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Abstract. Distributed key/value stores are a basic building block for
large-scale Internet services. Support for range queries introduces new
challenges to load balancing since both the key and workload distribution
can be non-uniform.

We build on previous work based on the power of choice to present
algorithms suitable for active and passive load balancing that adapt to
both the key and workload distribution. The algorithms are evaluated
in a simulated environment, focusing on the impact of load balancing on
scalability under normal conditions and in an overloaded system.

1 Introduction

Distributed key/value stores [1-3] are used in applications which require high
throughput, low latency and have a simple data model. Examples of such appli-
cations are caching layers and indirection services. Federated key/value-stores,
where the nodes are user contributed, require minimal management overhead
for the participants. Furthermore, the system must be able to deal with large
numbers of nodes which are often unreliable and have varying network band-
width and storage capacities. We also aim to support both exact-match and
range queries to increase flexibility for applications and match the functionality
of local key /value-stores such as Berkeley DB and Tokyo Cabinet.

Ring-based Structured Overlay Networks (SONs) provide algorithms for node
membership (join/leave/fail) and to find the node responsible for a key within
O(log N) steps, where N is the number of nodes. One of the main advantages of
SONs for large-scale services is that each node only has to maintain state of a
small number of other nodes, typically O(log N). Most SONs also define a static
partitioning strategy over the data items where each node is responsible for the
range of keys from itself to its predecessor.

At first glance SONs may therefore seem to be a good fit for distributed
key/value stores. However, the static assignment of data items to nodes in com-
bination with the dynamic nature of user-donated resources make the design of
the data storage layer especially challenging in terms of reliability [4] and load
balancing.

The goal of load balancing is to improve the fairness regarding storage as well
as network and CPU-time usage between the nodes. Imbalance mainly occurs



due to: 1) non-uniform key distribution, 2) skewed access frequency of keys and
3) node heterogeneity. First, by supporting range-queries, an order-preserving
hash function is used to map keys to the overlay’s identifier space. With a non-
uniform key distribution a node can become responsible for an unfair amount of
items. Second, keys are typically accessed with different popularity which creates
uneven workload on the nodes. The third issue, node capacity differences, also
impacts the imbalance. For example, a low capacity node gets overloaded faster
than a high capacity node. We assume that nodes are homogeneous or have unit
size, where a single physical node can run several overlay nodes.

Our main contribution is a self-adaptive balancing algorithm which is aware
of both the key distribution and the item load, i.e. used storage and access-
frequency. The algorithm has two modes: active, which triggers a node already
part of the overlay to balance with other nodes and passive, which places a joining
node at a position that reduces the overall system imbalance. In both the passive
and active mode, a set of nodes are sampled and the algorithm balance using
the node with the highest load.

Our target application is a federated URL redirection service. This service
allow users to translate a long URL, from for example Google Maps, to a short
URL. The redirection service supports look-ups of single URLs as well as statis-
tics gathering and retrieval over time which motivates the need for range queries
to execute aggregates. Popular URL redirection providers such as tinyurl.com
have over 60 million requests per day and close to 300 million indirections.

Section 2 contains the model, assumptions and definitions that are used for
the load balancing algorithm presented in Section 3. In Section 4, we evaluate the
system using a simulated environment. Results from the simulation show that
the algorithm improves the load imbalance within a factor 2-3 in a system with
1000 nodes. In addition, we also show that load balancing reduces the storage
capacity overhead necessary in an overloaded system from a factor 10 to 8.

2 System Model

A ring-based DHT consists of N nodes and an identifier space in the range [0, 1).
This range wraps around at 1.0 and can be seen as a ring. A node, n;, at position
i has an identifier n/” in the ID space. Each node n; has a successor-pointer
to the next node in clockwise direction, n;+1, and a predecessor-pointer to the
first counter-clockwise node, n;_1. The last node, ny_1, has the first node, ng as
successor. Thus, the nodes and their pointers create a double linked list where
the first and last node are linked. We define the distance between two identifiers
as d(z,y) = |y — z| mod 1.0.

