
Resolving the Noxious Effect of Churn on Internet
Coordinate Systems

Bamba Gueye⋆, Guy Leduc

University of Liege, Belgium
{cabgueye,guy.leduc}@ulg.ac.be

Abstract. Internet Coordinate Systems (ICS) provide easy and practical latency
predictions in the Internet. However, peer dynamics (i.e, churn), which is an in-
herent property of peer-to-peer (P2P) systems, affects the accuracy of such sys-
tems. This paper addresses the problem of churn in an ICS without landmarks,
like Vivaldi. We propose a framework to assess the robustness of suchan ICS in
the presence of churn, and evaluate two models for handling churn. The key idea
is to reactively recover lost neighbours, either by picking new nodes atrandom, or
by selecting a new one among the node’s two-hop neighbours, while maintaining
high reliability and low communication overhead. We then show by simulations
that our models mitigate the impact of churn, and lead to a good accuracy com-
pared to an instance of an ICS running without churn.
Keywords: ICS, Node Churn, Accuracy, Clustering.

1 Introduction

Nowadays, a new class of large-scale globally-distributednetwork services and ap-
plications such as distributed overlay network multicast,content addressable overlay
networks, and peer-to-peer file sharing (e.g., Gnutella BitTorrent, etc.) have emerged.
To achieve network topology-awareness, most, if not all, ofthese overlays rely on the
notion of proximity, usually defined in terms of network delays or round-trip times
(RTTs), for optimal neighbor selection during overlay construction and maintenance.

It is important for the new applications presented above to limit the resources con-
sumption and particularly the number of on-demand measurements. In such a context,
Internet Coordinate Systems (ICS) [1,2,3] have been proposed to allow hosts to esti-
mate delays without performing direct measurements and thus reduce the consumption
of network resources. The key idea of an ICS is to model the Internet as a geometric
space and characterize any node in the Internet by a position(i.e., acoordinate) in this
space. The network distance between any two nodes is then predicted as the geometric
distance between their coordinates. Explicit measurements are, therefore, not required
any longer.

Generally, an ICS follows a three step procedure. The first step is neighbor selection.
In this step, each node in the system chooses a constant number of neighbors. In the
second step, each node measures the delays to its neighbors.After collecting the delay

⋆ This work has been partially supported by the EU under projects FP6-FETANA (FP6-IST-
27489)

measurement, all the nodes use an optimization algorithm tocompute the coordinates
based on these delays.

In a large-scale P2P system, peer dynamics (i.e., churn) is aprevalent phenomenon,
which makes maintenance a challenging task [4]. Almost every distributed system has
to deal with churn:i.e., the continuous process of node arrival and departure due tovar-
ious reasons,e.g., link outage, graceful leaves, failure, etc. In an ICS, in the presence of
churn, nodes often did not have time to settle into a stable position before they exited
the system. In such case, some nodes will update their coordinates according to neigh-
bors that have not stabilized their coordinates, leading toskewed coordinates [5,6]. As
consequence, they had a deleterious effect not only on themselves, but on the overall
system convergence. Since churn is inherent to P2P system, it is mandatory to build an
ICS that should predict latency with accuracy under churn situation. The remainder of
this paper is dedicated to determining whether an ICS can be built so that it continues
to perform well under churn.

We study how to reduce the harmful effect of churn on Vivaldi by intelligently
remplacing reactively node’s neighbors which have left thesystem. In so doing, we
considered two potential solutions to the problem of sustaining a coordinate system
under high churn rates. The first one, theRandom Replacement(RR) replaces a failed
neighbor with a randomly chosen node. The second strategy, the Two-hop Neighbors
Replacement(TNR), considers the two-hop neighbors as a preference list, and thus
picks randomly in this list the set of nodes that will be used to replace the failed ones.
Note that, the set of two-hop neighbors is formed by the unionof the direct neigh-
bors,i.e., the set of peer nodes that are used as neighbors in the ICS forthe purpose of
coordinate computation, and the neighbors’ neighbors. We then provide a comparison
of the performance of a range of different node selection strategies in three real-word
traces. One of our contribution is to show that Vivaldi can infact handle churn follow-
ing an approach that reactively recovers lost neighbors. Our second contribution is an
examination of churn in a Self-Organized network, according to a Two-Tier approach
of Vivaldi, where nodes cluster themselves based on their network distance [7].

