the efficiency. But
overloading some low-level links results in other links being under-utilized, because it
was not foreseen that they were needed. This is why No-LCC is still significantly less
efficient than Node-LCC.
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Fig. 7. Efficiency distribution of All-LCC (a) and the cumulative distributions for the three over-
lays (b), for the fixed ratio 30% of overlay to low-level size.

Next, we evaluate the accuracy and efficiency of maximum flows with a fixed
overlay-to-low-level ratio of 30%. The distributions of accuracy over 100 maximum
flows for No-LCC and Node-LCC are given in Fig. 5(a) and (b), respectively. As above,
effectively all Node-LCC maximum flows have perfect accuracy, while No-LCC is re-
markably inaccurate.



The distributions of efficiency are more interesting. In No-LCC, shown in Fig. 6(a),
only a small fraction of maximum flows are efficient. It is quite different for All-LCC,
seen in Fig. 7(a), where a majority of maximum flows have high efficiency. The Node-
LCC distribution in Fig. 6(b) looks almost the same as All-LCC. The coinciding of
Node-LCC efficiency with All-LCC efficiency is confirmed in their cumulative distri-
butions in Fig. 7(b), where the two curves are almost the same.

5 10 15 20 25 30
0

10

20

30

40

50

60

Accuracy

N
um

be
r 

of
 m

ax
im

um
 fl

ow
s

(a) Accuracy distribution for No-
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Fig. 8. Accuracy distributions for No-LCC (a) and Node-LCC (b), for network size 500.
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Fig. 9. Efficiency distributions for No-LCC (a) and Node-LCC (b) for network size 500.

We examine the impact of larger network sizes on accuracy and efficiency, by in-
creasing the network size to 500 nodes and keeping the percentage of overlay nodes at
30%. Figure 8 shows the accuracy distributions of No-LCC and Node-LCC. No-LCC
accuracy is much worse than for the previous smaller network size. However, the in-
creased network size causes only a tiny change in Node-LCC accuracy, which is still
almost perfect. The efficiency distribution for All-LCC, given in Fig. 10(a), shows ex-
tremely high efficiency for almost all the maximum flows sampled. All-LCC efficiency



has significantly improved for increased network size. The reason, we conjecture, is
that the low-level maximum flows have to travel longer paths in the larger network,
thus they are more similar to the paths that overlay flows map to, which means that
both overlay and low-level maximum flows encounter much of the same bottlenecks.
The same reasoning explains the improved efficiency for Node-LCC in this larger net-
work; Fig. 9(b) shows its efficiency distribution. As can be seen in Fig. 9(a), No-LCC
efficiency is more inferior compared to Node-LCC than in the smaller network.

The cumulative distribution graph in Fig. 10(b) illustrates that the gap in efficiency
between Node-LCC and All-LCC is smaller than the gap between Node-LCC and No-
LCC. In Node-LCC, most of the maximum flows have high efficiency. Moreover, Node-
LCC is (like All-LCC) more efficient for the larger network size than for the smaller
one. We conclude that increasing network size causes significant deterioration in No-
LCC quality, but actually improves significantly the quality of All-LCC and Node-LCC.
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Fig. 10. Efficiency distribution for All-LCC (a) and cumulative distributions for the three overlays
(b), for network size 500.

3 Widest-Path with LCC is NP-complete

The LCC-overlay is an entirely different type of network graph than traditional network
graphs. Existing algorithms for network flow problems may not work in the LCC-graph.
In this section, we consider the problem of widest-path with LCC, i.e., finding a highest-
bandwidth path from source to destination. Widest-path can be solved by a variation of
Dijkstra’s shortest-path algorithm, however, this algorithm does not in general find a
widest path in an LCC-graph.

We are given an LCC-graph {G = (V,E), C, b}, as defined above in Sec. 2.2.
The width of a path p = 〈e1, e2, . . . , ek〉 ⊂ G, w(p), is defined as: maximize xe1

subject to xej
= 0,∀ej /∈ p,Cx ≤ b, and xe1 = xe2 = . . . = xek

. This can be
computed by assigning 1 to xei

,∀ei ∈ p, and 0 to the remaining variables; and ob-
tain min{bj/xj : j s.t. xj = 1}. We define Widest-Path with Linear Capacity Con-
straints (WPC) as a decision problem: INSTANCE: An LCC-graph (G,C, b), where



G = (V,E) and (C, b) are a set of LCC, specified s and t, a positive integer K ≤
max{bi}. QUESTION: Is there a directed path p from s to t whose width is no less
than K?

Theorem: WPC is NP-complete.

Proof: WPC is in NP because a nondeterministic algorithm need only guess a subset
of E and check in polynomial time whether these edges form a path p with w(p) ≥ K.

