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Abstract. The Cross-Entropy Ant System (CEAS) is an Ant Colony
Optimization (ACO) system for distributed and online path manage-
ment in telecommunication networks. Previous works on CEAS have en-
hanced the system by introducing new features. This paper takes a step
back and revisits the auto-regressive functions at the core of the sys-
tem. These functions are approximations of complicated transcendental
functions stemming from the Cross-Entropy (CE) method for stochas-
tic optimization, computationally intensive and therefore not suited for
online and distributed operation. Using linear instead of hyperbolic ap-
proximations, new expressions are derived and shown to improve the
adaptivity and robustness of the system, in particular on the occurrence
of radical changes in the cost of the paths sampled by ants.

Key words: Ant-based optimization, Cross-Entropy method, CEAS,
linear approximations

1 Introduction

Ant Colony Optimization (ACO) [1] systems are self-organizing systems inspired
by the foraging behaviour of ants and designed to solve discrete combinatorial op-
timization problems. More generally, ACO systems belong to the class of Swarm
Intelligence (SI) systems [2]. SI systems are formed by a population of agents,
which behaviour is governed by a small set of simple rules and which, by their
collective behaviour, are able to find good solutions to complex problems. ACO
systems are characterized by the indirect communication between agents - (arti-
ficial) ants - referred to as stigmergy and mediated by (artificial) pheromones. In
nature, pheromones are a volatile chemical substance laid by ants while walking
that modifies the environment perceived by other ants. ACO systems have been
applied to a wide range of problems [1]. The Cross-Entropy Ant System (CEAS)
is such a system for path management in dynamic telecommunication networks.

The complexity of the problem arises from the non-stationary stochastic dy-
namics of telecommunication networks. A path management system should adapt
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to changes including topological changes, e.g. link/node failures and restorations,
quality changes, e.g. link capacity changes, and traffic pattern changes. The type,
degree and time-granularity of changes depend on the type of network. For in-
stance, the level of variability in link quality is expected to be higher in a wireless
access network than in a wired core network.

Generally, the performance of an ACO system is related to the number of
iterations required to achieve a given result. Specific to the path management
problem in telecommunication networks are the additional requirements put on
the system in terms of time and overhead. On changes, the system should adapt,
i.e. converge to a new configuration of paths, in short time and with a small
overhead. In addition, finding a good enough solution in short time is at least
as important as finding the optimal solution, and there is a trade-off between
quality of the solution, time and overhead.

Previous works on CEAS have improved the performance of the system by
introducing new features. See for instance [3–5]. This paper follows the same
objective, but takes a different approach. Rather than adding yet another mech-
anism, it takes a step back and revisits the auto-regressive functions at the core
of the system.

The rest of this paper is organized as follows. Section 2 presents CEAS.
Section 3 addresses the auto-regressive functions at the core of the system and
motivates the introduction of a new set of functions. The performance of the
system applying these new functions is then evaluated in Section 4. Finally,
Section 5 concludes the paper.

2 Cross Entropy Ant System (CEAS)

CEAS is an online, distributed and asynchronous ACO system designed for adap-
tive and robust path management in telecommunication networks. Ants coop-
erate to collectively find and maintain minimal cost paths, or sets of paths,
between source and destination pairs. Each ant performs a random search di-
rected by the pheromone trails to find a path to a destination. Each ant also
deposits pheromones so that the pheromone trails reflect the knowledge acquired
by the colony thus enforcing the stigmergic behaviour characterizing ACO sys-
tems. Similarly to what happens in nature, good solutions emerge as the result
of the iterative indirect interactions between ants.

Contrary to other ACO systems, the random proportional rule used by ants
to decide about their next-hop and the pheromone update rule used in CEAS are
formally founded and stem from the Cross-Entropy (CE) method for stochastic
optimization [6]. A brief overview of these formal foundations is given below
before CEAS is described in more details.

2.1 Cross-Entropy (CE) Method

The CE method is a Model-Based Search (MBS) [7] procedure applying impor-
tance sampling techniques to gradually bias a probability distribution over the



solution space (probabilistic model) towards high-quality solutions and almost
surely converge to the optimal solution. An outline of the method applied to the
shortest path problem is given below. For further details and proofs, the reader
is referred to [6].