Our main results can be summarized as follows: (i) Coordinate systems that expe-
rience churn have trouble converging; (ii) The strategies of node replacement perform
well compared to the case where no recovery mechanism is settled; (iii) The Two-tier
approach, where we apply the TNR and the RR techniques for addressing churn, is
more accurate under high node churn rate compared to a flat Vivaldi.

In this paper, we begin by giving an overview on Vivaldi and a few proposed works
that do provide a mechanism for handling churn in Vivaldi, but do not rely on the
“original” Vivaldi (Sec 2). Then, we describe different churn scenarios and analyze the
behaviour of the RR and TNR strategies in the presence of churn (Sec. 3). We also test
as case study the RR and the TNR strategies in a Two-Tier Vivaldi environment (Sec. 4).
We finally conclude this paper by reminding its main contributions (Sec. 5).

2 Background on Vivaldi

Vivaldi [2] is probably the most successful Internet coordinates system that has been
proposed so far. It does not require any fixed network infrastructure and makes no dis-

tinctions between nodes. In fact, Vivaldi [2] is based on a simulation of springs, where
the position of the nodes that minimizes the potential energy of the spring also mini-
mizes the embedding error. A Vivaldi node collects distanceinformation towards other
nodes (its neighbors) and computes its new coordinates withthe collected measure-
ments (sample). The sample used by each nodeA is based on measurement to a node,
B, its coordinatesxB and the estimated erroreB being reported byB. A relative error
of this sample is then computed with respect todAB andd̂AB . Note thatdAB andd̂AB

represent respectively the measured distance and the estimated distance. The node then
computes the sample weight, balancing local and remote error. The local (resp. remote)
error represents nodeA’s (resp. nodeB’s) confidence in its own coordinate. Thus, the
coordinates are updated by moving a small step toward the perfect position that best
reflects the RTT measured. The Vivaldi algorithm quickly converges towards a solution
when latencies satisfy the triangle inequality. Vivaldi considers a few possible coordi-
nate spaces that might better capture the underlying structure of the Internet Euclidean
spaces, spherical coordinates, etc. For the present study,we use a 2D Euclidean space
and each node computes its coordinates by doing measurements with 32 neighbors.

It is worth noticing that Dabek etal. [2] have only studied Vivaldi under stable envi-
ronment. In such case, nodes will not leave the system after their join. This assumption
is not realistic due to the prevalence of peer dynamics in P2Psystems. Therefore, no
recovery mechanism is proposed in [2] when nodes have lost their neighbors. To over-
come this limitation, Ledlie etal. in [5] propose a simple technique by considering
a “full Vivaldi embedding” that runs over Azureus [8] (now calledVuze) which is a
popular clients for BitTorrent, a file sharing protocol. Note that, in Azureus metadata
are stored in a Distributed Hash Table (DHT) which enables Vivaldi to choose node’s
neighbors. In this approach,i.e., full Vivaldi embedding, Vivaldi nodes have no ded-
icated set of neighbors as designed in [2]. Therefore, the information necessary for a
coordinate update is piggybacked in the other application level messages, such as rout-
ing table heartbeats [5]. In such case, nodes have no controlover the selection of which
nodes we gossiped with, and nodes communicate only with a limited set of nodes that
was much smaller than the number of nodes with which it actually communicated.

