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Abstract. Network Coordinates are a basic building block for most peer-to-peer
applications nowadays. They optimize the peer selection process by allowing the
nodes to preferably attach to peers to whom they then experience a low round trip
time. Albeit there has been substantial research effort in this topic over the last
years, the optimization of the various network coordinate algorithms has not been
pursued systematically yet. Analyzing the well-known Vivaldi algorithm and its
proposed optimizations with several sets of extensive Internet traffic traces, we
found that in face of current Internet data most of the parameters that have been
recommended in the original papers are a magnitude too high. Based on this
insight, we recommend modified parameters that improve the algorithms’ perfor-
mance significantly.

1 Introduction

Self-organizing peer-to-peer systems cannot rely on a well-designed network topology.
They rather form their overlay network topology on their own. For many such applica-
tions it is crucial that the resulting topology reflects the underlying topology of the In-
ternet. Matching both topologies can, for example, reduce the latency which important
not only for telephony applications. It can also increase the throughput, for example,
when a file sharing application is able to find peers in the same organization.

Ideally, a peer would know which potential new neighbors provide a low latency. It
is important that, to this end, we cannot first measure the latency and decide afterwards,
because sampling the network in such a way has an extremely high overhead. It is thus
necessary to predict the latencies.

A popular solution to this problem is the use of network coordinates. They assign
positions in an euclidean space to the peers, so that their metric distance reflects the
respective latencies. There are several such systems, but Vivaldi [1] has obtained the
most attention. Its simple spring model is easy to understand and led to a practical
implementation in the BitTorrent [2] client Azureus (now called Vuze).

The inclusion of the Vivaldi algorithm in Azureus sparked even greater interest in
network coordinates. Ledlie et al. [3], e.g., proposed an optimization that changed the
force computation in Vivaldi’s spring model into a round based approach. Both this
optimization of Vivaldi and the original algorithm contain several parameters. Their
complex interaction offers various possibilities to fine tune the algorithm.



To the best of our knowledge, this fine tuning has not been studied systematically
yet. In this paper we report on an in-depth analysis of Vivaldi and its optimizations.
For our analysis we collected a number of latency matrices that complement other such
data sets. We created a packet level simulator that uses these latency matrices to create
a overlay between peers running the Vivaldi algorithm. Besides static latency matrices
we also used dynamic trace-based input data for the simulator. Based on our analy-
sis we then propose parameter choices that can improve the algorithms’ performance
significantly.

The rest of this paper is structured as follows: Section 2 gives an overview of Vivaldi
and its proposed optimizations. Section 3 describes the data sets and simulation method
that we used for our analysis. Section 4 discusses the most interesting results from our
analysis. Section 5 gives a brief overview of related work. Section 6 concludes with an
outlook to future work.

2 Overview of Vivaldi

The Vivaldi algorithm models a spring network: The peers are the endpoints of springs
whose length is set to the actually measured round trip time (RTT) between the peers.
The underlying metric combines the Euclidean coordinate distance with an additional
’height’ displacement. Based on continued RTT measurements, the peers update their
coordinates according to their displacement error estimations. Two constants cc and ce
control these updates. Algorithm 1 gives a summary of this Vivaldi NE algorithm in
pseudo code.

Studies of the Azureus client revealed problems with the algorithm in real live sit-
uations [3]. First of all, a node does not contact its peers equally often. The resulting
imbalance has a negative impact on the global optimization process. Secondly, real
world influences inevitably create spikes in the RTT measurements, which distort the
coordinates of an otherwise stable system massively.

Ledlie et al. [3] proposed two improvements to the Vivaldi NE algorithm that com-
pensate for these problems: A low pass RTT filer based on median values includes only
plausible RTT values. A neighbor decay formula addresses the imbalanced measure-
ment frequencies. To this end, each node keeps a list of its most recently used peers
(recent neighbor set). It contains those peers with whom a node ran the Vivaldi algo-
rithm at most a time et ago. The force vector F , which changes the peers’ coordinates,
is then modified as follows

F̃ =
N

∑
j=1

Fj ·
amax−a j

∑
n−1
i=0 amax−ai

(1)

where amax ≤ et is the maximum age of an entry in the recent neighbor set, ak is the age
of the kth entry, and Fk is the force pushing in the direction of that entry. Algorithm 2
summarizes this Vivaldi ND variant in pseudo code.