Let G = (V,E) denote a bidirectional weighted graph where V is the set
of vertices (nodes) and E the set of edges (links), and let pt = [pt,vi]‖V‖×‖V‖

denote the probability distribution after t updates. Finding the shortest path
between nodes s and d consists in solving the minimization problem (Ω, L)
where Ω is the set of feasible solutions (paths) and L is the objective function,
which assigns a cost L(ω) to each path ω = 〈(s, v1), (v1, v2), . . . , (vh−1, d)〉 ∈ Ω.
(v, i) ∈ E denotes the link connecting node v to node i and L is an additive
function, L(ω) =

∑

∀(v,i)∈ω
L((v, i)). The CE method works as follows. At each

iteration t, a sample of m paths {ω1, . . . , ωm} is drawn from pt−1, and pt is
obtained by minimizing the cross entropy between pt−1 multiplied by a quality
function Q of the cost values and pt, which is equivalent to solving

pt = arg max
p

1

m

m∑

k=1

Q(L(ωk))
∑

(v,i)∈ωk

ln pvi . (1)

By choosing Q(L(ωk)) = H(L(ωk), γt), the solution to (1) is

pt,vi =
τt,vi

∑

j∈Nv
τt,vj

, (2)

where Nv = {i ∈ V | (v, i) ∈ E} and

τt,vi =

m∑

k=1

I((v, i) ∈ ωk)H(L(ωk), γt) (3)

and I(x) = 1 if x is true, 0 otherwise.

H(L(ωk), γt) = e
−

L(ωk)

γt (4)

is the Boltzmann function, see Fig. 1. γt > 0 is an internal parameter (tempera-

ture) determined by minimizing it subject to ht(γt) > ρ, where

ht(γt) =
1

m

m∑

k=1

H(L(ωk), γt) (5)

is the overall performance function and ρ is a configuration parameter (search
focus) close to 0, typically 0.01. Both γt and ρ control the relative weights given
to solutions and thereby the convergence of the system. γt is self-adjusting and
depends on the sampled solutions. ρ decides the absolute value of the tempera-
ture.
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Fig. 2. Behaviour of ants in CEAS

2.2 Online Distributed Asynchronous Operation

CEAS is an implementation of the CE method as an ACO system where updates
are performed online by ants at each node along their way. The CE method,
as described in Section 2.1, is a centralized and batch-oriented procedure and
updates are performed offline and synchronously at the end of each iteration. As
such, it is therefore not suited for online, distributed and asynchronous operation.
To achieve this, CEAS substitutes (3) and (5) with auto-regressive functions.
Reusing the notations defined in Section 2.1, the behaviour of ants in CEAS is
now detailed. See Fig. 2 for an illustration.

Starting from node s, an ant incrementally builds a path to node d by moving
through a sequence of neighbour nodes. At each node, the ant samples its next-
hop according to pt (biased exploration) where t now represents the number of
paths sampled. At node v, the probability that an ant decides to move to node i

is given by the random proportional rule

ptv,vi =
τtv ,vi

∑

j∈Nv
τtv ,vj

, ∀i ∈ Nv (6)

where τtv ,vi is the pheromone trail value at node v for the link (v, i) after tv
updates1 at node v, see below, and Nv ⊆ Nv is the set of neighbours of node v

not yet visited by the ant. Nv = Nv if the ant has visited none or all of the nodes
in Nv. To bootstrap the system, ants do not apply (6) but a uniformly distributed

proportional rule (uniform exploration) ptv,vi = 1
|Nv |

, ∀i ∈ Nv. During normal

operation, a given percentage of such explorer ants is maintained to allow the
system to adapt to changes, e.g. to discover new solutions.

Immediately after the ant has arrived at the destination, t is incremented
and the temperature γt is computed. The auto-regressive counterpart of (5) is

ht(γt) = βht−1(γt) + (1− β)H(L(ωt), γt) , (7)

1 tv =
Pt

x=1 I((v, ·) ∈ ωx)



which is approximated by

ht(γt) ≈
1− β

1− βt

t∑

k=1

βt−kH(L(ωk), γt) (8)

where β ∈ [0, 1) is the memory factor and ωk is the path sampled by the kth ant
arrived at the destination. γt is obtained by minimizing it subject to ht(γt) > ρ,
that is2

γt =

{

γ |
1− β

1− βt

t∑

k=1

βt−kH(L(ωk), γ) = ρ

}

. (9)

The ant then backtracks and updates pheromones trail values (online delayed
pheromone update) along ωt. The pheromone values are calculated according to
the auto-regressive counterpart of (3)

τtv ,vi =

tv∑

k=1

I((v, i) ∈ ωk)βtv−kH(L(ωk), γtv ), ∀i ∈ Nv, ∀v ∈ πt (10)

where πt = 〈s, v1, v2, . . . , vh−1, d〉 denotes the sequence of nodes traversed by
the ant on its way forward.

