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Abstract. Since the entities composing self-organizing systems have di-
rect access only to information provided by their vicinity, it is a non-
trivial task for them to determine properties of the global system state.
However, this ability appears to be mandatory for certain self-organizing
systems in order to achieve an intended functionality.
Based on Shannon’s information entropy, we introduce a formal measure
that allows to determine the entities’ degree of global-state awareness.
Using this measure, self-organizing systems and suitable system settings
can be identified that provide the necessary information to the entities
for achieving the intended system functionality.
Hence, the proposed degree supports the evaluation of functional prop-
erties during the design and management of self-organizing systems. We
show this by applying the measure exemplarily to a self-organizing sensor
network designed for intrusion detection. This allows us to find preferable
system parameter settings.

Keywords: Self-organizing systems, Mathematical modeling, Quanti-
tative evaluation, Information theory, System design, Sensor networks

1 Introduction

Self-organization is foreseen to enable efficient, scalable, and robust large-scale
distributed systems, like the future Internet. However, the design of self-orga-
nizing systems (SOSs) that fulfill a certain intended functionality is a difficult
task. Three different design approaches are sketched in [1]: the trial-and-error
approach, the bio-inspired design, and the design by learning from an omniscient
entity (see [2]).

In SOSs, the entities can only observe events that happen in their immediate
vicinity. This makes it a non-trivial task to design the entities such that they
foster the desired functionality of the SOS. Entity design can be simplified if
the entities have access to information on the SOS’ global state. This, however,
presumes that the system entities are provided with the necessary global state
information to foster the preferred system behavior. A quantitative characteri-
zation of the entities’ ability to derive such global state information could help



to identify such SOSs that can then be further investigated (e.g., by the method
in [2]) towards how the entities can foster the intended functionality. In this
paper, we are proposing such a quantitative characterization.

Several formal measures have been proposed for describing certain properties
of SOSs, like autonomy [3,4], emergence [3–5], adaptivity, homogeneity, and re-
silience [6]. However, these measures do not evaluate to which extent the entities
can derive the necessary global-state information from the information provided
by their vicinity.

In this paper, we propose a novel measure of the entities’ degree of global-
state awareness. By evaluating this degree, systems can be identified in which,
over time, the necessary information is communicated to the entities, i.e., the
entities become aware of important properties of a former global system state.
These system candidates can then be further investigated, e.g., by the method
proposed in [2], towards how the entities can use the provided information in a
purposeful, target-oriented manner. The resulting system can finally be evalu-
ated by using the measure of target orientation proposed in [6].

Hence, the main contribution of this paper is proposing an answer to the
question if, and to which degree, the SOS under investigation is able, in principle,
to provide the necessary information to the system’s entities. For instance, in
an SOS where global consensus has to be found in a completely decentralized
manner, a low degree of global-state awareness indicates that the system entities
are not provided with sufficient information. Hence, the system is not suitable
to fulfill the task and should be redesigned.

We derive the measure of the degree of the entities’ global-state awareness
utilizing Shannon’s information entropy (see [7]) and are hence in line with the
previously proposed measures of autonomy [3, 4], emergence [3–5], and homo-
geneity [6].

As an illustrative example, we apply the proposed measure to find suitable
system parameters for a sensor network (adopted from [8]) which is designed
for intrusion detection. It can be shown that the simulated sensor network in-
deed is able to fulfill the desired functionality in a self-organizing manner if the
system parameters are chosen such that the degree of global-state awareness is
maximized. The sensors are then able to reach a global consensus on whether
an alarm triggered by a subset of the sensors was a false positive.

The remainder of the paper is organized as follows: In Sec. 2, we provide a re-
minder of Shannon’s information entropy, which is essential to the understanding
of following sections. We also introduce the model representing the SOS. As the
main contribution of this paper, we introduce the measure of the entities’ degree
of global-state awareness in Sec. 3. In Sec. 4, we apply the proposed measure
to discuss a sensor network for intrusion detection as an illustrative example.
How the degree of global-state awareness can assist during the design of SOSs
is sketched in Sec. 5. A conclusion and directions for future work are given in
Sec. 6.