We transform the Path with Forbidden Pairs (PFP) [7] to WPC. The PFP problem is
defined as follows. INSTANCE: Directed graph G = (V,E), specified vertices s, t ∈
V , collection F = {(a1, b1), . . . , (an, bn)} of pairs of vertices from V . QUESTION: Is
there a directed path from s to t in G that contains at most one vertex from each pair in
F ?

Let G, s, t, F be any instance of PFP. We must construct a graph G′ = (V ′, E′),
s, t ∈ V ′, a set of linear capacity constraints Cx ≤ b for edges in E′, and an positive
integer K ≤ maxi{bi} such that G′ has a directed path from s to t of width no less
than K if and only if there exists a directed path from s to t in G that contains at most
one vertex from each pair in F .

Any vertex v ∈ V not in F and any edge e ∈ E not incident to a vertex in F
remain unchanged in V ′ and E′, respectively. For every vertex u in F , we replace it
with vertices u′, u′′ and a directed edge eu from u′ to u′′, called u’s replacement edge.
For every edge e = (v, u) ∈ E that enters u, an edge e′ = (v, u′ is added to E′;
similarly, for every edge e = (u, v) ∈ E that exits u, we add e′ = (u′′, v). Now we
form the linear capacity constraints. Each non-replacement edge e ∈ E′ gives rise to a
one-variable constraint xe ≤ 1. For each pair (a, b) ∈ F , having replacement edges ea

and eb in G′, respectively, we form a two-variable constraint xea
+xeb

≤ 1. Finally we
set K = 1. Clearly the construction can be accomplished in polynomial time.

Suppose there exists a directed path p from s to t in G containing at most one vertex
from each pair in F . A corresponding path p′ can be obtained in G′ by substituting
all p’s constituent vertices that appear in F by their replacement edges in G′. All non-
replacement edges in pprime are assigned 1. The PFP condition ensures that for each
replacement edge ea, where (a, b) ∈ F , eb is not in p′; thus xea

= 1, xeb
= 0. It

is easy to see that all the one-variable and two-variable constraints are satisfied, and
w(pprime) = 1, hence a solution of WPC.

Conversely, let p′ be an s − t path in G′ satisfying all the constraints and having
width no less than 1. The width of no less than 1 and every two-variable constraints
being satisfied imply that at most one edge from any two-variable constraint appears in
p′. Collapsing p′ to a path p ∈ G by shrinking the replacement edges into corresponding
vertices, it is obvious that p satisfies the PFP condition. ��

Even though the WPC problem is NP-complete, we discovered through simula-
tions that widest paths obtained without considering LCC can usually achieve optimal
bandwidth. The reason is that it is highly unlikely for links in a single path to cor-
relate heavily. Therefore traditional widest-path algorithm suffices in realistic overlay
topologies. In general, however, the WPC problem — with consideration of all possible
pathological cases — is still NP-complete.



4 Maximum Flow with LCC
In this section we study the problem of maximum flow in an LCC graph. The traditional
maximum flow algorithms such as Ford-Fulkerson and Push-Relabel cannot solve the
maximum flow with LCC problem. We first formulate the problem as a linear program
and then propose an algorithm for it based on Lagrangian relaxation and existing algo-
rithms for minimum cost flow.

Maximum Flow with LCC Problem (MFC): Input : Ĝ = (V̂ , Ê), C, b. Output: A
flow f ⊂ Ĝ satisfying LCC constraints (C, b). Goal : Maximize |f |.

Like the maximum flow problem, the MFC problem can be viewed naturally as a
linear program. A variable v is used to indicate the total flow out of s and into t. In
the flow conservation constraint, A is the node-arc adjacency matrix for Ĝ,3 and d is a
vector with a 0 for every node, except d(s) = −1 and d(t) = 1.

Maximize v
subject to Af + dv = 0, Cf ≤ b, f ≥ 0

The MFC linear program can be solved by general linear programming algorithms,
such as the simplex method. However, due to their general nature, they may not be as
efficient as algorithms that are tailored to the problem. We propose such an alternative
algorithm.