In the same way, Chen etal. in [6] propose alsoMytha Landmark-based NCS which
used partially a full Vivaldi embedding as in [5] running on Bamboo DHT. Myth has
a initial coordinates prediction scheme that is used beforethe Vivaldi algorithm. This
scheme like GNP [1] uses the nodes already in the system as landmark to compute its
coordinates. Requiring that some nodes be designated as landmarks may be a burden on
symmetric systems (such as P2P systems). To obtain a neighbor, a given node randomly
generates a global unique identifier and queries the DHT for it, and then the DHT returns
the node that owns this identifier which will be used as neighbor. Assuming that nodes
did not have a fixed set of neighbors, as in [5,6], is an easy wayto let down the problem
of how a new neighbor will take the place of the left one. It is worth noticing that a fixed
set of neighbors is very important because nodes could expect regular exchanges for
updating their coordinates. In contrast to previous works,our approaches for handling
churn is not based on a structured P2P overlay network or DHT.As a consequence, we
will rely on the “original” Vivaldi, where each node has a fixed set of neighbors.

3 Handling node churn in Vivaldi

In this section we formally model peer churn, describe and evaluate our two re-
placement strategies for reducing the harmful effect of churn on Vivaldi.

3.1 Churn scenario: Node Arrival and Departure Rates

Churn can be modelled by two kinds of peer-level characterization. Firstly, the ses-
sion length distribution, which is one of the most basic properties of churn, captures
how long peers remain in the system each time they appear. Secondly, the downtime
can be defined as the interval between the moment a peer departs and its next arrival.
The characterization of churn has been relatively well addressed in the literature. One
issue is whether a good mathematical distribution exists tomodel network churn. In fact,
previous works [9,10,11] have shown that both distributions in typical P2P systems are
exponential, though other studies claim that the distribution of session length follows a
Pareto distribution [5,12,13]. In contrast, the results in[14] show that the distribution
of session lengths does not exactly follow the exponential distribution or the long-tailed
Pareto distribution across different P2P systems, (e.g., Kad, Gnutella, BitTorrent). Thus,
there is still no clear answer on how to model the peer behavior appropriately. Neverthe-
less, as some studies have shown that session lengths are either exponential or Pareto,
we model churn in our simulations by testing both distributions. Note that, when the
session length is modelled as a Pareto distribution we have considered that nodes sleep
for a random period with uniform distribution and rejoin thesystem as a newcomer. In
contrast, when the session length follows an exponential distribution, the downtime is
modelled also as exponential [9,10,11].

We study the set of strategies described above and we believethat they are all rele-
vant in practice. Since this paper focuses more on handling churn in network coordinate
systems, finding a good distribution that fits well churn in P2P system is left for future
work.

Modeling peer churn: In the previous section we showed that the session length and
the downtime can be modelled by different kind of distributions. We concentrate pri-
marily on the use of the quantile function for the formulation of distributions. In fact,
the quantile function can be used as the basis for a range of approaches to the construct
of models of populations. After the probability density function and the cumulative den-
sity function, theQuantile Function, QF , denoted byQF (p), provides a third way of
defining a distribution. By definition, theQF of a probability distribution is the inverse
of its cumulative distribution function. Formally, we have

xp = the value ofx for which Probability(X ≤ xp) = p

For instance, ifF is a probability distribution function, theQF may be used to “con-
struct” a random variable havingF as its distribution function. This fact serves as the
basis of a method of simulating the churn from an arbitrary distribution with the aid of a
random number generator. In the following, we present a detailed system model based
on the above observation.

In our simulations, the individual peers have different arrival rates for the join/leave
events. Theses events can be scheduled as follows accordingto a fixed distribution. The
quantile function for the exponential distribution at timet can be computed as:

QF (p) = −
ln(1 − p)

λ
for 0 ≤ p < 1 (1)

whereλ is the parameter of the distribution.
To model the peers behavior following a Pareto distribution, the quantile function is

obtained by:

QF (p) =
β

(1 − p)
1

α

for 0 ≤ p < 1 (2)

whereα is a shape parameter that determines how skewed the distribution is, andβ is a
location parameter that determines where the distributionstarts.

