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Abstract. TCP and TCP-friendly rate control protocols, designed for unicast, do
not take neighbor connections into account in P2P networks.In this paper, we
study the topic of distributed and optimal rate control for scalable video streams
in P2P streaming applications. First, we propose a fully distributed and TCP-
friendly network analytical model for rate control and formulate an optimization
problem to maximize the aggregate utility for the P2P streams. In the model,
we further extend the definition of TCP-friendliness for P2Pnetwork. Second,
we propose a shadow price-based distributed algorithm for P2P Streaming that
solves the optimization problem. Finally, we evaluate the performance of the pro-
posed algorithm in terms of streaming quality and messagingoverhead. Extensive
simulations show that the proposed algorithms generate very small overhead and
that they are optimal in terms of overall quality for scalable streams.

1 Introduction

Multimedia streaming over Internet has been a hot topic bothin academia and in indus-
try for two decades. Since the emergence of peer-to-peer architectures, there has been
significant interest in streaming applications over peer-to-peer overlay networks [4] [5]
[6]. P2P streaming does not require support from Internet routers compared to IP layer
multicast, therefore, it is easy to deploy and also scaleable to very large group sizes.

Rate control is one of key technologies in multimedia communications to deal with
the diverse and constantly changing conditions of the Internet. TCP, the dominant con-
gestion protocol designed for client-server unicast communication in the Internet, is also
used as rate/congestion control protocol in most of P2P streaming systems. However,
using TCP for P2P streaming also has some disadvantages. Streaming applications are
usually sensitive to delay. TCP adopts an Additive-Increase Multiplicative-Decrease
(AIMD) strategy to react to packet losses and retransmits packets lost in congestion,
therefore it introduces long delay and jitters and hence is not well suited for real-time
streaming applications. By contrast, UDP is an unreliable and connection-less protocol
without integrated rate/congestion control. Without congestion control however, non-
TCP traffic can cause starvation or even congestion collapseto TCP traffic [12]. To
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overcome the disadvantages of TCP and to handle competing dominant TCP flows in
a friendly manner, TCP-Friendly Rate Control (TFRC) was introduced for streaming
applications in [1] .

On the other hand, existing P2P streaming systems using ratecontrol send data
flows without considering the structure of the overlay tree (e.g., TCP in [5] and TFRC
in [4]). TCP and TFRC/UDP, both being client/server (unicast) protocols, prevent ap-
plications from either overloading or under-utilizing theavailable bandwidth of their
local connections. Moreover, they do not take neighbor connections and the quality of
media stream into account.

With the goal to optimize the aggregate utility (video-quality) for P2P streaming
application, we develop a fully distributed and optimal TCP-friendly rate control model
in Section 2 and propose a shadow price-based distributed algorithm to solve the opti-
mization problem in Section 3. The proposed algorithm is distributed with very small
messaging overhead to allow P2P streaming systems to scale up to very large sizes
while being TCP-friendly to coexisting traffic outside of the P2P session. We further
extend the definition of TCP-friendliness to P2P network. With the help of extensive
simulations, we evaluate the performance of the proposed TCP-friendly algorithm in
terms of streaming quality and messaging complexity in Section 4. In Section 5, we
discuss the implementation issues and conclude the paper.

2 Network Model and Rate Control Problem Formulation

2.1 Network model

A large number of approaches have emerged in recent years forP2P streaming systems
([6] and its references). The vast majority of systems to date are tree-based P2P stream-
ing, where peers are organized in trees to deliver data. Consider a P2P overlay tree of
n+1 end hosts, denoted asH = {h0, h1, . . . , hn}. End hosth0 is the source of the P2P
multicast channel. The structure of the overlay tree is given by the used P2P streaming
approach. Non-leaf nodes are forwarding streaming data to its children and are able to
scale-down the streams, fulfilling the constraint of the flowdata. For our model, we
assume that streams are fine-grained scalable [7]. The P2P streaming channel consists
of n end-to-end unicast flows, denoted asF = {f1, . . . , fn}. Flow fi is the flow that
terminates athi. Flow fi ∈ F has a ratexi. We collect all thexi into a rate vector
x = (xi, i = 1, 2..., n). We denoteU(xi) as the utility of flowfi, whenfi transmits at
ratexi. We assume thatU(x) is strictly increasing and concave, and twice continuously
differentiable. We measure the utilityU(x) for streams in section 4.F ′

h is the set of
flows sent fromh. If a hosthi is the destination of a flowfi and the source of another
flow f ′

i ∈ F ′

hi
, thenf ′

i is the child flow offi, denoted asfi → f ′

i . We denoteh′ as the
child of h andhp is the parent node ofh, i.e., hp → h → h′. Let us define [16],