2 Background

This section briefly recapitulates the basic concepts of information theory and
introduces the system model.

2.1 Entropy of Information

In this paper, a random variable X is denoted by an upper-case letter and the
realization of X is denoted by the lower-case letter x. For the range of X we
use the bold-face character X. In our case, the range of any random variable is
finite, i.e., #X <∞.

As a measure of uncertainty, a useful tool is Shannon’s information entropy
as defined in [7]: given some discrete random variable X with finite range X, the
entropy of X is defined as:

H[X] = −
∑
x∈X

P [X = x]· log2 P [X = x] . (1)

The entropy is 0 iff X almost surely takes a value x ∈ X, i.e., P [X = x] = 1 for a
single x ∈ X. H[X] takes its maximum iff X is uniformly distributed. Generally,
the lower the value of the entropy, the more certain the outcome of a random
variable can be predicted.

If X,Y are two discrete random variables with finite ranges X,Y, then know-
ing the outcome of Y might reduce the uncertainty of the outcome of X. When
the outcome of Y is known, the remaining entropy of X is measured by the con-
ditional entropy H[X|Y ] = H[X,Y ] − H[Y ] (cf. [7, 9]). It can be shown (cf. [9])
that H[X|Y ] = H[X] iff X and Y are independent and H[X|Y ] = 0 iff X = f(Y ),
where f is a non-stochastic function.

2.2 System Model

In this paper, we focus on the class of technical SOSs that can be modeled as
discrete-event systems consisting of a finite set N of entities. An example of such
a system is depicted in Figure 1.

At each time step t ∈ N0, each entity n ∈ N receives input it,n from its
vicinity that contains neighboring entities and possibly comprises parts of the
environment. Entity n then produces the output ot,n which is received in the
next time step t + 1 by entity n’s neighbors and possibly also influences the
environment. For example, in Figure 1, ot,n2,2 = it+1,n2,1 .

We assume that the SOS’ entities can be modeled as deterministic finite-state
Mealy automatons: The finite state space of entity n is denoted by Sn and its
transition function by ζn that maps the input it,n and current state st,n ∈ Sn of
entity n to its output ot,n and its successor state st+1,n ∈ Sn.

The tuple γt,n = (it,n, st,n) is called local configuration of entity n at time
step t: At each time step, each entity can only observe its local configuration, i.e.,
its own state and the input provided by its vicinity. Up to some time step t, the
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Fig. 1. Model of a self-organizing system: The system consists of several entities (nodes)
and can be distinguished from its environment (system border). The entities may ex-
change information (arrows) with their vicinity that might contain parts of the envi-
ronment.

sequence of local configurations (γt′,n)t′=0...t constitutes the local history ←−γ t,n
of entity n. The state of the whole SOS at time step t can be fully described by
the local configurations of all entities: We call γt = (γt,n)n∈N the configuration
at time step t. The set of all possible configurations is called state space of the
SOS and is denoted by Γ.

The configuration γ0 at time step 0 is called initial configuration (IC). The IC
is modeled by the random variable Γ0 with range Γ0 ⊆ Γ, where Γ0 is the set of
all possible ICs which all have a non-zero probability. Since the IC is chosen ran-
domly, all subsequent configurations can also be described by random variables
even if there is no random input from the environment. We denote the random
variable of the SOS’ configuration γt by the capital letter Γt. Accordingly, we
denote with Γt,n and

←−
Γ t,n the random variables of entity n’s local configuration

γt,n and of the local history ←−γ t,n, respectively.
In principle, our system model assumptions can be relaxed by generalizing

the model using the modeling approaches presented in [3] (asynchronous com-
munication and stochastic transition functions) and [4] (continuous time and
continuous state space). However, due to space limitations and to preserve clar-
ity, we refrain from applying these generalizations here.

3 The Degree of Global-State Awareness

In this section, we present the main contribution of this paper. Our main goal is
to evaluate an entity’s ability to obtain global-state information when only the
information provided by the entity’s vicinity is directly available.