The most important contribution of this revised algorithm is that it does not only
take the most recent measurement into account, but that many measurements jointly
contribute to the coordinate adjustment. This greatly reduces spikes and other fluctua-
tions.



Algorithm 1: Original Vivaldi Neighbor Error Algorithm [1]
Input:

xi: local coordinate of node i
x j: remote coordinate of node j
RT T : RTT to node j
ei: error estimation of node i
e j: error estimation of node j
cc, ce: constants

Output:
xi: updated coordinate of node i
ei: updated error estimation of node i

function vivaldiNE(RT T,xi,x j,ei,e j,ce,cc)1
begin2

w← ei
ei+e j3

es←
|‖xi−x j‖−RT T |

RT T4
ei← es× ce×w+ ei× (1− ce×w)5
δ← cc×w6
x← x+δ× (rtt−

∥∥xi− x j
∥∥)×u(xi− x j)7

return (xi,ei)8

end9

In order to judge this and other improvements quantitatively, we use the following
three indicators:

1. A node i’s error is the median over all absolute errors between all node pairs (i, j).
The median error of the system is the median of all node errors [4].

2. The relative application-level penalty (RALP) [5]

RALP≡ 1
n
·∑

vi− pi

pi
, (2)

describes the penalty that a node experiences when choosing a peer based on network
coordinates, as compared to the perfect choice that an omniscient oracle could recom-
mend based on ‘real’ RTTs. Here, p a sorted list of measured RTTs between a peer
and its neighbors, and v is a sorted list of predicted RTTs between the peer and its
neighbors.

3. We define the degree of stability that the embedding reaches according to [3] as

stability≡ ∑i ∆xi

∆t
(3)

where ∆xi as the drift of xi in the time period ∆t.

3 Data sets and Simulator

In our analysis we used four data sets:



Algorithm 2: The Neighbor Decay Optimization of the Vivaldi Algorithm [3]
Input:

x: locale coordinate of node
Y = {y1,y2, . . . ,yk}: coordinate of nodes from the k sized neighbor set
R = {rtt1,rtt2, . . . ,rttk}: RTT to nodes in the neighbor set
A = {a1,a2, . . . ,ak}: time of last contact with all nodes in the neighbor set
t: constant damping adjustment of local coordinate, similar to VivaldiNE’s cc

Output:
x: updated coordinate of local node

function VivaldiND(x,Y,R,A, t)1
begin2

s← 03
F ← 04
amax←max{a1,a2, . . . ,ak}5
for i = 1 to k do6

s← s+amax−ak7

for i = 1 to k do8
e← rtti−‖x− yk‖9
Fi← e×u(x,yk)10

F ← F +Fi× amax−ai
s11

return x← x+ t×F12

end13

– Azureus-to-PlanetLab is the trace from Ledile et al. [3]. It yields a 249x249 RTT
matrix.

– MITKing is the data set of Dabek et al. used to derive the original Vivaldi algorithm
[1]. It is based on measurements with the King technique among 1740 DNS servers.

– KingBlog is a dataset similar to the MIT King data. It was extracted from 2500
DNS servers [6].

– Dynamic PlanetLab Dataset is a dynamic trace of 13,4 million single measure-
ments between 83 fully interconnected PlanetLab nodes, which we collected be-
tween March 6 and 9, 2009.

In order to evaluate the different Vivaldi variants, we built a simulator that takes
either the static RTT matrices or the dynamic RTT traces as input. The method of deriv-
ing a Vivaldi simulation from a static matrix of pairwise RTTs was introduced by Cox
et al. [1]. We extended their idea with a dynamic trace-based simulation.

On startup, the simulator randomly chooses a neighborhood of 32 peers for each
node. In the static case, the simulator also determines a sequence of RTT measure-
ments. Here, making a measurement means to look up the RTT from the RTT matrix.
In the dynamic case, the sequence of measurements in the trace is predefined. A node
obtains the RTT values for all the peers in its respective neighborhood and calculates
an estimated RTT according to the describe median filter.