Definition 1. A rate control algorithm isTCP-friendly for P2P multicast, if and only
if the coexisting TCP traffic outside of the P2P channel achieves not less throughput
than what it would achieve if all flows of the overlay channel were using TCP as rate
control algorithm.
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Based on the fact that the backbone links of today’s Internetare usually overly
provisioned [13], we assume that the bottleneck of a unicastflow fi only appears at
access links, namely upload linklu(fi) and download linkld(fi).

Assumption 1 Access links (download and upload links) of end hosts are theonly bot-
tleneck links of a unicast path.

Moreover, three possible bottleneck links between hosth and its children of a sub-
tree (h1, h2, h3 ∈ H ′

h) are presented in Fig. 1.

(a) Bottleneck link at the upload link and host
h (CaseI1)

(b) Bottleneck links at download links and host
h (CaseI2)

(c) Bottleneck links at the upload link and
download links, and hosth (CaseI3)

Fig. 1.Locations of Bottleneck links (Note: Bold lines are bottleneck links in the arrow direction.
All links are directed)
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Proposition 1. Only sibling flows in the tree may share bottlenecks.

Here, sibling flows are flows sent from the same end hosth, i.e., all f ∈ F ′

h are
sibling flows. Proposition 1 is straightforwardly provablewith the locations model of
bottleneck links shown in Fig.1. Therefore, non-sibling flows have independent bottle-
neck links and the overlay tree can befully decomposedinto subtrees with independent
bottleneck links.

Let ti be the TCP-friendly available bandwidth for the unicast flowfi at the bot-
tleneck links determined by end-to-end TFRC algorithm. We measure allti for flows
fi ∈ F . Hence, we get the TCP-friendly available bandwidth for P2Pmulticast channel
at bottleneck links,cld(fi) andclu(fi). For casesI2 ∪ I3 where bottleneck links locate
at download linksld(fi): cld(fi) = ti. For casesI1 ∪ I3 where bottleneck links locate
at upload linkslu(fi): clu(fi) =

∑

fi∈F (lu) ti.
For each bottleneck linkl, F (l) = {f ∈ F | l(f) = l} is the set of flows in the

channel that pass through it andl(f) is the bottleneck link through whichf goes.
We define the constraints for rate control as follows: Flow rate of fi should not

exceed the TCP-friendly available bandwidthcld(fi) = ti when the bottleneck link
locates at download link ofhi. On the other hand, the sum of all flow rates in one di-
rection and the same channel that go through the upload link of hi should not exceed
clu(fi) =

∑

fi∈F (clu ) ti, when the bottleneck link is at the upload-link. Therefore,co-
existing TCP traffic outside of P2P channel obtain no less throughput than what they
would achieve if all streams would use TFRC. Formally, such TCP-friendly available
bandwidth constraint for P2P streaming rate control is expressed as follows:

∑

h
p

i →hi

xi ≤ clu(fi) =
∑

h
p

i →hi

ti, ∀hp
i ∈ I1 ∪ I3. (1)

xi ≤ cld(fi) = ti, ∀hp
i ∈ I2 ∪ I3 (2)

Moreover, the downstream rate is constrained by the upstream rate, namely, iffi →
fj thenxj ≤ xi. We define the data constraint or flow preservationF × F matrix B.
Bf1,f2 = −1,if f2 → f1,i.e., f1 = f2′; Bf1,f2 = 1, if f1 = f2, andf1 has a parent
flow; OtherwiseBf1f2

= 0. Hence, given the P2P distribution tree, the data constraint
can be formalized as follows:

B · x ≤ 0 (3)

A summary of the notations used in the model can be found in Table 1.