3.1 Classification Problem

To define the measure of the entities’ degree of global-state awareness as gen-
eral as possible, we introduce the notion of classification problems. In general,
it is unsuitable, unnecessary, and often even impossible to distribute the full
information on the system’s global state to each single entity.

Hence, we aggregate global states that share a common property of interest
to the same state class. For an entity it is then sufficient to figure out the state
class, i.e., to solve the classification problem by only taking the information into
account that is provided by its vicinity.

We assume that the entities need to determine the state class of the SOS at
some time step t. Without loss of generality, we refer to this time step t as the
initial time step t = 0. Therefore, we aggregate initial system states of the set
of possible ICs Γ0 to state classes to define the classification problem as follows:

Definition 1 (Classification Problem). Let L be a partition of Γ0, i.e.:⋃
l∈L

l = Γ0 ∧ ∀l, l′ ∈ L, l 6= l′ : l ∩ l′ = ∅ ∧ ∅ /∈ L .

ϑ : Γ0 → L is a function which maps any initial configuration to its correspond-
ing state class in L: ∀γ0 ∈ Γ0 : ∀l ∈ L : ϑ(γ0) = l ⇐⇒ γ0 ∈ l .

Applying function ϑ to random variable Γ0 produces the random variable
L = ϑ(Γ0), which is the random variable of the state class of Γ0. The realization
of L is denoted by l. L naturally inherits the probability distribution from Γ0.

The problem of determining the state class of the initial configuration l ∈
L (i.e., the outcome of L) given only the local history of an entity is called
classification problem L.

In the following, we assume that a classification problem is non-trivial in the
sense that L contains at least two state classes.

The mapping of the IC γ0 to the property of interest can be represented in
form of a function ψ : Γ0 → P, i.e., γ0 has the property ψ(γ0), where P is the
set of global-state properties of interest that depend on the specific application
scenario. This implies the partition Lψ in which all ICs are aggregated that
map to the same value of ψ. Hence, the system entities can obtain the value of
ψ(γ0) after determining the corresponding state class of Lψ, i.e., after solving
the classification problem Lψ.

3.2 Defining the Degree of Global-State Awareness

As a reminder, L = ϑ(Γ0) denotes the random variable of the state class of the
random IC Γ0. To solve a classification problem L, the entities of an SOS have to
decrease their uncertainty about the random variable L, given their local history.
In order to measure the uncertainty about L when the local history is given, we
use Shannon’s information entropy (see Sec. 2.1):



Definition 2 (Degree of Global-State Awareness). The degree of global-
state awareness ωt,n(L) observable by entity n ∈ N at time step t is defined
by:

ωt,n(L) = 1− H[L|
←−
Γ t,n]

H[L]
. (2)

The system’s overall degree of global-state awareness is then defined as the lim-
iting value for t→∞, averaged over all entities:

ω(L) = lim
t→∞

1
#N

∑
n∈N

ωt,n(L) . (3)

Note that H[L] measures the uncertainty of predicting L when no additional
information is given. Since H[L|

←−
Γ t,n] ≤ H[L], we have ωt,n(L) ∈ [0, 1] and

ω(L) ∈ [0, 1].
By the definition of the entropy (Eq. (1)), the denominator in Eq. (2) is

strictly greater than 0 since L consists of at least two state classes that have a
non-zero probability.

Intuitively, ωt,n(L) measures how certain entity n can determine the outcome
of L at time step t by taking its local history

←−
Γ t,n into account. If ωt,n(L) ≈

1, then H[L|
←−
Γ t,n] is small compared to H[L] and, hence, n can use its local

history to determine the outcome of L with a high certainty. As a matter of
fact, ωt,n(L) = 1 iff there exists a non-stochastic function f with L = f(

←−
Γ t,n)

(see Sec. 2.1). At the other extreme, if ωt,n(L) ≈ 0, then H[L|
←−
Γ t,n] ≈ H[L],

which implies that the local history contributes almost no information about
the outcome of L. Again, ωt,n(L) = 0 iff L and

←−
Γ t,n are independent random

variables (see Sec. 2.1).
The system’s overall degree of global-state awareness ω(L) (Eq. (3)) measures

to which extent the information about L is distributed within the SOS in the
long-term. Note that a high overall degree of global-state awareness indicates the
distribution of the information about the IC’s state class L among most entities
since all entities equally contribute to ω(L).