Finally, the quantile function of the uniform distribution, which defines an equal
probability over a given range, is expressed as follows:

QF (p) = (xmin + xmax × p) × mean for 0 ≤ p < 1. (3)

3.2 Approaches for handling churn

We focus only on agnostic strategies,i.e., where we ignore past uptime or availabil-
ity of individual node because we do not explicitly try to minimize churn, but rather
to deal with its presence. Therefore, we study two set of strategies that we believe are
both relevant in practice: (i) theRandom Replacement(RR) where each node replaces
a failed neighbor reactively with a uniform-random available node; (ii) the Two-Hop
Neighbors Replacement(TNR) where each node replaces lost neighbors by one of its
neighbors’ neighbors (i.e., node’sTwo-hop neighbors). It should be noted that the list
of neighbors’ neighbors can be obtained in the network by simply piggybacking the
information in the messages exchanged by the ICS system.

We allow our selection algorithm to react immediately aftereach change in node’s
neighbors state. We feed the sequence of events into the P2psim simulator [15] follow-
ing the different distributions of churn characteristics described in Sec. 3.1. Events are
nodes joins and failures. The obtained results are shown in the next section.

3.3 Experimental results

In this section we present the results of an extensive simulation study of Vivaldi
under churn using the P2Psim discrete-event simulator [15]. Each Vivaldi node has 32
neighbors and results are obtained for a 2-dimensional Euclidean space.

We performed a set of simulations using three datasets: the P2psim data (1740
nodes) [15], the Meridian data (2500 nodes) [16], and the PlanetLab data which we col-
lected usingpingmeasurements between 180 PlanetLab nodes [17]. Note that, the King
and Meridian data sets are obtained following theKing measurement technique [18]
which is similar to ping in the sense that it estimates the latency between arbitrary end
hosts by using recursive DNS queries. Based on these delay matrices, we study through

the basicAbsolute Estimation Error(AEE) andRelative Estimation Error(REE) met-
rics the accuracy of Vivaldi under churn. For a given link between two nodesA andB

we have the following definitions:

AEE(AB) = |EST (A,B) − RTT (A,B)|

REE(AB) =
AEE(AB)

RTT (A,B)

whereRTT (X,Y) is the measured RTT between the nodesX andY , andEST (X,Y)
is the estimated RTT obtained with the coordinates of the nodesX andY .

During our simulations, in some cases, churn is temporary asthe departed peers
may rejoin the system; churn can also be permanent as peers may depart the system
forever. In particular, we set the Pareto distribution parameters in Eq. 2 as:α = 1.03
andβ = 300s. The choice of the value ofα is guided by Wang etal. in [19] using
traces ofPPLive, which is a popular P2P live streaming system. They have shown that
the node’s stay duration of PPLive is well approximated by a Pareto distribution of
α = 1.03. The value ofβ represents the time when the churn starts in the system. After
a node leaves the network, it sleeps (i.e., downtime) during a time which is uniformly
distributed between0.1×mean and1.9×mean (see Eq. 3), wheremean = 100s, and
rejoins the system (if the downtime is not beyond the simulation time) as a newcomer to
stay another Pareto distribution. In the second approach ofcharacterizing churn, events
for each node is exponentially distributed with a mean of100s (Eq. 1). Indeed, peers
within the network are assigned exponentially distributedsession lengths. When a peer
reaches the end of its session length, it leaves the network and waits an exponentially
distributed time for another potential join. It should be noted that the choice of mean
session time is consistent with past studies of P2P networks[20].

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 0 200 400 600 800 1000

N
um

be
r

of
 n

od
e

al
iv

es

Time (s)

NRN
TNR

RR
No churn

(a) Exponential distribution

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 0 200 400 600 800 1000

N
um

be
r

of
 n

od
e

al
iv

es

Time (s)

NRN
TNR

RR
No churn

(b) Pareto distribution

Fig. 1. King dataset: nodes alive as function of time.