Nodes can fail and join the system at any time. When a node joins, it takes
over the range from its own ID to the predecessor of its successor. Similarly,
when a node n; fails, its predecessor becomes predecessor of n;’s successor. We
model churn by giving each node a mean time to failure (MTTF). To maintain
the system size, a failed node is replaced after a recovery time-out.



Storage When a key /value-pair or item is inserted in the system it is assigned an
ID using an order-preserving hash-function in the same range as the node IDs,
i.e. [0,1). Each node in the system stores the subset of items that falls within its
responsibility range. That is, a node n; is responsible for a key iff it falls within
the node’s key range (nf2, nfP].

Each item is replicated with a replication factor f. The replicas are assigned
replica keys according to symmetric replication where the identifier of an item
replica is derived from the key and the replica factor using the formula r(k, ) =
E+(i—1)x % mod N, k is the item ID and ¢ is the ith replica [5]. An advantage
of symmetric replication is that the replica keys are based on the item key. This
makes it possible to look-up any replica by knowing the original key. In other
approaches such as successor-list replication [6] the node responsible for the key
must first be located in order to find the replicas.

A replica maintenance protocol ensures that a node stores the items and the
respective replicas it is responsible for. The protocol consist of two phases; the
synchronization phase and the data transfer phase. In the synchronization phase,
a node determines which items should be stored at the node using the symmetric
replication scheme. And if they are not stored or not up-to-date, which replicas
need to be retrieved. The retrieval is performed during the data transfer phase
by issuing a read for each item.

Load and Capacity Each node has a workload and a storage capacity. The work-
load can be defined arbitrarily, but for a key/value-store this is typically the
request rate. Each stored item has a workload and a storage cost. A node can-
not store more items than its storage capacity allows. The workload, on the
other hand, is limited by for example bandwidth, and a node can decide if a
request should be ignored or not. We model the probability of a request failure
as P(fail) = 1 — 1, where p is the current node utilization, i.e. the measured
workload divided by the workload capacity.

Imbalance We define the system imbalance of a load attribute (storage or work-
load) as the ratio between the highest loaded node and the system average. For
example, for the storage, the imbalance is calculated as LL"“”” . Lpae is the maxi-
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mum number of items stored by a node and Lg,, is the average number of items
per node.

3 Load Balancing algorithm

The only way to change the imbalance in our model is to change the responsibility
of the nodes. A node’s responsibility changes either when another node joins
between itself and its predecessor, or when the predecessor fails. Thus, we can
balance the system either actively by triggering a node to fail and re-join or
passively by placing a new node at an overloaded node when joining. Passive
balancing uses the system churn, while active induces churn and extra data
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def placement ():
balanced_ID = L
current_distance = oo

; . 1D ID
for item in (n;=,,n;"]

distance = f(itemID) # the placement function
if distance < current_distance:
balanced_ID = item!? + d(item!? next(item!?))/2
current_distance = distance

return balanced_ID

def sample():
samples = [(n.load (), n)
for n in random_nodes (k)]
return max(samples)

def passive ():
(n_load , n) = sample()

join(n)

def active():

(n_load , n) = sample()
if n_load > local_-load x* e:
leave ()

join (n.placement ())

Fig. 1. Passive and Active load balancing

transfers. We first present the passive/active balancing algorithm followed by
the placement function.

The passive/active balancing algorithm presented in Figure 1 uses only local
knowledge and can be divided into three parts. 1) sample a set of k random
nodes to balance with using e.g. [7], 2) decide the placement of a potential new
predecessor and 3) select one of the k-nodes that reduce the imbalance the most.
We assume that there is a join function which is used to join the overlay given an
ID. passive is called before a node is joining and active is called periodically.
active is inspired by Karger’s [8] balancing algorithm, but we only consider the
case where the node has a factor € less load than the remote node. The € is used
to avoid oscillations by creating a relative load range where nodes do not trigger
a re-join. sample calls a function random_nodes that uses a random walk or
generates random IDs to find a set of k nodes. The node with the highest load
is returned.