2.2 Problem Formulation

Our objective is to devise a distributed rate control algorithm that maximizes the aggre-
gate utility,i.e., the overall video quality of all streams in the P2P streaming channel:

max
∑

i=1,2...n

U(xi) (4)
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Table 1.Summary of Notations in the Model

Notation Definition
h ∈ H = {h0, h1, . . . , hn} End Host

hp → h → h′ ∈ H ′

h hp is the parent node ofh, h′ is a child ofh
H ′

h Set of child of h
f ∈ F = {f1, f2, . . . , fn} Unicast flow in P2P streaming channel

fi → hi Flow fi terminated athi

fh Flow terminated ath
x = (xi, i = 1, 2, ..., n) Flow rate set offi ∈ F

l ∈ Γ = 1, 2, . . . , L Bottleneck Linkl (download link or upload link)
cl ∈ C, l ∈ Γ TCP-friendly available bandwidth

for the channel at bottleneck linkl
fi → fi′ ∈ F ′

hi fi′ is a child flow offi

F ′

hi Set of flow sent fromhi in the channel
lu(fi) ∈ Γ The upload link thatfi goes through
ld(fi) ∈ Γ The download link thatfi goes through

F (l) Set of siblings flows that go through bottleneck linkl

B = (Bfi,fj)F×F Data constraint matrix
ti TCP-friendly available bandwidth for unicast forfi at bottleneck

U(xi) Utility Function of streams at ratexi

fulfilling the following constraints:






∑

h
p

i
→hi

xi ≤ clu(fi) =
∑

h
p

i
→hi

ti, ∀hp
i ∈ I1 ∪ I3

xi ≤ cld(fi) = ti, ∀hp
i ∈ I2 ∪ I3

B · x ≤ 0

3 Algorithm

In this section, we propose a distributed rate control algorithm for P2P streaming based
on a shadow price concept that solves the convex optimization problem (4). Compared
with the dual approaches proposed in [3][16][2], our primalalgorithm is a feasible di-
rection algorithm [9] which is applied to the original problem (primal problem) directly
by searching the feasible region in the direction of improving the aggregate utility for
an optimal solution. Please note that the proposed primal algorithm is different from
the primal algorithm introduced by Kelly’ in [8] or other penalty algorithms. Thanks to
our fully distributed model, solving the optimization program (4) directly requires the
coordination among those sibling flows only sharing bottleneck links. In order to find
the direction for improving the aggregate utility, we define,

Definition 2. TheData shadow price of a flow is the change in the aggregate utility of
the flow itself and its subtree by relaxing the data constraint by one unit (a small move).

By moving the bandwidth of the bottleneck link from childrenflows with lower shadow
prices to children flows with higher shadow prices, the aggregate utility is improved.
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We call a flow a data constrained flow when it is actively constrained by its parent
flow, i.e., xi = xj (wherefj = f ′

i ); otherwise it is a data unconstrained flow,i.e.,
xi > xj (wherefj = f ′

i) and actively constrained by the bottleneck link.
For a data constrained leaf flowfi, its data shadow price is:

pfi
= ∆U(xi)/∆xi = U ′(xi) (5)

For a data constrained intermediate flowfi:

pfi
= U ′(xi) +

∑

fj∈F ′

hi

pfj
(6)

When a flow is not constrained by its parent flow, its data shadow price is zero
(pfi

= 0). For example, all dashed flows in Fig. 2 have data shadow price zero. We call a
node data constrained node (see Fig. 2(b)) when its incomingflow is a data constrained
flow, otherwise it is a data unconstrained node (as in Fig. 2(a)). Each end hosthi is
assumed to be capable of communicating with neighbors, to determine the locations of
bottleneck links,tj (wherefj ∈ F ′

hi
) and to compute and adapt the sending rate for

each flowf ′

h (i.e., sender-based flow).
We present the algorithm of an intermediate peer in Table 2. We choose the TCP-

friendly available rate of unicast flows as the initial rate,i.e.,xj(0) = tj .The algorithm
purely depends on the coordination of end nodes. Each node receives the data shadow
prices from its children nodes for children flows at each step. The algorithm(i) real-
locates the bandwidth of the bottleneck link with stepsizeγ (γ > 0) from children
flows with lower shadow prices to children flows with higher shadow prices such that
the TCP-friendly available bandwidth constraints are not violated and flows with higher
data shadow price get more bandwidth; and(ii) the algorithm obtains a better rate allo-
cation after each step with an improved aggregate streamingquality. Thus, we have the
following theorem,

Theorem 1. For any P2P multicast streaming session, the rate allocation by the al-
gorithm in Table 2 with sufficient small stepsizeγ(γ > 0) converges to the optimal
allocation.