4 Intrusion Detection in Sensor Networks

To show the applicability of the proposed measure, we now utilize it to find suit-
able parameter settings for a sensor network designed for intrusion detection. It
can be shown that the sensor network indeed is able to fulfill the desired func-
tionality in a self-organizing manner as long as suitable system parameters are
chosen. The degree of global-state awareness helps to find these system param-
eters.
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Fig. 2. Sensor network (a) and phase function φ(t) of pulse-coupled oscillator (b)

4.1 Scenario and Problem Description

Consider the distributed sensor network sketched in Figure 2(a). Suppose that
the group G of sensors detects an intrusion. In absence of an omniscient central
entity and with a non-zero probability of single sensors giving a false alarm, a
consensus needs to be achieved in a completely decentralized and self-organized
manner whether the alarm was false positive. Due to hard resource constraints,
this should also be accomplished by exchanging a minimum amount of infor-
mation. In the following, we use the degree of global-state awareness to find
system candidates for which the sensors are able to find a global consensus on
the detected intrusion.

In [8], a mechanism is described how a sensor network can reach global con-
sensus on an intrusion detected by a sensor group G. Each sensor periodically
emits pulses (illustrated by black asterisk in Fig. 2(a)) with a fixed identical
period T but varying phases. These pulses can be observed by all sensors in its
neighborhood (gray dots) only.

In the following, we neglect transmission delays which are discussed in, e.g.,
[10]. With the help of [10], the following discussion can similarly be applied to
more realistic scenarios where delays cannot be neglected, e.g., in the internet.

Before intrusions can be detected, all sensors have to synchronize their phases.
According to [11], which is based on the theoretical model of pulse-coupled os-
cillators presented in [12], synchronization can be achieved using the following
mechanism: Each entity calculates a local phase φ following the phase function
illustrated in Figure 2(b). The phase is increased linearly over time. If the entity
receives no pulse, it periodically emits a pulse with a period of T . If an entity
observes a pulse from another entity, it additionally increases its current phase
by δ = (α−1)φ+β, where α > 1 and β > 0 are constant system parameters (see
also [11, 12] for details). If the phase reaches a threshold value φth, the entity
emits a pulse and resets its phase to φ = 0. It is proved in [12] that using this
mechanism, synchronization can be reached almost surely if an entity’s pulse
can be directly observed by all other entities. Moreover, it is shown in [13] that
pulse-coupled oscillators can also synchronize if each entity communicates only
with its nearest neighbors.



After synchronization, the sensor network is ready for detecting intrusions
using the method described in [8]: On detection of an intruder, the sensors of
group G shift their phase by a predefined amount of ∆φ. This results in a
partitioning of the network into two groups where intra-group synchronization is
still given. Inter-group synchronization, however, is no longer given. The groups
automatically start to resynchronize until, at some time instant, all sensors are
again synchronized and all phases have been shifted by some ∆Θ compared to
the phase before the intrusion was detected. According to [8], if ∆φ is chosen
appropriately and if the sensor network is fully connected, i.e., every sensor
receives pulses from all other sensors, then each sensor is able to infer from ∆Θ
whether group G was large enough to exclude false alarm. However, in [8], no
concrete advice is given how to find appropriate system parameters (i.e., α, β,
∆φ, and φth) for this mechanism, despite focusing on fully connected networks.
Additionally, [8] neglects that each sensor can observe more than just ∆Θ: Each
sensor might use the whole history of its local observations to infer whether a false
alarm has occurred. In Section 4.2, we now derive suitable system parameters
by evaluating the degree of global-state awareness of a sensor network that is
not even fully connected.

4.2 Application of Proposed Measure to Sensor Network

Without loss of generality, we assume that each entity n ∈ N (N = 1, . . . , 100)
of the sensor network should conclude that an intrusion has in fact occurred, if
more than one fifth of all sensors detected the intrusion, i.e., #G > #N/5.