Placement Function

The goal of the placement function is to find the ID in a node’s responsibility
range that splits the range in two equal halves considering both workload and
key distribution. When defining the cost for a single load attribute, it is optimal
to always divide the attribute in half [9]. We use this principle for each attribute
by calculating the ratio between the range to the left of the identifier z and
the remaining range up to the node’s ID. The optimal position is where this
ratio approaches 1. A ratio therefore increases slowly from 0 towards 1 until the




optimal value of x is reached, and after 1 the value approaches the total cost for
the attribute. '

First, let I,.(a,b) = Zzt:eg”se(a’b] I(item;) be a function returning the load of
the items in the range (a,b]. [(item;) is the load of a single item and is defined
arbitrarily depending on the load attribute. Second, let n; be the node at which
we want to find the best ID, then the ratio function is defined as follows

lr(nzlf)lvx)

The workload ratio, r,(z), could for example be defined using I(item;) =
weight(item;)+(rateqecess (item; ) X weight(item;)). The weight is the total bytes
of the item and the access rate is estimated with an exponentially weighted mov-
ing mean. For the key distribution ratio, ris(x), the load function is I (item;) = 1.
This means that rs(z) = 1 for the median element in n;’s responsibility range.
An interesting aspect of the ratio definitions is that they can be weighted in
order to ignore load attributes that changes fast or taking on extreme values.

In order to construct a placement function acknowledging different load at-
tributes, we calculate the product of their respective ratio function. The point
x where this product is closest to 1 is where all attributes are being balanced
equally. Note that when it equals 1, it means that the load attributes have their
optimal point at the same ID.

The placement function we use here considers both the key-space and work-
load distribution and is more formally described as

f(@) =1 = ry(z) X rgs(2)]

where x is the ID and n; is the joining node. The ratio product value
is subtracted from 1 and the absolute value of this is used since we are in-
terested in the ratio product value “closest” to 1. Finally, when the smallest
value of f(x) is found, a node is placed at the ID between the item, item;
preceding x and the subsequent item, item;; ;. That is, the resulting ID is
item!P + d(item!P  item!?)) /2.

4 Evaluation

This section present simulation results of the passive and active algorithms. The
goal of this section is to 1) show the effects of different access-load and key
distributions, 2) show the scalability of the balancing strategies when increasing
the system size and 3) determine the impact of imbalance in a system close to
its capacity limits. Table 1 summarizes the parameters used for the different
experiments.

Effect of Workloads In this experiment, we quantify the effect that different
access-loads and key distributions have on the system imbalance. The results



Nodes Items Replicas k& MTTF Storage Item Size

Effect of Workloads 256 32768 7 7 00 0o 1
Network costs 256 8192 7 7 1h o) 1-1MB
Size of k 256 8192 7 0-20 1h 00 1
System size 64-1024 2728 3 7 1h 00 1
Churn 256 8192 7 7 1h-1d 00 1
Overload 256 8192 7 7 1h 128 % 7-1024 % 7 1

Table 1. Parameters of the different experiments
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Fig. 2. The effect of different access workloads and key distributions.

from this experiment motivate the use of a multi-attribute placement function.
Specifically, we measure the imbalance of the nodespace (ns), keyspace (ks) and
the access workload (w).

Four different placement functions are used (x-axis in Fig. 2)

nodespace places a new node in the middle between the node and its prede-
cessor, i.e. n; + 4nizLn),

keyspace places the node according to the median item, f(z) = |1 — ris(x)|.

workload halves the load of the node, i.e f(z) = |1 — ry(z)]

combined uses the placement function defined in section 3.

The simulation is running an active balancing algorithm with ¢ = 0.15.

Workload is generated using three scenarios; uniform (u), exponential (e) and
range (r). In the uniform and exponential cases, the items receive a load from
either a uniform or exponential distribution at simulation start-up. The range
workload is generated by assigning successive ranges of items with random loads
taken from an exponential distribution. We expect this type of workload from
the URL redirection service when, for example, summarizing data of a URL for
the last week.

From the results shown in Figure 2, we can see that the imbalance when using
the different placement strategies are dependent on the load type. Figure 2(a)



clearly shows that a uniform hash-function is efficient to balance all three metrics
under both uniform and exponential workload. In the latter case, this is because
the items are assigned the load independently. However, for the range workload,
the imbalances are showing much higher variation depending on the placement
function. We conclude that in a system supporting range queries, the placement
function should consider several balancing attributes for fair resource usage.

rrrrrrr

Imbalance

Fig. 3. Imbalance when increasing the number of sampled nodes.