Proof. For the subtree rooted at end hosthi, each allocation generated in the algorithm
process is feasible and flows with higher data shadow price get more bandwidth. There-
fore, the value of the aggregate utility of the subtree

∑

U(xj(t)) <
∑

U(xj(t + 1))
improves constantly. Given the receiving ratefi, as there is a limit for the aggregate
utility of the subtree, the algorithm will finally converge to a maximum. For a convex
optimization problem, the convergent rate allocation is the global maximum (the opti-
mality) of the subtree(Chapter 11.1 in [9]).By each subtreeconverging to the optimal
allocation for a given receiving rate iteratively, the optimal allocation of the entire mul-
ticast tree with its root ath0 will be eventually reached. ⊓⊔

Unlike the fluctuating convergence procedure in dual approaches [3][16], the fea-
sible direction algorithm steadily converges to the optimal allocation .



7

Table 2.Algorithm of End Hosthi

Initialization
Sending data with the TFRC unicast rate for each flow.

Update the data shadow price from children
Get shadow price for children flowsf ′

i : pfj
(t), fj ∈ F ′

hi

Compute the median shadow price of children flows:pjmed(t)
Update information from the parent node
Get the flow ratexi(t) and the data constraint information
Re-allocate the rate among the children flows forfj ∈ F ′

hi

for hi ∈ I1 ∪ I3
if pfj

(t) > pjmed(t)
xj(t + 1) = xj(t) + γ

else ifpfj
< pjmed

xj(t + 1) = xj(t) − γ
end if

end if
Update Data Shadow Price to parent node
For data constrained nodehi : pfi

(t + 1) = U ′(xi)
for fj ∈ F ′

hi
:=1 to n do

if xj(t) ≥ xi(t)
xi(t + 1) = xj(t); pfi

(t + 1) = pfi
(t + 1) + pfj

(t)
elsexfj

(t + 1) = xfj
(t)

end if
For data unconstrained nodehi: pfi

=0
Sendpfi

(t + 1) up to parent nodehp
i

Update stream rates and inform the children
for fj ∈ F ′

hi

Stream media to childj with updated ratexj(t + 1)
Update the data constraint information andxj(t + 1) to hj
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(a) data unconstrained nodeh

(b) data constrained nodeh

Fig. 2.Nodes and flows in the algorithm (dashed line means data unconstrained flow, constrained
flow otherwise.h′

1, h
′

2, h
′

3 ∈ H ′

h)

4 Performance Evaluation

4.1 The utility function of scalable streams

The utility function used in [3] wasU(xi) = ln(xi), which did not reflect the applica-
tion quality of video streams. To tailor the utility function to the application quality, we
use the rate-distortion function as the utility of our algorithm for each flow. The classic
rate-distortion function for Gaussian distribution videosource with meanµ = 0 and
varianceσ2 [15] is ,

D(xi) = σ2 · 2−αxi (7)

We decided to use MPEG-4 fine-grained Scalable video (FGS) steams [7] in our
performance evaluation, due to its ability to be sent at any given rate determined by a
rate control algorithm at server side or any intermediate peer in the tree.
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Table 3.Measurement of Rate-distortion function for streams

Video streams a σ2 Fitting Goodness(SSE/sum(D))
Forman -0.8625100.915 0.0355
Akiyo -1.728 38.827 0.0970
Mobile -0.4917256.711 0.0656

Highway -1.514 41.041 0.0611
Tempete -0.6177167.963 0.0728
Container -1.098 82.196 0.0967

To measure the quality function of FGS coded P2P streams, we first use the Mi-
crosoft MPEG-4 software encoder with FGS functionality to encode the stored raw
video streams. Then, we cut the corresponding FGS enhancement layer at the increas-
ing and equally spaced bit rates (step size = 100kbps). For each compressed and cut
bit-stream, we specify the distortionD after decoding. Subsequently, we generate the
rate-distortion curve of the FGS video stream using these sample points and finally we
estimate the parameters in the classic video rate-distortion function that fit the rate-
distortion traces [14]. We compute these parameters valuesfor video sequences and
keep them constant throughout the entire streaming process. Parameters we measured
for some typical streams are presented in Table 3. All streams measured are CIF format,
30 fps and 300 frames in length. A value ofSSE/sum(D) closer to 0 indicates a better
fit, whereSSE is the sum of squares due to error and distortionD is measured by the
average MSE of a truncated video sequence.

