
A stable random-contact algorithm for peer-to-peer file sharing

Hannu Reittu
VTT Technical Research Center of Finland, Hannu.Reittu@vtt.fi

Abstract—We consider a BitTorrent type file sharing algo-
rithm with randomized chunk copying process. The system
functions in completely distributed way without any ’Tracker’,
just relying on randomness. In such case the stability becomes
an issue. It may happen, say, that some chunk becomes rare.
This problem can persist and cause accumulation of peers
in the system, resulting in unstable system. The considered
algorithms result in processes similar to urn-processes. The
rare chunk phenomenon corresponds to Polya-urn type pro-
cess, where common chunks are favored. However, some urn-
processes like the Friedman-urn can provide good balance by
favoring rare chunks in copying process. Recently, we showed
that an algorithm based on Friedman-urn is efficient in two
chunk case. We generalize this algorithm for the more realistic
case of many chunks. It shows good performance in terms
of balance of chunks in an open system with constant flow
of incoming peers. Further, the system is able to cope with
instances like ’flash crowd’, with large burst of incoming peers.
The open system can also quickly reach equilibrium after an
initial imbalance, when the system starts from a state with one
rare chunk. We constructed a simplified model, assuming a
good balance of chunks, and get results surprisingly close to
simulations for Friedman-urn based random process.

Keywords-file-sharing; urn-models; randomized algorithms

I. INTRODUCTION

File sharing has been one of the first and the most
popular application of peer-to-peer systems. The early ap-
plications like ’Napster’ and ’Gnutella’ were replaced by
more advanced algorithms like BitTorrent, [1]. Such systems
have shown capacity for large scale file distribution, [2].
These protocols are thus highly untrivial in performance and
scalability, and are good motivation for interesting models
to reveal what is their ’secret’ of success. Further, such
abstract models, if good enough, should also indicate ways
to improve the protocol design. Here we report first results
in this direction.

We consider a BitTorrent type system, which, however,
does not contain any centralized elements like the ’Tracker’
in real BitTorrent that controls who contacts who. Rather, our
algorithm relies on randomness and is distributed. However,
the simplest randomized algorithm leads to system that is
similar to Polya-urn like system, with natural instability in

open system setting with constant flow of new peers. In
BitTorren the main innovation is that the file is divided into
large number of smaller pieces or ’chunks’. Such chunks are
copied from peer to peer. Since the chunks are small they
are copied swiftly, which improves the performance, see also
[3] for performance limits. In a randomized setting, it can
easily happen that some chunks become rare, thus forming
a bottleneck of performance. This happens because the most
common chunks are easier to find, and, if no measures are
taken, are favored in copying process. This is exactly what
happens if we assume the simplest, Polya-type algorithms:
peers make uniformly random contacts and copy what they
find and after collecting all chunks departure.

Recently, we examined such a problem in a systems with
just two chunks and the above problem of instability, [4], [5]
was pinpointed. However, the two chunk case is unrealistic,
because one should have many chunks to speed up copying.
This is the issue of the current short paper. First we see that
the same type of instability arises in the many chunk case
as well.

The problem of stability in BitTorrent type systems has
been studied also in [6] mostly with quite similar assump-
tions. However, the setting is different since the authors as-
sume that the inflowing peers receive one uniformly random
chunk upon arriving. The peers could obtain this chunk from
the seed node that has all chunks. However, such a seed node
becomes a server-like centralized element and possibly a
bottleneck of performance. Then the system shows provable
stability in fluid limit. We avoid the assumption of first
random chunk, the peers arrive with no chunks and obtain
every chunk from the network in a distributed manner. The
untrivial result seems to be that the instability problem arises
and can be, probably, avoided by a specific yet simple
design.

We noticed, [5], that by modifying the random contact
procedure to one that imitates the so called Friedman-
urn (see e.g. [7]), the two chunk sharing process becomes
remarkably stable and efficient. In this scheme, a peer that
arrives does not have neither of the chunks, called chunk 0
and 1. The peers that have both chunks immediately leave



the system. As a result there are three types of peers in the
system: peers without any chunks, and peers with chunk 0 or
1. There is also one peer called the seed, a permanent node
with both chunks,which , acts as it has a random chunk,
chosen independently for each time it is contacted. Peers
arrive with constant rate λ.

The Friedman-urn process in two chunk case would
mean that peers make uniformly random contacts to acquire
missing chunks, if the target has chunk 0, it downloads the
chunk 1. However, in our setting this is impossible since
this chunk was not found. Our solution was ([5]) that the
peer makes three simultaneous uniformly random contacts
and downloads the chunk 0 if it sees the configuration
{0, 1, 1} and chunk 1 in case {0, 0, 1}, in other cases it
does not download anything and makes another three contact
trial until it does find such a configuration. The idea is
that under the condition that a node succeeds to obtain a
chunk, the probability that it downloads a particular chunk
equals to that for the Friedman-urn process, in which the
rarest chunk is favored. Such a system is able to cope with
substantial imbalance, say, when the system starts in a state
with one chunk very rare with respect to the other. Then,
with constant rate of arrivals, the system quickly relaxes
toward the equilibrium. Such a system in equilibrium shows
also a good performance, the peers go through the system
quickly.