Figures 1, 2, and 3 illustrate the general behavior of nodes for the King, PlanetLab,
and Meridian data sets during our simulations. Note thatNo Recovery Nodes(NRN)
means an instance of Vivaldi under churn without replacement of lost nodes. When

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000

N
um

be
r

of
 n

od
e

al
iv

es

Time (s)

NRN
TNR

RR
No churn

(a) Exponential distribution

 130

 140

 150

 160

 170

 180

 0 200 400 600 800 1000

N
um

be
r

of
 n

od
e

al
iv

es

Time (s)

NRN
TNR

RR
No churn

(b) Pareto distribution

Fig. 2. PlanetLab dataset: nodes alive as function of time.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 200 400 600 800 1000

N
um

be
r

of
 n

od
e

al
iv

es

Time (s)

NRN
TNR

RR
No churn

(a) Exponential distribution

 2000

 2100

 2200

 2300

 2400

 2500

 0 200 400 600 800 1000

N
um

be
r

of
 n

od
e

al
iv

es

Time (s)

NRN
TNR

RR
No churn

(b) Pareto distribution

Fig. 3. Meridian dataset: nodes alive as function of time.

the churn is intensive it remains at least 80% of the nodes in the system following the
Pareto distribution, whereas for the exponential distribution the average of available
nodes is roughly 52%. In summary, churn is more intensive following the exponential
distribution.

We ran Vivaldi on King, Meridian, and PlanetLab respectively and recorded the
coordinates of the nodes every 10 ticks as well the corresponding time to this tick in
order to plot the evolution of coordinates as function of time. Note that a tick represents
an update coordinates once. Furthermore, every 10 ticks we compute the percentile AEE
and ERR overall links and we considered the 5th, 10th, 25th, 50th, 75th, 90th, and 95th
percentile error. Each simulation runs for1000s of simulated time. Unless otherwise
noted, all figures are for simulations done in the churn environment.

Figures 4, 5, and 6 illustrate the general behavior of Vivaldi under different churn
scenarios as function of time according to King, PlanetLab and Meridian data set. As
expected, the curve labelled NRN (No Recovery Nodes) in Figures 4, 6, 5 which shows
an instance of Vivaldi under churn without replacement of lost nodes, has always the

 18

 20

 22

 24

 26

 28

 30

 32

 34

 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

lin
k

A
E

E
 (

m
s)

Time (s)

NRN
TNR

RR
No churn

(a) Churn following Exponential distribution

 18

 19

 20

 21

 22

 23

 24

 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

lin
k

A
E

E
 (

m
s)

Time (s)

NRN
TNR

RR
No churn

(b) Churn following Pareto distribution

Fig. 4. King dataset: Median absolute error as function of time.

 5

 6

 7

 8

 9

 10

 11

 12

 13

 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

lin
k

A
E

E
 (

m
s)

Time (s)

NRN
TNR

RR
No churn

(a) Churn following Exponential distribution

 5

 5.5

 6

 6.5

 7

 7.5

 8

 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

lin
k

A
E

E
 (

m
s)

Time (s)

NRN
TNR

RR
No churn

(b) Churn following Pareto distribution

Fig. 5. PlanetLab dataset: Median absolute error as function of time.

 12

 14

 16

 18

 20

 22

 24

 26

 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

lin
k

A
E

E
 (

m
s)

Time (s)

NRN
TNR

RR
No churn

(a) Churn following Exponential distribution

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

lin
k

A
E

E
 (

m
s)

Time (s)

NRN
TNR

RR
No churn

(b) Churn following Pareto distribution

Fig. 6. Meridian dataset: Median absolute error as function of time.

worst accuracy with respect to AEE metric: the performance of Vivaldi degrades in
node churn scenario and Vivaldi never converges to a steady state. The main observa-
tion one can notice is that it exists a benefit of doing neighbors recovery according to
our strategies. For instance, Figure 4(b) shows the AEE as a function of time in the
case where the session length follows a Pareto distribution. It illustrates that the AEE
increases suddenly (roughly at300s), as soon as the churn starts in the network. As
consequence, one can see the abrupt jump of the NRN curve as well the TNR and RR
curves but in less proportion. The same trend is observed in Fig. 5(b) and Fig. 6(b).