Note that the MFC linear program only differs from the generic maximum flow
linear program in having Cf ≤ b (LCC) as the inequality constraint instead of f ≤ b.
MFC can be seen as a generalized maximum flow problem; maximum flow is a special
case of MFC with the identity matrix as C. With that observation, we modify the linear
program slightly to reveal even more clearly the embedded maximum flow structure.
We do this by sieving (uncorrelated) link capacity constraints from (C, b): for each link
e, add the constraint f(e) ≤ bl(e), where bl(e) = min{b(j) : C(j, e) = 1}, that is,
minimize over all constraints in C involving f(e). The additional f ≤ bl constraints do
not change the feasible flow region, therefore the new linear program is equivalent to
the original one. The objective function is expressed in a different form for convenience.

z∗ = Minimize − v subject to Af + dv = 0, f ≤ bl, Cf ≤ b, f ≥ 0. (2)

It is now evident that MFC is a maximum flow problem with some additional
constraints Cf ≤ b(i.e., the LCC). We apply the decomposition solution strategy of
Lagrangian relaxation [8] to the MFC problem, by associating nonnegative Lagrange
multipliers µ = [µi]m1 with the LCC constraints (Cf ≤ b), and creating the following
Lagrangian subproblem:

L(µ) = min −v + µ(Cf − b) subject to Af + dv = 0, f ≤ bl, f ≥ 0. (3)

For any given vector µ of the Lagrangian multipliers, the value L(µ) of the La-
grangian function is a lower bound on the optimal objective function value z∗ =
min−v of the original problem (4). Hence, to obtain the best possible lower bound,
we need to solve the Lagrangian multiplier problem

L∗ = max
µ≥0

L(µ). (4)

3 Rows are nodes; columns are edges; for each directed edge e = (i → j), A(i, e) =
1, A(j, e) = −1, otherwise entries of A are zero.



Note that for the our Lagrangian subproblem (4), for any fixed value of Lagrangian
multipliers µ, L(µ) can be found by solving a minimum cost flow problem. A polynomial-
time minimum cost flow algorithm is the cost scaling algorithm, with a running time
of O(n3 log(nC)), where n is the number of nodes and C is the upper bound on all
the coefficients in the objective function. Since the objective coefficients are 1 or −1,
the time complexity in this case is O(n3 log(n)). We choose the cost scaling algorithm
precisely because its running time depends neither on m (number of rows in C), nor on
U (upper bound on values in bl), which may have large values, whereas C is a constant
here.

Now that we can solve the Lagrangian subproblem for any specific µ, we can solve
the Lagrangian multiplier problem (4) using the subgradient optimization technique.
It is an iterative procedure: begin with an initial choice µ0 of Lagrangian multipliers;
the subsequent updated values µk are determined by µk+1 = [µk + θk(Cxk − b)]+.
Here, the notation [.]+ means taking the maximum of 0 and each vector component; xk

is a solution to the Lagrangian subproblem when µ = µk; θk is the step length at the

kth iteration. The step length is selected to be a popular heuristic, θ = λk(UB−L(µk))
‖Cxk−b‖2 ,

where 0 < λk < 2 and UB is any upper bound on the optimal value of (4). 4
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Fig. 11. Shows the convergence of Lagrangian function values (or Lagrangian subproblem solu-
tions) L(µ) (in Problem 4) to a value near to the true optimal value z∗ (in Problem 4), after a
relatively small number of iterations.

We show in Fig. 11 that for MFC in a simulated network in which 30% of the nodes
are overlay nodes, the Lagrangian function values converge to near optimal value in
around 65 iterations.

5 Constructing an LCC overlay
In this section, we present a distributed scheme for constructing an LCC overlay. In
Sec. 2, we showed that node-based LCC exhibits notably better quality than no-LCC.
The advantage of node-based LCC is that they are naturally distributed. In our scheme,
an overlay node first determines a conservative set of node-based LCC; it then succes-
sively refines the LCC.

4 It should be noted that sometimes there may be a gap between the optimal Lagrangian multi-
plier objective function value and the optimal value for the original problem, the branch and
bound method can be used to overcome the gap. We do not go into the details here.



The input is a set of overlay nodes, each possessing a list of other known nodes; the
list may not be complete at first, but it is periodically disseminated and updated. Existing
methods make use of unicast probes to estimate link bandwidth. Independent unicast
probes cannot yield shared bottleneck information. Therefore, the probing tool we use
in our scheme is an efficient and accurate technique for detecting shared bottlenecks
(DSB), proposed by Katabi et al. in [9, 10]. This technique is based on the entropy of
the inter-arrival times of packets from flows. A set of flows are partitioned into groups
of flows, each group of flows share a bottleneck, and the bottleneck capacities are also
measured. We refer to this probing tool for detecting shared bottlenecks as DSB. Every
time DSB is executed with the input of a set of flows, the output is a collection of
groups of flows with their corresponding bottleneck capacities. Prior to determining
LCC, a node selects k neighbors; for our simulation, the k highest bandwidth links are
selected.
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(a) Illustrates the phenomenon of hid-
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The node-based LCC are obtained in iterations of increasing refinement. In the first
stage, the least refined set of LCC is determined. A node executes DSB once with
the input of the set of k flows to all its neighbors. The k flows are partitioned into n
bottleneck-sharing groups of flows, g1, g2, . . . , gn, with the respective bottleneck ca-
pacities b1, b2, . . . , bn. The LCC obtained are thus C1 = {∑e∈gi