3 Auto-Regressive Functions

Both (8) and (10) are complicated transcendental functions. The exact evalua-
tion of these functions is both processing and storage intensive. The entire path
cost history Lt = {L(ωk) | k = 1, . . . , t}must be stored and, for each update, the
weights for all the costs must be recalculated. Such requirements are impractical
for the online operation of a network node. Instead, assuming that the temper-
ature does not radically change, each term in (8) and (10) is approximated by
a Taylor expansion, and these functions are replaced by a set of auto-regressive
functions with limited computational and memory requirements.

Since CEAS has been first introduced in [8], H(L(ωk), γ) has been approx-
imated using a Taylor expansion of H(L(ωk), 1

γ ) around 1
γk

(hyperbolic ap-

proximation). However, for a similar computational complexity, approximating
H(L(ωk), γ) using a Taylor expansion around γk (linear approximation) pro-
vides a more accurate and more robust approximation. Details on the resulting
auto-regressive schemes and their stepwise derivation are given in Appendix A.

3.1 Linear vs. Hyperbolic Approximations

Since [8], first order Taylor expansions of H(L(ωk), 1
γ ), around 1

γk
, ∀k < t, and

around γt−1 for k = t, have been used to compute the temperature γt. This

2 For γ > 0, ht(γ) is strictly increasing and ht(γ) ∈ (0, 1). Therefore,
∀ρ ∈ (0, 1), ∃! γt, ht(γt) = ρ and min γ s.t. ht(γ) > ρ =⇒ γ = γt



amounts to approximating H(L(ωk), γ) by a hyperbola. Now, choosing ρ < e−2

yields γk <
L(ωk)

2 , unless the occurrence of a radical change in the costs of the
sampled paths, see Section 3.2. Hence, H(L(ωk), γ) is convex3 around γk and
a linear approximation is always more accurate than a hyperbolic approxima-
tion, see Fig. 3(a). Fig. 4 shows the temperature values obtained by the exact
evaluation of (9) and by applying hyperbolic and linear approximations given
the same sequence of cost values. The series of costs imitates the convergence
of the system. The tth cost value is Lt = Lmin + Ut where Lmin = 1.0 and U is
a random variable uniformly distributed between 0 and 100

t+1 . The temperature
values obtained using linear approximations are much closer to the exact values
than the values obtained using hyperbolic approximations.
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3 H(L(ωk), γ) is convex for γ 6
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.



Since [8], pheromones values are computed using second order Taylor expan-
sions around 1

γk
to avoid negative values in case of a rapid decay of the temper-

ature. For γ close to γk, the second order hyperbolic expansion of H(L(ωk), γt)
provides a better approximation than a linear approximation, see Fig. 3(b).
However, when γt < γk H(L(ωk), γt) is over-estimated4, and when γt > γk

H(L(ωk), γt) is under-estimated. Hence, using second order expansions tends
to smoothen the difference in weights given to costs as the temperature varies.
As a result, it may slow down convergence as poor quality solutions (high costs)
receive relatively higher weights. A first order approximation, and a fortiori a lin-
ear approximation, is therefore preferable as it provides a better approximation
over a larger interval and better discriminates between good and poor solutions.

3.2 Radical Changes

This section addresses the adaptivity and robustness of the approximations to
radical changes, i.e. when the assumption of small changes in the temperature
does not hold anymore. Radical changes in temperature are caused by radical
changes in the costs of the sampled paths, either because paths become unavail-
able or degraded, or because new paths are discovered. At intermediate nodes,
radical temperature differences may also be observed when a node is seldom vis-
ited. For pheromone calculations, the observations made above apply, and the
larger the change, the better the linear approximations compared to the hyper-
bolic approximations. In the following, the challenges posed by large variations
in the costs of the sampled paths on the calculation of the temperature are
considered. We distinguish between radically lower and radically higher costs.