We model the sensor network at discrete time steps that are defined at all
time instants where at least one sensor emits a pulse. At these time steps, each
sensor can be modelled as a finite state automaton: As input from its neighboring
sensors, each sensor either perceives a pulse or not. Additionally, at time step
0, the detection of an intrusion by a sensor is modelled as an input from the
sensor’s environment. To keep the model simple, we assume that after time step
0 no further intrusions are detected. The state st,n of sensor n at time step t is
given by the sensors’ phase value φn(t). As output, the sensor may or may not
emit a pulse to its neighbors. In order for the state space of the sensor network to
be discrete, we assume, without loss of generality, that at time step 0 all sensors
are synchronized and have a phase value of 0 except for the sensor group G that
have an identically shifted phase value of ∆φ. The resulting configuration of the
sensor network is referred to as IC γ0. This implies a discrete set of possible ICs
Γ0 and, since the sensor network is investigated at discrete time steps, also the
set of possible system configurations Γ and sensor states Sn are discrete.

To keep the model concise, we assume that intrusions are always detected
by compact rectangular groups of sensor nodes, i.e., G forms a rectangular sub-
set with width w and height h within the sensor grid of size 10× 10 nodes (see
Fig. 2(a)). The width and height of G are described by independent random vari-
ables W and H, respectively. Both random variables have the range {0, . . . , 10},
where W = 0 or H = 0 implies that no sensor has triggered an alarm. Given the
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width w and height h, the position of G is then chosen according to a uniform
distribution on all possible positions within the sensor grid.

According to the notation introduced in Section 3.1, there are two equivalence
classes on the IC γ0 ∈ Γ0 of interest. Class l>1/5 contains all ICs where #G >
#N/5 and intrusion should be recognized by all sensors. Class l≤1/5 contains all
ICs where #G ≤ #N/5 and should be treated as false alarm. It hence has to be
checked for which system parameters each sensor is able to solve the classification
problem L = {l>1/5, l≤1/5}.

By simulating the sensor network for all possible G and weighing the out-
comes with the according probabilities, exact values for the degree of global-state
awareness ω(L) can be obtained by applying Eq. (2). In particular, we investi-
gate the influence of the system parameters α and ∆φ on the system’s ability to
solve the classification problem L. For β we choose a value of 0.01 and φth = 1,
which are reasonable values according to [11].

Figure 3 shows the influence of ∆φ on the degree of global-state awareness
ω(L) (y-axis) for α = 1.05, α = 1.35, and ∆φ ∈ [0, 0.05, 0.1, . . . , 1] (x-axis).
It can be seen that with increasing ∆φ, both curves initially increase, reach a
maximum, and then drop. For both extremes, ∆φ close to 0 and 1, ω(L) is small
which implies that the sensors cannot decide certainly whether L = l≤1/5 or
L = l>1/5. This is because the difference between the phases of G and N \G is
small. Hence, the two sensor groups almost immediately resynchronize and the
information about L has no time to spread within the network.

For ∆φ → 0, ω(L) tends to the limiting value ω. In this case, the sensors
in G detect an intrusion but do not shift their phase. Each sensor in n ∈ G
knows that at least one sensor, namely n itself, has detected an intrusion. This
reduces the uncertainty about L for n and leads to the limiting value ω. At the
other extreme, for ∆φ → 1, the sensors in G detect an intrusion, do not shift
their phase, but emit a pulse which is also perceived by the sensors neighboring
G. All these sensors can then reduce their uncertainty about L, resulting in the
limiting value ω which is greater than ω.



For α = 1.05, the degree of global-state awareness is close to 1 for ∆φ ∈
[0.3, 0.6]. Indeed, for ∆φ = 0.525 (vertical dashed line in Fig. 3), ω(L) = 1, which
has an important implication. It follows that H[L|

←−
Γ t,n] = 0 for a sufficiently

large t and all n ∈ N. From information theory (see Sec. 2.1), it is then known
that there exists a non-stochastic function fn :

←−
Γ t,n → L for every sensor

n ∈ N such that fn(
←−
Γ t,n) = L, almost surely. Each sensor n ∈ N can then

apply fn to obtain L. Such a mapping can, for instance, be obtained by the
simulation process we used to calculate the degree of global-state awareness.
Another approach to implement fn is discussed in Section 5.