II. OPEN SYSTEM WITH RANDOM CONTACTS

The two chunk case is not realistic, because the very idea
of BitTorrent is to use many small chunks. So we have
natural question: how to obtain stable system in such a
case? If we have m chunks then we have 2m − 1, possible
states of a peer. This is of course very large number, say,
for m = 100, and the system is very complicated. In this
situation, we generalized the algorithm as simply as possible.
We use a slightly modified three random contact procedure,
described in the Introduction.

The main points of our algorithm are: (i) All peers run
the same procedure (ii)-(iii) independently of each other.
(ii) A peer makes 3 simultaneous and uniformly random
contacts with peers in the system. The peer that makes the
contacts, learns which chunks those 3 contacts posses. Those
chunks that only one contact has, are called the ’minority
chunks’. The peer makes a list of those minority chunks
found, that it self does not have. If this list is not empty, the
peer downloads one of such minority chunk from the list,
chosen randomly if there is more than one options. If the

Figure 1. A result of a computer simulation with a simple random contact
system, without favoring rare chunks. Each line represents the size of a
particular chunk population, number of nodes in the system with given
chunk, for system starting from a system with one ’seed’ as a function of
time (a sample path). Number of chunks m = 20 and λ = 10 times the
contact rate. The populations of nodes that have certain chunks blows up,
expect for one chunk that remains ’rare’.

list is empty, the peer proceeds (iii). (iii) Repeat (ii) until all
chunks are collected, then leave the system.

Quite surprisingly, such approach seems to produce a
stable and efficient system. Although not proven rigorously,
simulations and simplified models seems to support this
conjecture.

First we consider Polya-urn like, ’greedy’ algorithm, in
which a peer makes uniformly random contacts and down-
loads a missing chunk if it sees one. Then it repeats until
it collects all chunks and departures. This seems to result
in an inefficient and unstable system. One chunk becomes
rare, and the number of peers keeps growing. This means
that it takes longer and longer time for a peer to complete.
This case is shown in Fig. 1.

This problem is persistent from case to case and is similar
to the two chunk case, [5]. The other algorithm described
above we call ’Forced-Friedman-algorithm’. As we can see,
the results of simulation in Fig. 2 are promising. Indeed,
the system shows very good performance and balance,
peers go through the system almost with maximal possible
rate, almost every contact is productive, the peer can find
something to copy and moves ahead. This picture is also
persistent from case to case.

Furthermore, it seems to have other good properties as
well. Indeed, such a system seems to be able to cope with
unstationar scenarios, a kind of ’flash crowds’. By this we
mean that first there is a constant flow of incoming peers,
but after some time this flow completely shuts down. If the
system is unstable with poor balance of chunk populations,



Figure 2. A computer experiment with random contact system with
Forced-Friedman random contacts, m = 20, λ = 100. The sizes of chunk
populations are shown starting from system with only the seed node. A good
balance seem to prevail and a good performance, since no accumulation of
peers is not seen although there is a constant flow of incoming peers into
the system.

Figure 3. An unstationar scenario with Forced-Friedman algorithm. The
systems starts from the empty state and with constant rate of incoming
peers, then after a while the flow of peers stops. The case with 50 chunks,
populations of nodes having particular chunks. The system manages to
complete, all peers complete without any long tail of delay.

the system would not be able to complete, there would
be a left-over, see also [8], [4]. The left-over is situation
when some peers would not be able to complete (in system
without seed) or would be forced to complete slowly by
obtaining the last chunk from the seed. Our system seems to
be able to avoid such difficulties as shown in Fig 3. Another
good feature is the systems ability to cope with large initial
unbalance. Even if there is a initially extremely rare chunk,
the system quickly relaxes to steady state, as shown in Fig.
4.

Figure 4. Relaxation of the system with Forced-Friedman algorithm. The
system starts from a state with 500 nodes missing the same chunk (a rare
chunk), however, the system quickly relaxes to steady state. A case with
20 chunks, number of peers in the system is shown.

III. A SIMPLE ANALYTICAL MODEL

The state-space of our system is enormous, so it seems
to be impossible to create a useful model for this system.
However, something can be done in this direction. Obviously
some simplified assumptions must be done. We observed
that the performance of the system is very close to ideal.
By postulating this kind of behavior, a surprisingly accurate
model can be found.