Radically lower costs are observed when a radically better path is discov-
ered. A radically better path is a path such that L(ωt) < 2 γt−1. In this case,
H(L(ωt), γ) is concave around γt−1. A linear approximation may then not pro-
vide a good approximation of H(L(ωt), γ) and (9) may not have a positive
solution. However, the shape of H(L(ωt), γ) can easily be exploited to provide a
better approximation and ensure that a positive solution is found. See Fig. 5(a)
and Appendix A for details. Using a hyperbolic approximation, (9) always have
a solution, although it may be quite far from the exact value, see Fig. 5(a).
It could be significantly improved by exploiting the shape of H(L(ωt), γ), but
would remain less accurate than a linear approximation.

Radically higher costs are obtained for instance on the degradation of the
path the system has converged to. In this case, H(L(ωt), γ) is convex around
γt−1. Therefore, a linear approximation is more accurate than a hyperbolic ap-
proximation. In addition, a linear approximation is more robust than a hyper-
bolic approximation. The main problem with using a hyperbolic approximation
is that, contrary to a linear approximation, it may be significantly smaller than
ρ, ∀γ > 0. See Fig. 5(b). As a result, (9) may output a very high value or may
not have a positive solution. In either case, there is no good alternative; not

4 When γt < γk and
dτvi,t(γ)

dγ

˛

˛

˛

< 0, the resulting over-estimation of τvi,t is only limited

by min∀γ τvi,t(γ).
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updating the temperature results in very low pheromone updates and therefore
slow convergence, resetting the temperature in possibly premature convergence
as pheromone values at intermediate nodes may be strongly directed towards a
poor quality path.

The effect of radical changes in the observed costs on the approximations
of the temperature is shown in Fig. 6. The settings are identical to those used
for the example presented in Fig. 4, except that radical changes are introduced,
namely Lt = 0.01, ∀t ∈ (450, 700). β and ρ are chosen to illustrate the potential
pitfalls described above when using hyperbolic approximations and radically
higher costs are sampled, i.e. very high values (Fig. 6(a)) and no positive solution
in which case γt is not updated (Fig. 6(b)). On the other hand, in both cases,
the temperature obtained applying linear approximations correctly converges to
the exact value.
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4 Case Study

In this section, the effect of replacing the original auto-regressive update schemes
obtained using hyperbolic approximations by the new schemes derived from ap-
plying linear approximations on the performance of the system is evaluated by
simulation. The effect is more pronounced as good solutions are hard to find.
Hence, it is demonstrated by applying CEAS to solve the fri26 symmetric static
Traveling Salesman Problem (TSP) taken from TSPLIB5 and also used in [3].
Note that CEAS has not been specifically designed to solve the TSP. Such a
hard (NP-complete) problem is chosen to stress the performance of the system.

Fig. 7 shows the mean value of the cost L(ω) of the sampled paths with
respect to the number of tours completed by ants, averaged over 13 runs. Error
bars indicate 95% confidence intervals. Parameter settings are similar to those
used in [3] and elite selection is applied, see [3]. It is observed that applying
linear approximations improves the convergence speed of the system in terms of
number of iterations (“tours” here). This improvement is due to the combined
effect of the faster convergence of the temperature, hence the higher relative
weights given to good solutions, and the better differentiation between paths
when updating pheromone levels.
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Fig. 7. 26 node TSP example

5 Conclusion

CEAS is an online, distributed and asynchronous ACO system designed for adap-
tive and robust path management in telecommunication networks. The perfor-
mance of such a system is related to the number of iterations, the time and the

5 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95



management overhead required to converge after a change. Previous works on
CEAS have improved the performance of the system by adding new mechanisms.
This paper takes a step back and revisits the auto-regressive functions at the core
of the system. These functions are approximations of functions stemming from
the CE method for stochastic optimization, processing and storage intensive and
therefore not suited for online and distributed operation. The functions used
so far were based on hyperbolic approximations. In this paper, new functions
are derived applying linear approximations instead. For a similar computational
complexity, linear approximations are shown to be both more accurate and more
robust to radical changes. Results show that the performance of the system is
also improved.
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Appendix A: Approximations Details

Temperature Calculation

Assuming that the temperature does not change radically, H(L(ωk), γt) is ap-
proximated by its first order Taylor expansion around γk for k < t

H(L(ωk), γt) ≈ H(L(ωk), γk) + H ′(L(ωk), γk)(γt − γk)

= e
−

L(ωk)

γk +
L(ωk)

γ2
k

e
−

L(ωk)