Size of k In this experiment, we try to find a reasonable value of the number
of nodes to sample, k. A larger k implies more messages used for sampling,
but also reduces the imbalance more. The results in figure 3 imply that the
value of k is important for smaller values of between 2-10. However, the balance
improvement becomes smaller and smaller for each increase of k, similar to the
law of diminishing returns. In the remaining experiments we use k = 7.

Network costs We define cost as the total amount of data transferred in the
system up to a given iteration. This cost is increased by the item size each time
an item is transferred. Since there is no application traffic in the simulation
environment, the cost is only coming from replica maintenance. That is, item
transfers are used to ensure that replicas are stored according to the current
node responsibilities. Active load balancing creates traffic when a node decides
to leave and re-join the system.

We measure the keyspace imbalance and the transfer cost at the end of the
simulation, which is run for 86400s (1 day). Each simulation has 8192 items with
7 replicas and the size of the items is increased from 20 to 22°. The item size
has minor impact on the imbalance (Fig. 4(a)). Interestingly, the overhead when
using the hash-based balancing strategy as a reference, of active and passive
(a+p in the figure) and active only is 5-15% (Fig. 4(b)). The passive strategy
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Fig. 4. Imbalance and cost of balancing for increasing item size.

does not show a significant difference. Noteworthy is also that in a system storing
around 56 GB of total data (including replicas), over 1 TB aggregated data is
transferred. This can be explained with the rather short node lifetime of 3600s.

Churn A node joining and leaving (churn) changes the range of responsibility
for a node in the system. Increasing the rate of churn influences the cost of
replica maintenance since item repairs are triggered more frequently. In this
experiment, we quantify the impact of churn on transferred item cost and the
storage imbalance.

In figure 5(a) the node MTTF is varied from 1 to 24 hours. As expected the
amount of data transferred is decreasing when the MTTF is increasing. Also as
noted in the network costs experiment, the different schemes for load balancing
have a minor impact on the total amount of transferred data. Figure 5(b) shows
that churn has in principle no impact on the imbalance for the different strategies.
This is also the case for the passive approach which only relies on churn to
balance the system.

System size The imbalance in a system with hash-based balancing was shown
theoretically to be bounded by O(log N), where N is the number of nodes in the
system [10]. However, this assumes that both the nodes and the keys are assigned
IDs from a uniform hash-function. In this experiment, we try to determine the
efficiency of the placement function with an increasing number of nodes and
items.

We measure the keyspace imbalance for an increasing number of nodes be-
tween 2° and 219, In addition, for each system size we vary the number of items
from 2% to 2'8. Keys are generated from a dictionary and nodes are balanced
using the combined placement function. Four different balancing strategies are
compared; 1) IDs generated by a uniform hash-function 2) active without any
passive placement, 3) passive without any active and 4) active and passive to-
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Fig. 6. Imbalance of the system using different balancing strategies while increasing
the system size. The right figure shows the influence of load balancing in an overloaded
system.

gether (a+p). For the last three, 7 nodes are sampled when selecting which node
to join at or whether to balance at all.

Figure 6(a) shows that the hash-based approach performs significantly worse
with an imbalance up to 2-3 times higher compared to the other balancing strate-
gies. Interestingly, the difference in load imbalance when varying the number of
items is also growing slightly with larger system sizes. All three variants of the
passive/active algorithm show similar performance. The imbalance grows slowly
with increasing system size and the difference for different number of items is
small. Thus, we draw the conclusion that these strategies are only minimally
influenced by system size and number of items. However, note that we need to
perform further experiments varying other parameters such as k to validate these
results.



Overload In a perfectly balanced system where at most one consecutive node
can fail, nodes can use at most up to 50% of their capacity to avoid becoming
overloaded when a predecessor fails. This type of overload leads to dropped write
requests when there is insufficient storage capacity and dropped read request
with insufficent bandwidth and processing capacity. Since a replica cannot be
recreated when a write is dropped, this influences the data reliability. The goal
of this experiment is to better understand the storage capacity overhead to avoid
dropped writes.