We can see also that the accuracy when the churn follows a Pareto distribution is
better than the accuracy obtained with an exponential distribution. This is due to the
fact that the churn intensive workload is more important in the exponential distribution
(Fig.1(a) and Fig. 3(a)). Nevertheless, with our replacement strategies, TNR and RR,
one can see in Figure 5(a), 6(a) that the obtained accuracy ifquite similar to a stable
Vivaldi and then the RR strategy outperforms the stable Vivaldi.

Additionally the RR strategy performs better than the TNR strategy with respect
to the Meridian dataset (Fig. 6). Nevertheless, for other datasets the difference is less
important. It is worth noticing that in the RR strategy a nodecan select out of all nodes
available in the system to replace its failed neighbors whereas in the TNR strategy a
node chooses only out of node’s two-neighborhood which is infact less important. It
should be noted that in terms of communication overhead the cost of retrieving the list
of all nodes that are in the system is more important comparedto the TNR strategy.

By lack of space we have shown only the median AEE. Note that wefound similar
trend for the other percentiles and for the REE metric.

4 Case study: Handling node churn in a Two-Tier architecture

Internet latencies, due to routing policies or path inflation [21], do sometimes violate
the triangle inequalities which must hold in a metric space.Such Triangle Inequality Vi-
olations (TIV) could be a major barrier for the accuracy of Internet coordinate systems.
Kaafar etal. have shown that longer edges cause more severe TIVs, and thusproposed
a Two-Tier architecture opposed to a flat structure of Vivaldi, based on the clustering of
nodes [22]. In fact, coordinates computed at the lower (resp. higher) level of clusters are
called local coordinates (resp. global coordinates). Within their cluster, nodes use more
accurate local coordinates to predict intra-cluster distances, and keep using global coor-
dinates when predicting longer distances towards nodes belonging to foreign clusters.
In this section, according to this Two-tier approach and theself-organizing clustering
scheme proposed in [7], we test the strategies studied, in Sec. 3, in a peer dynamics
system.

To construct clusters in a self-organizing fashion, each node relies on coordinates
provided by their two-hop neighbors, but also on measurements towards a potential
existing cluster. For instance, if a node has 32 neighbors inorder to estimate its coordi-
nates, its Two-hop neighbors will be formed by at most 1024 nodes. Therefore, nodes
do not need global knowledge of nodes in the network, nor distances between these
nodes, nor a common landmark/anchor infrastructure. In general, the clustering form-
ing phase can be described as follows: each time a node joins anetwork, it gets the list

of cluster heads from its Two-hop neighbors set and verifies if the measurement towards
the cluster heads satisfies the cluster diameter. If the constraint diameter is satisfied, the
node joins the cluster owned by these cluster head. Nevertheless if none of the distances
to existing cluster heads satisfies the clustering criterion, the node starts the clustering
algorithm on the basis of the coordinates of its Two-hop neighbors set [7]. For more
details about the clustering algorithm we suggest the reader to refer to [7]. Next, we
describe how we set up the clusters we experimented with to illustrate our results on the
Two-tier Vivaldi approach.

For handling churn in a Two-Tier architecture, we have first based our clusters
recognition on the coordinates as observed by running a flat Vivaldi over the P2psim
data. Our second step has then consisted of using the algorithm proposed in [7] to self
organize nodes into clusters. Following this cluster selection method, we run an exten-
sive simulation either without churn, or under node churn scenario without recovery
mechanism, or churn recovery with random replacement (RR),or churn recovery with
Two-hop neighbors replacement (TNR). Note that, if a node belongs to a given cluster,
it takes halfot its neighbors inside its own cluster and the remaining out of the available
nodes in the network. We use the absolute error as our main performance indicator.
Again, we compute the AEE over all links to represent the accuracy of the overall
system. Nevertheless, if two nodes belong to the same cluster, we used their local coor-
dinates to compute the AEE. Otherwise, we consider their global coordinates in order
to estimate the AEE.