γk (γt − γk)

= e
−

L(ωk)

γk

(

1−
L(ωk)

γk
+ γt

L(ωk)

γ2
k

)



and H(L(ωt), γt) around γt−1

H(L(ωt), γt) = e
−

L(ωt)
γt ≈ e

−
L(ωt)
γt−1

(

1−
L(ωt)

γt−1
+ γt

L(ωt)

γ2
t−1

)

Eq.(9) can then be rewritten

ρ
1− βt

1− β
=

at−1
︷ ︸︸ ︷

t−1∑

k=1

βt−ke
−

L(ωk)

γk

(

1−
L(ωk)

γk

)

+γt

bt−1
︷ ︸︸ ︷

t−1∑

k=1

βt−ke
−

L(ωk)

γk
L(ωk)

γ2
k

+e
−

L(ωt)
γt−1

(

1−
L(ωt)

γt−1
+ γt

L(ωt)

γ2
t−1

)

= at−1 + e
−

L(ωt)
γt−1

(

1−
L(ωt)

γt−1

)

+ γt

(

bt−1 +
L(ωt)

γ2
t−1

e
−

L(ωt)
γt−1

)

Hence, γt is obtained as

γt = −
at−1 + e

−
L(ωt)
γt−1

(

1− L(ωt)
γt−1

)

− ρ 1−βt

1−β

bt−1 + L(ωt)
γ2

t−1
e
−

L(ωt)
γt−1

where at and bt can be expressed as auto-regressive functions:

at ← β

(

at−1 + e
−

L(ωt)
γt

(

1−
L(ωt)

γt

))

bt ← β

(

bt−1 + e
−

L(ωt)
γt

L(ωt)

γ2
t

)

and the initial values are a0 = b0 = 0 and γ0 = −L(ω1)
ln ρ .

Now when γt−1 >
L(ωt)

2
6, the first order Taylor expansion around γt−1 may

not be a good approximation of H(L(ωt), γt) and may even result in a nega-
tive value for γt. A better approximation may be obtained by approximating

H(L(ωt), γt) by its tangent at the inflection point (L(ωt)
2 , e−2). The value ob-

tained using this approximation is used as a lower bound for γt when ρ < e−2

and γt−1 >
L(ωt)

2 . See Fig. 8 for an illustration. Hence, if γt−1 >
L(ωt)

2 , γt is
calculated as

γt = max




−

at−1 − e−2 − ρ 1−βt

1−β

bt−1 + 4
L(ωt)

e−2
,−

at−1 + e
−

L(ωt)
γt−1

(

1− L(ωt)
γt−1

)

− ρ 1−βt

1−β

bt−1 + L(ωt)
γ2

t−1
e
−

L(ωt)
γt−1






6 This happens when a radically better path is discovered.
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Pheromones Calculation

Eq.(10) can be rewritten

τtv ,vi = I((v, i) ∈ ωtv )H(L(ωtv ), γtv ) +

tv−1∑

k=1

I((v, i) ∈ ωk)βtv−kH(L(ωk), γtv )

︸ ︷︷ ︸

τtv,vi|(v,i)/∈ωtv

Approximating τtv ,vi|(v,i)/∈ωt
by a weighted sum of first order Taylor expansions

gives

τtv ,vi|(v,i)/∈ωtv
≈

Atv−1,vi

︷ ︸︸ ︷

tv−1∑

k=1

I((v, i) ∈ ωk)βtv−ke
−

L(ωk)

γk

(

1−
L(ωk)

γk

)

+ γtv

Btv−1,vi

︷ ︸︸ ︷

tv−1∑

k=1

I((v, i) ∈ ωk)βtv−ke
−

L(ωk)

γk
L(ωk)

γ2
k

where Atv ,vi and Btv ,vi can be expressed as auto-regressive functions:

Atv ,vi ← β

(

Atv−1,vi + I((v, i) ∈ ωtv )e
−

L(ωtv )

γtv

(

1−
L(ωtv)

γtv

))

Btv ,vi ← β

(

Btv−1,vi + I((v, i) ∈ ωtv )e
−

L(ωtv )

γtv
L(ωtv )

γ2
tv

)

and where the initial values are A0,vi = B0,vi = 0. In addition, τtv ,vi|(v,i)/∈ωtv
is

bounded by 0 and
∑t−1

k=1 βt−k = β 1−βt−1

1−β .