We use the utility (video quality) function forForman(CIF, 30fps, 300frames) in the
experiments:

U(xi) = −D(xi) = −100.915 ∗ 2−0.8625xi (8)

whereD(xi) stands for the distortion of the stream andmbit/sis used as unit for stream-
ing ratexi. The utility function (8) is strictly increasing and concave, and twice contin-
uously differentiable. It follows that solving problem (4)is equivalent to maximizing
the overall video quality or minimizing the overall video distortion.

The primary concept of incorporating the rate-distortion function of a video en-
coding scheme into congestion control is directly applicable to other video-encoding
schemes beyond FGS. As a matter of fact, we can use the same model with a differ-
ent utility function (namely the utility function of TCP [10] or TFRC) for any other
TCP-like P2P application.

4.2 Simulation Setting

While we have carried out simulations on various network topologies, we present here
only the representative results of simulations on a topology generated with Brite [11] in
the router level topology model with 1000 routers. The average time interval of shadow
price updates and constraint information updates is 10ms. The bandwidths of all links
are randomly distributed between 100Mbps and 1000Mbps with0.6ms average delay.
To investigate the message overhead of the algorithm in difference size of network, we
set up other two smaller topologies with 20 and 100 routers ofthe same average link
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delay and bandwidth properties (part of the 1000 routers topology). We build the P2P
streaming sessions consisting of various number of peers, each with a random access
link bandwidth from 1Mbps to 100Mbps.

Tree construction mechanism:Since streaming applications are very time sensitive,
we design a delay-based tree construction mechanism for P2Pstreaming systems. A
new peer selects the closest peer in the tree as its parent node in terms of end to end
delay. We further constrain that each peer has at most four children.

Assumption 1 holds in our experiments. By examining all bottleneck link con-
straint matrixes in our experiments, it was confirmed that ”only sibling flows in the
tree may share bottlenecks”, i.e, namely on-sibling flows are with independent bottle-
necks. Therefore the TCP-friendly bandwidth constraints at bottleneck links are fully
decomposed for each subtree (1)(2), i.e., the network modeland algorithm are fully
distributed.

4.3 Rate Allocation

First, we compare the rate allocation results of our proposed algorithms with a stan-
dard unicast algorithm. We generate various P2P streaming systems sizes from 5 to
200 peers. In our simulations, the stepsizeγ is set to 0.0001. Fig. 3 shows that the
proposed algorithm is optimal in terms of average utility for various number of peers.
If we first allocate the rates independently as unicast flows using the TCP/TFRC algo-
rithm and then apply the data constraint at the same time, we get a set of rates with
average/aggregate utility lower than the average/aggregate utility allocated by our algo-
rithm.

Fig. 3.Comparison of Average Streaming Quality
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4.4 Messaging Overhead

Next, we investigate the messaging overhead of the algorithm in various size of net-
work topology. Fig. 4 shows the average number of messages sent by all peers per time
interval. The results show that the larger P2P session the more messages are produced.
Moreover, the number of messages increases with the number of peers in the session
linearly, i.e., each peer produces the same and small amountof message no matter the
number of simultaneous P2P sessions. Therefore, our proposed algorithm can scale up
to very large sizes and produces a small messaging overhead.Hence, we conclude that
our algorithm is a fully distributed algorithm with small messaging overhead while
maximizing the aggregate utility of P2P multicast tree.

Fig. 4. Comparison of Messaging Overhead

5 Concluding Remarks

In this paper, we have proposed a fully distributed and TCP-friendly rate control model
which maximizes the social utility for the P2P streams. The proposed algorithm works
very well when bottleneck links are not access links. It is TCP-friendly to cross traf-
fic outside the P2P session, while the rate allocation is proportionally fair in the P2P
distribution tree [3]. In particular, the average time interval of the data shadow price up-
dates and rate updates in the algorithm are much smaller thanthat of the TCP-friendly
available bandwidth measurement so that the algorithm converges fast while the TCP-
friendly available bandwidth measurement overhead is verysmall. Concerning future
work, we are about to implement the algorithm in a real, large-scale P2P streaming
system and will present more measurement results in upcoming publications.
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