 10

 11

 12

 13

 14

 15

 16

 17

 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

lin
k

A
E

E
 (

m
s)

Time (s)

NRN
TNR

RR
No churn

(a) Two-tier: exponential distribution

 10.8

 11

 11.2

 11.4

 11.6

 11.8

 12

 12.2

 12.4

 12.6

 12.8

 13

 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

lin
k

A
E

E
 (

m
s)

Time (s)

NRN
TNR

RR
No churn

(b) Two-tier: Pareto distribution

Fig. 7. King dataset: Median absolute error as function of time.

Figures 7(a) and 7(b) represent the median Absolute Estimation Error (AEE) be-
longing to our Two-tier Vivaldi according to the P2psim data. We see that the same
trend is observed with respect to an instance of a “flat Vivaldi” (Fig. 4). In other words,
the churn NRN still has the worst accuracy compared to an instance of Vivaldi where
we replace nodes leaving the system. Furthermore, Fig. 8 clearly illustrates that the
AEE computed based on Two-tier architecture are much less than errors as computed
using the flat Vivaldi. More generally, improvements insidethese clusters is explained

 10

 12

 14

 16

 18

 20

 22

 24

 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

lin
k

A
E

E
 (

m
s)

Time (s)

Flat Vivaldi: TNR
Flat Vivaldi: No churn
Two-tier Vivaldi: TNR

Two-tier Vivaldi: No churn

(a) Two-hop Neighbors Replacement (TNR)

 10

 12

 14

 16

 18

 20

 22

 24

 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

lin
k

A
E

E
 (

m
s)

Time (s)

Flat Vivaldi RR
Flat Vivaldi: No churn

Two-tier Vivaldi: RR
Two-tier Vivaldi: No churn

(b) Random Replacement (RR)

Fig. 8. King dataset: Comparison of median absolute error between Two-tier andFlat Vivaldi.

by the fact that intra cluster nodes, when computing their local coordinates select only
close by nodes as their neighbors. This constraints the node-to-neighbors edge lengths
and thus reduces the selection of severe TIVs likelihood.

5 Conclusion

We have shown that the performance of Vivaldi degrades in churn scenario. We de-
signed and evaluated two strategies for reducing the harmful effect of churn in Vivaldi.
These strategies were deployed under different churn distribution characteristics. The
experimental results according to three data sets show thatthe Random Replacement
(RR) and the Two-Hop Neighborhood Replacement (TNR) improve the precision of
Vivaldi under churn environment. The RR outperforms the TNRwith respect to churn
following an exponential distribution. Nevertheless, in the case of a Pareto distribution,
the gap noticed between both strategies is much smaller.

Although we focused on Vivaldi for experimentations, the proposed strategies are
independent of the embedding protocol used. Our proposed approach would then be
general enough to be applied in the context of coordinates computed by other Internet
coordinate system than Vivaldi.

We have also considered churn situations in a Self-Organized network, with respect
to a Two-tier approach of Vivaldi, where we applied our Random Replacement and
the Two-Hop Neighborhood Replacement strategies. The Two-tier approach is more
accurate under high node churn rate compared to a flat Vivaldi. Our findings show
that the performance of the Two-tier Vivaldi exceed that of flat Vivaldi a lot in churn
scenario as well as in a scenario without churn. Our future work would then consist on
the deployment of the Two-tier approach on Internet (e.g., PlanetLab).