There are two variants of how to determine the sequence of RTT measurements in
the static case: In [1] a node starts a new measurement immediately after the previous
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Fig. 1: Embedding error (Vivaldi NE CA, Azureus dataset)
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Fig. 2: Stability (Vivaldi NE CA, Azureus dataset)

measurement has completed (continuous adjustment, CA). This leads to an imbalance,
because nodes with low RTT conduct more rounds of the Vivaldi algorithm. Another
drawback is the huge traffic overhead that those continuous measurements cause. In
order to avoid this imbalance and reduce the overhead, we propose to use a predefined
average time interval for the measurement rounds (uniform adjustment, UA).

4 Results

In our extensive study [7] we analyzed all the proposed algorithm variants with the
four datasets and with various parameter settings. Here we briefly discuss the most
interesting results. All use the described Vivaldi variants with four dimensions and a
height component. In case of uniform adjustment (UA), we chose an interval of 10
seconds.
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Fig. 3: Embedding error and stability (Vivaldi NE UA, Azureus dataset)

Fig. 1 shows the error, figure 2 the stability of the original Vivaldi Neighbor Error
algorithm with continuous adjustment (CA) and different values for cc and ce using
the Azureus-to-PlanetLab dataset. In accordance to Cox et al. [1] we find that smaller
values for cc and ce lead to more stable coordinates. But as our analysis shows, this
improved stability is only relevant in the initial phase: After 500 seconds, the stability
of the embedding is similar for all parameter combinations. Moreover, we find through
the course of our simulations that ce has only little influence on the embedding error
and the stability. A conclusion that is also supported from both figures.

Fig. 3 shows the same scenario for the uniform adjustment (UA) variant. Due to the
much lower measurement frequency the shown time scale covers a larger range. In all
settings we see that both stability and median error never reach the accuracy of the CA
variant. Furthermore, we see that small cc values delay the convergence enormously,
whereas large values lead to great instabilities. For large cc values the low stability also
leads to a high, fluctuating embedding error. As a result we find an optimal parameter
choice at cc = 0,005. (We do not show different ce values, because they have only little
effect.)

Fig. 4 and 5 show the Neighbor Decay optimization of Vivaldi for different RTT
probing intensities. In the CA variant in figure 4 we show the results for et = ∞, This
parameter choice causes the peers to adjust their position relative to all the peers that
they ever contacted. In the UA variant in figure 5 we use et = 120ms, where the 120 ms
correspond to the median value of the RTTs. This choice causes the peers to adjust their
position only relative to active peers, i.e. those that have just send their RTT information.
Our results demonstrate that the UA variant produces the results from Ledlie et al.
within a factor of two, while requiring only sparse RTT probing (10 sec versus 120 ms).
However the results also show a rather poor performance of the algorithm in terms of
the median embedding error. Furthermore we learn again that there is an optimal choice
for the algorithm’s parameter, namely t = 0,005.
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Fig. 4: Vivaldi ND with Azureus dataset (CA)
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Fig. 5: Vivaldi ND with Azureus dataset (UA)

In order to complement our analysis with an application-level metric, we further
analyzed the different variants using the RALP quality measure. Fig. 6 shows the re-
sults for continuous adjustment (left) and uniform adjustment (right) using the Azureus
dataset, while figure 7 illustrates the same for the KING Blog dataset. Clearly, all vari-
ants improve over the random peer selection case, which does not use network coordi-
nates at all.

Similarly to almost all of our measurements, the difference between the two ad-
justment variants depends on the dataset. Simulations with the KING dataset behave
comparably for all variants (NE, ND, w/ and w/o CA, UA) of the Vivaldi algorithm,
whereas the Azureus dataset exhibits a significant dependence on the parameter choices.
In particular, when using the uniform adjustment variant, the original neighbor error al-
gorithm outperforms the neighbor decay optimization. This indicates that the claimed
improvement of ND [3] might not carry over to a general application ‘in the wild’,
despite the suggestive title of the respective publication.
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Fig. 6: RALP with Azureus data set, using CA (left) and UA (right)
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Fig. 7: RALP with King data set, using CA (left) and UA (right)

In order to better understand highly dynamic systems and their differences to static
systems, we analyzed the PlanetLab RTT trace. Fig. 8 shows the embedding error for
the original NE algorithm and the ND optimization with the median filter proposed by
Ledile et al. [3], figure 9 shows the same data without this enhancement. First of all, we
do not observe any significant effect of the median filter. Furthermore, the advantage
of the neighbor decay optimization manifests most, when it is compared to a high cc
parameter in the original neighbor error algorithm. When cc = 0,01 NE and ND behave
almost identically.