It can also be seen in Fig. 3 that the curve for α = 1.35 remains well below
the curve for α = 1.05. In [12, 13] it is shown that the time until the sensors
reach synchronization is inversely proportional to α. Intuitively, a reduced con-
vergence time prevents the information about state class L from spreading within
the whole network since the sensors within the vicinity of G resynchronize too
quickly. Hence, suitable choices for α and ∆φ maximize the degree of global-state
awareness while minimizing the convergence time of the network to assure that
the information about an intrusion is spread quickly within the network.

5 Effects on Entity Design

Remember that, by using the degree of global-state awareness, it is possible to
characterize if it is, in principle, possible for the entities to obtain the desired
global-state information. However, the degree does not indicate how the system
entities can use the information provided by their vicinity to derive the desired
global-state information and how this information can be used to foster the
desired functionality of the SOS. In this section, we sketch how suitable local
interaction strategies can be found.

A degree of global-state awareness of 1 implies that there exists a non-
stochastic function that maps any local history to the corresponding global state
class. In principle, such a mapping could be obtained by a simulation process
similar to the one we used to produce the results shown in Sec. 4. However,
the resulting table that maps a local history to the corresponding state class
would be very large and, hence, cumbersome, if not impossible, to implement
in devices with limited memory and computation power, e.g., wireless sensors.
Furthermore, in a real-world scenario, events may happen that are not encoun-
tered by the simulation process.This could lead to an undefined input value for
the obtained mapping.

In [2], we presented a method to derive local interactions strategies for entities
of an SOS by learning from an omniscient entity, called the Laplace’s Daemon
(LD). We now discuss the application of LDs to obtain a mapping from the local
history to the corresponding state class of the IC. In a simulation environment,
the LD of each entity is equipped with information about the IC’s state-class.
At each time step, as input, each LD receives the local configuration of the
corresponding entity and outputs the current state-class of the IC. The sequence
of local inputs to and outputs from each LD generated during the simulation is



investigated by a time series analysing algorithm (CSSR algorithm; cf. [14, 15])
to obtain a minimal Markov chain description of each LD. The obtained Markov
chains can be effectively implemented in the entities and are minimal in the sense
that they only use the relevant information from the local history to predict the
global-state class. Furthermore, the derived mappings even produce reasonably
reliable results when they encounter situations that were not faced during the
simulation. This information about the global-state class can then be used by the
entities to foster the desired functionality of the SOS. A high degree of global-
state awareness indicates that it is worthwhile to apply the approach presented
in [2] to optimize the given SOS.

6 Conclusion

In order for the entities of a self-organizing system to optimize the overall system
performance, it is useful for them to know certain aspects of the system’s global
state. To model such aspects of the system’s global state, we introduced the
classification problem where system global states that share common properties
of interest are aggregated to state classes. As the main contribution of this
paper, the degree of global-state awareness was introduced that evaluates to
which extent the entities of a self-organizing systems are able to find out the
respective state class while using only the local information provided by the
entities’ vicinity. By using our measure, it is possible to find preferable system
parameters that enable the entities to adjust their behavior for an optimized
overall system performance.

As an illustrative example, a sensor network for intrusion detection was used
in this paper. By applying the measure of the entities’ degree of global-state
awareness, we were able to find system parameter settings that allow all sensors
to determine whether an intrusion was detected by a significant number of sen-
sors in a completely decentralized manner. The sensors can use this global-state
information to exclude false alarms.

By using the found system parameter settings, it is then possible to derive
local interaction strategies that can rely on this global information. We also
described how to obtain such interaction strategies in general, i.e., by learning
from an omniscient entity, an approach we presented in [2].

In near future, we intend to apply our measure of global-state awareness
to other application scenarios. We also plan to investigate further properties of
self-organizing systems, e.g., decentralization, while also providing suitable and
generally applicable formal measures of these properties.
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