Even though this paper does not address the problem of comparing the Pareto and
the exponential distribution, we note that the obtained accuracy, when the session length
is modelled as a Pareto distribution, is lower than when it follows an exponential distri-
bution. We are pursuing further study for more general conclusion, considering different
values for the parameters of both distributions.

References

1. T. S. E. Ng and H. Zhang, “Predicting Internet network distance with coordinates-based
approaches,” inProc. IEEE INFOCOM, New York, NY, USA, June 2002.

2. F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized network coordinate
system,” inProc. ACM SIGCOMM, Portland, OR, USA, Aug. 2004.

3. B. Donnet, B. Gueye, and M. A. Kaafar, “A survey on network coordinates systems, design,
and security,”IEEE Communications Surveys & Tutorials, To appear.

4. P. B. Godfrey, S. Shenker, and I. Stoica, “Minimizing churn in distributed systems,”SIG-
COMM Comput. Commun. Rev., vol. 36, no. 4, pp. 147–158, 2006.

5. J. Ledlie, P. Gardner, and M. I. Seltzer, “Network coordinates in thewild,” in Proc NSDI,
Cambridge, apr 2007.

6. Y. Chen, G. Zhao, A. Li, B. Deng, and X. Li, “Myth: An accurate andscalable network co-
ordinate system under high node churn rate,” inIEEE International Conference on Networks
ICON’, Adelaide, Australia, Nov. 2007.

7. F. Cantin, B. Gueye, M. A. Kaafar, and G. Leduc, “A self-organized clustering scheme for
overlay networks,” inLectures Notes in Computer Science 5343, Dec. 2008, pp. 59–70.

8. “Azureus bittorent client,” http://azureus.sourceforge.net/index.php.
9. D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the evolution of peer-topeer

systems,” inPrinciples of Distributed Computing, 2002, pp. 233–242.
10. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a dht,” inUSENIX

Conference, 2004.
11. J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A performance vs. cost frame-

work for evaluating dht design tradeoffs under churn.,” inINFOCOM, 2005, pp. 225–236.
12. F. Bustamante and Y. Qiao, “Friendships that last: Peer lifespan andits role in p2p protocols,”

Web Content Caching and Distribution, pp. 233–246, 2004.
13. J. Liang, R. Kumar, and K. W. Ross, “The kazaa overlay: A measurement study,”Computer

Networks Journal (Elsevier), 2005.
14. D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peernetworks,” inIMC, Rio

de Janeriro, Brazil, 2006, pp. 189–202.
15. A simulator for peer-to-peer protocols, http://www.pdos.lcs.mit.edu/p2psim/

index.html.
16. B. Wong, A. Slivkins, and E. Sirer, “Meridian: A lightweight networklocation service with-

out virtual coordinates,” inProc. the ACM SIGCOMM, aug 2005.
17. PlanetLab: An open platform for developing, deploying, and accessing planetary-scale ser-

vices, 2002,http://www.planet-lab.org.
18. K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latencybetween arbitrary

Internet end hosts,” inProc the SIGCOMM Internet Measurement Workshop, Marseille,
France, Nov. 2002.

19. F. Wang, Y. Q. Xiong, and J. C. Liu, “mtreebone: A hybrid tree/mesh overlay for application-
layer live video multicast,” inICDCS, June 2007.

20. S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement study of peer-to-peer file
sharing systems,” vol. 9, pp. 170–184, Aug. 2003.

21. H. Zheng, E. K. Lua, M. Pias, and T. G. Griffin, “Internet routingpolicies and round-trip-
times,” inProc. the Passive and Active Measurement Workshop – PAM, Boston, MA, USA,
Mar. 2005, Lecture Notes in Computer Science (LNCS) 3431.

22. M. A. Kaafar, B. Gueye, F. Cantin, G. Leduc, and L. Mathy, “Towards a two-tier internet
coordinate system to mitigate the impact of triangle inequality violations,” inProc. IFIP
Networking Conference, Singapore, May 2008, LNCS 4982, pp. 397–408.