More precisely, we assume that the system is in an ideal
state, meaning that all chunks are equally likely to be found
in system. A peer that enters the system makes tree random
contacts, and uses the Friedman-type logic to decide which
chunk it can copy. If it founds at least one such chunk,
it moves to state where it has one chunk, and so on.
From this assumption, we deduce that probability that a
particular chunk can be copied under the Friedman constrain
is 3 1

2
1
2

1
2 = 3

8 , let denote by p = 1− 3
8 = 5

8 , the probability
of the complement event. Then probability that a node with
k missing chunks can copy a chunk in its current contact is
1−pk. Thus it is plausible to describe system by magnitudes
ni, i = 1, 2, · · · ,m− 1, where ni is number of nodes with
i chunks. In the fluid limit one can assume the system of



Figure 5. Levels of steady state population sizes of nodes with
1, 2, · · · ,m − 1 chunks in units of λ, the accumulation point of lines
equals to 1.

differential equations:

d

dt
n1 = λ− (1− pm−1)n1

d

dt
n2 = (1− pm−1)n1 − (1− pm−2)n2

d

dt
n3 = (1− pm−2)n2 − (1− pm−3)n3

· · ·
d

dt
nm−1 = (1− p2)nm−2 −

1
2
nm−1

p =
5
8

They have the stationary solutions:

n1 = λ
1−pm−1 , n2 = λ

1−pm−2 , n3 = λ
1−pm−3 , · · ·

· · · , nm−2 = λ
1−p2 , nm−1 = 2λ.

The last relations mean that all populations have different
sizes although they have an accumulation point = λ, as m
grows, see Fig 5. These stationary solutions seems to be
those that the real simulated system with Forced-Friedman
algorithm yields, as shown in Fig. 6.

We made some computer experiments to see whether the
empirical expectation is close to solutions of the simplified
systems behavior, see Fig. 7. Based on those we conjecture
that such means have damping oscillations around the curves
of simplified model, and with very close to stationary level of
population size. However, it can also be due some inaccuracy
of the differential equations. Ideed, in the stochastic model
the peer can point to itself and thus fail to download.

Figure 6. A simulation for 20 chunk-system with Forced-Friedman
algorithm, λ = 100 . The rugged lines are simulated processes for n1

and n19, while the smooth lines are solutions of the differential equations
for the simplified model. Other components have similar behavior.

Figure 7. A simulation for 20 chunk-system with Forced-Friedman
algorithm, λ = 50 . A bit rugged line is simulated processes for n5,
empirical average over 1000 experiments, the smooth line is solution of the
differential equations for the simplified model. It seems, that the average
of the steady state is converging to the one for the simplified process.
However, the transient state is slightly deviating from it, possibly having
damping oscillations around the simplified system curve.

These simulations indicate also that the performance is
almost ideal. This is because in the steady state, there is no
’bottleneck’ chunks that are hard to find. That is why, there
are few such contacts that do not lead to a download of a
chunk.

IV. CONCLUSIONS

In this short paper we describe preliminary results on
chunk copying system that relies entirely on randomness.
Previously we studied two chunk case. It was shown that
the system with Friedman-urn like algorithm is efficient and
stable. In the case of many chunks we imitate this algorithm
as far as possible. The resulting system shows stability and



good performance under dynamical conditions. Unlike the
two chunk case, the simple proof based on Friedman-urn is
not usable. The main challenge is to find rigorous foundation
for this algorithm.

REFERENCES

[1] Cohen, B.: BitTorrent specification (2006) http://www.
bittorrent.org.

[2] Qiu, D., Srikant, R.: Modeling and Performance Analysis
of BitTorrent-Like Peer-to-Peer Networks. In: Proc. ACM
Sigcomm, Portland, OR (2004)

[3] Mundinger, J., Weber, R., Weiss, G.: Analysis of peer-to-peer
file dissemination. Performance Evaluation Review, Special
Issue on MAMA 2006 (2006)

[4] Norros, I., Prabhu, B., Reittu, H.: Flash crowd in a file sharing
system based on random encounters. In: Inter-Perf, Pisa, Italy
(2006) http://www.inter-perf.org.

[5] Reittu, H., Norros, I.: Urn models and peer-to-peer file sharing.
In: Proc. IEEE PHYSCOMNET’08, Berlin (2008)

[6] Massoulie, L., Vojnovic, M.: Coupon Replication Systems. In:
Proc. ACM SIGMETRICS, Banff, Canada (2005)

[7] Pemantle, R.: A survey of random processes with reinforce-
ment. Probability Surveys 4 (2007) 1–79

[8] Reittu, H., Norros, I.: Toward moldeling of a single file
broadcasting in a closed network. In: Proceedings of IEEE
SPASWIN2007, Limassol, Cyprus (2007)