xe ≤ bi}n
i=1. Since

DSB detects only the dominant bottlenecks, some bottlenecks cannot be discovered in
the first stage. We give an example of this in Fig. 5(a); assume that node U is using DSB
to probe for bottlenecks, and assume that bottleneck B1 has a smaller capacity than B3.
When node U executes DSB with all 5 flows from its neighbors (V 1, . . . , V 5), only the
most dominant bottlenecks B1 and B2 can be discovered. To determine more refined
LCC, node U must execute DSB with the input of only the flows from V 1 and V 2. This
will be done in the second iteration of LCC refinement.

In order to guarantee that all bottlenecks are found, all possible subsets of flows in
each group must be probed separately. However, the brute-force search is exponential
in computational complexity and hence infeasible. We maintain a low complexity by
randomly dividing each group g into two subsets and execute DSB on each subset. Our
simulation results show that this non-exhaustive approach is not only efficient but also
able to quickly find LCC that are negligibly close to the complete LCC.



The entire procedure of discovering node-based LCC is summarized as follows:

1. Start with G containing one single group including all k flows.
2. Execute DSB with each group g from G separately.
3. Every group g is partitioned into n sub-groups, from which n LCC derive; add to

C (the growing set of LCC) those LCC not redundant with ones already in C.
4. Each sub-group of > 2 flows is randomly divided into two groups, add to G.
5. Repeat step 2 as long as more LCC can be found.

The simulation results for a network of 100 nodes with 30% overlay nodes are given
in Fig. 5(b). In our simulation, LCC obtained at successive stages of refinement are used
to compute maximum flows, and maximum flows are also computed from the complete
node-based LCC. A large number of source and destination pairs are randomly chosen
to compute maximum flows and the maximum flow bandwidths are averaged over all
such pairs. In Fig. 5(b), the average maximum flow bandwidths for successive stages
of LCC refinement are plotted, and compared to the average maximum flow bandwidth
computed using complete node-based LCC. After only 5 refinement stages, the DSB
LCC are as good as complete node-based LCC. The number of stages required for such
accuracy may have something to do with the node degree limit, which is set at 6 in this
simulation, because the node degree limit determines the maximum size of the groups
given by DSB.

The complexity of the procedure depends on two factors: number of executions of
DSB and number of flows probed. A reasonable estimate of the number of packets per
DSB flow, based on reported empirical results in [9], is a few hundred packets. In our
simulation, to obtain LCC that are 98% accurate of complete node-based LCC, DSB is
executed a few times and the number of flows probed is around 10, on average. This
translates to a total of a few thousands of probes used. It is worth noting, though, that the
probing can be done passively. The overlay can begin data transmission without knowl-
edge of LCC. The data transmission acts as passive probing and is used to determine
more and more refined node-based LCC over time. The data dissemination topology
can adapt to the discovered LCC.

6 Related Work
To the best of our knowledge, there has not been previous work on overlays with LCC.
Prior work have without exception assumed an overlay model of independent link ca-
pacities, with no correlation. To alleviate overloading of shared underlying bottlenecks,
the typical approach is to limit overlay node degrees. Several projects based on Dis-
tributed Hash Tables, e.g., CAN [11] and Chord [12], designed structured overlay net-
works. Distributed algorithms for general-purpose overlay construction were proposed
by Young et al. in [13] and by Shen in [4], using heuristics of minimum spanning trees
and neighbor selection based on unicast latency and bandwidth. Application-specific
proposals have been made for overlay multicast [1], content distribution [3] and mul-
timedia streaming [2]. Also relevant is work by Ratnasamy et al. [14]. A distributed
binning scheme is designed to build unstructured overlays; the aim is to incorporate
more topological awareness. This work differs from ours in focusing exclusively on
latency. Due to the additive nature of the latency metric (the bandwidth metric is con-
cave), overlay links are essentially independent of each other in latency. We focus on
overlay link capacity correlation.



Common to all these proposals are heuristics that use unicast probing to select over-
lay routes with low latency or high bandwidth. They view and treat overlay links as in-
dependent. However, we propose a new overlay model and hence work upon a premise
distinct from previous work.

7 Conclusions
We have introduced a new overlay model, LCC-overlay, that uses linear capacity con-
straints to efficiently and accurately represent real networks with link correlations. We
showed that LCC-overlay has optimal quality, and even the restricted node-based LCC
yields good quality, while overlays with no LCC has poor quality which deteriorates as
network size increases. We proposed a distributed algorithm for LCC-overlay construc-
tion. We also studied the problems of widest-path and maximum-flow with LCC.
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