We start the experiment such that the sum of the item weights equals the
aggregated storage capacity of all nodes. Then by increasing the node’s storage
capacity we decrease their fill-ratio and thereby the probability of a dropped
write. The system is under churn and lost replicas are re-created using a replica
maintenance algorithm executed periodically at each node. The y-axis in Fig-
ure 6(b) shows the fraction of dropped write requests and the x-axis shows the
storage capacity ratio. We do not add any data to the system which means that
a write request is dropped when a replica cannot be created at the responsible
node because of insufficient storage capacity. We measured the difference with
hash-based balancing vs. the active and active 4+ passive with 7 sampled nodes
and the combined placement function.

Figure 6(b) shows that a system must have at least 10x the storage capacity
over the total storage load to avoid dropped write requests when using hash-
based balancing. Active and active-passive delays the effect of overload and a
system with at least 8x storage capacity exhibits a low fraction of dropped
requests.

5 Related Work

Karger et al. [8] and Ganesan et al. [11] both present active algorithms aiming at
reducing the imbalance of item load. Karger uses a randomized sampling-based
algorithm which balances when the relative load value between two nodes differs
by more than a factor e. Ganesan’s algorithm triggers a balancing operation
when a node’s utilization exceeds (falls below) a certain threshold. In that case,
balancing is either done with one of its neighbors or the least (most) loaded node
found. Aspnes at al. [12] describe an active algorithm that categorizes nodes as
closed or open depending on a threshold and groups them in a way so that
each closed node has at least one open neighbor. They balance load when an
item is to be inserted into a closed node that cannot shed some of its load to
an open neighbor without making it closed as well. A rather different approach
has been proposed by Charpentier et al. [13] who use mobile agents to gather
an estimate of the system’s average load and to balance load among the nodes.
Those algorithms however do not explicitly define a placement function or use a
simple “split loads in half” approach which does not take several load attributes
into account.

Byers et. al. [14] proposed to store an item at the & least loaded nodes out of
d possible. Similarly, Pitoura et al. [15] replicate an item to k of d possible identi-



fiers when a node storing an item becomes overloaded (in terms of requests). This
technique, called the “power of two choices” was picked up by Ledlie et. al [16]
who apply it to node IDs and use it to address workload skew, churn and het-
erogeneous nodes. With their algorithm, k-Choices, they introduce the concept
of passive and active balancing. However, their focus is on virtual server-based
systems without range-queries. Giakkoupis and Hadzilacos [17] employ this tech-
nique to create a passive load balancing algorithm including a weighted version
for heterogeneous nodes. There, joining nodes contact a logarithmic (in system
size) number of nodes and choose the best position to join at. Their focus on
the other hand is on balancing the address-space partition rather than arbitrary
loads. Manku [18] proposes a similar algorithm issuing one random probe and
contacting a logarithmic number of its neighbors. An analysis of such algorithms
using r random probes each followed by a local probe of size v is given by Ken-
thapadi and Manku [19]. However, only the nodespace partitioning is examined.

In Mercury [20] each node maintains an approximation of a function describ-
ing the load distribution through sampling. This works well for simple distribu-
tions, but as was shown in [21] it does not work for more complex cases such as
file-names. Instead, [21] introduces OSCAR where the long-range pointers are
placed by recursively halving the traversed peer population in each step. Both
OSCAR and Mercury balance the in/out-degree of nodes. While this implies that
the routing load in the overlay is balanced, it does not account for the placement
of nodes according to item characteristics.

6 Conclusions

With the goal of investigating load balancing algorithms for distributed key/value-
stores, we presented an active and a passive algorithm. The active algorithm is

triggered periodically, while the passive algorithm uses joining nodes to improve

system imbalance. We complement these algorithms with a placement function

that splits a node’s responsibility range according to the current key and work-

load distribution. Initial simulation results are promising showing that the sys-

tem works well under churn and scales with increasing system sizes. Ongoing

work include quantifying the cost of the algorithms within a prototype imple-

mentation of a key/value-store.
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