Fig. 10 illustrates the same setup stability wise. All measurements show large insta-
bilities for large values of cc and t respectively. Again we conclude that the choice of
large values for cc and t does not only lead to faster convergence (as stated in literature),
but also to an increased instability that in the end leads to a worse quality of embedding.
As a result, we conclude that even though the neighbor decay optimization can yield a
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Fig. 8: Vivaldi NE (left) vs. ND (right) with median filter
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Fig. 9: Vivaldi NE (left) vs. ND (right) without median filter

better stability in principle, it does not improve the embedding for the moderate values
of t and cc that overall yield the best results.

Finally we also checked our finding in the dynamic setting using RALP (cf. fig. 11).
Here we find that the neighbor decay optimization shows a better performance than the
original Vivaldi NE algorithm. Again, cc = 0.005 and ce = 0.1 outperform all other
parameter combinations in the NE case. For the ND case t = 0.005 is the best choice.

5 Related Work

Finding neighbors with low RTT in an overlay network is an important issue. Sev-
eral other works besides Vivaldi address the same problem. Global network positioning
(GNP) [8] proposed to use RTT measurements to landmark servers as components for
network coordinates. Vivaldi adopted the idea of network coordinates, but replaced the
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Fig. 10: Vivaldi NE (left) and ND (right) with median filter
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Fig. 11: RALP with NE (left) and ND (right) for the dynamic data trace

fixed set of landmarks with its spring approximation model. This makes Vivaldi a self-
organizing system in the sense that is independent from a landmark infrastructure.

Meridian [9] is a gossip based system. It sorts a node’s peers into exponentially
growing buckets according to the respectively measured RTTs. When a node queries
one of its peers for recommended further peers, it obtains answers from the bucket that
matches the querier’s RTT. This algorithm induces an iterative process that allows the
peers to find proximate peers. Comparing Medidian to Vivaldi, we see that the need for
direct measurements between the peers leads to increased costs that are not present in
network coordinate systems [10].

Ono [11] derives peer proximity from querying a content distribution network (CDN)
to resolve a vector of DNS names. It assumes that peers that receive similar results from
the CDN reside in the same AS and wile likely have a low mutual RTT. This is simi-
lar to GNP, but replaces the RTT measurements to the landmark servers with the CDN
queries. Aggarwal et al. introduce in [12] the idea of an oracle that pursues a similar
goal as Ono. But instead of living on a CDN the oracle is an ISP-operated recommen-



dation server that allows peers to obtain lists of proximate peers. Contrary to Ono and
the oracle we aim at improving fully decentralized solutions that do not require the ISP
to support the overlay network.

6 Conclusion

In this paper we studied Vivaldi and its proposed optimizations both with static RTT
matrices and dynamic RTT traces. We found that in the original works, most constants
are chosen too high to produce stable coordinates in dynamic real world settings. Seem-
ingly the respective authors decided to sacrifice the stability of the resulting embedding
to obtain a faster convergence. We believe this to be a bad trade, especially because
most parameters produce similar relative embedding errors.

As a result of our analysis we recommend the following values: ce = 0.1, cc = 0.005,
t = 0.005, and et = 30min. In our analysis we also spotted rare cases of especially poor
performance of the Vivaldi algorithm family. We therefore recommend using conserva-
tively low parameters to also safeguard against such cases.

Especially, we could not reproduce the claimed drastic superiority of the Neighbor
Decay optimization method proposed by Ledlie et al. [3]. The only effect we could
reproduce was a faster convergence, which we consider not as important as stability.

What struck us at most in our study were the large differences between the datasets.
Even when comparing static data among each other, we found significantly different
reactions of the different algorithm variants. The differences between the results from
the static RTT matrices and the dynamic RTT traces were even greater. Ledlie et al. [3]
argue that this depends on the magnitude of RTTs that the algorithm receives. We could
not confirm this hypothesis and therefore recommend further research in that area, to
better understand the cause of the large deviations.
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