
Metadata Repository Support for Legacy Knowledge
Discovery in Public Administrations

Adriana Maria C. M. Figueiredo1, Aqueo Kamada1, Luciano L. Damasceno1,
Marcos Antonio Rodrigues1, Manuel de Jesus Mendes2

1Centro de Pesquisas Renato Archer- CenPRA
DSSD - Divisão de Software para Sistemas Distribuídos

Rodovia Dom Pedro I Km 143,6 - CEP 13082-120 - Campinas (SP) – Brazil
<name>.<surname>@cenpra.gov.br

2Unisantos, Santos, Brazil
 mj.mendes@terra.com.br

Abstract: One of the big challenges of public administration is the need to
understand and evolve legacy systems for the purpose of documentation,
improvement, modification, interoperability, porting, migrations, reuse,
redesign and/or redeployment. There is a need for standardization in legacy
transformation that will enable integration and interoperability between
different solutions. The OMG has issued a request soliciting proposals for a
metamodel to capture knowledge from legacy systems (referred to as the
Legacy Knowledge). In this paper we examine how a MOF-based repository
can support the definition, modeling, exchanging and integration of metamodels
created for legacy knowledge discovery.

1 Introduction

Legacy systems can be understood as any useful and deployed software and data that
run on specific platform, written in specific language and, normally, has been long
time in production environment. Despite their obsolescence, legacy systems present
an enormous commercial value and continue to provide a competitive advantage by
supporting unique business processes and containing invaluable knowledge and
historical data. This kind of operational legacy software often resists evolution
because its strategic value and its low ability to adapt through factors not exclusively
related to its functionality. Some of such factors are the system's difficulty to be
understood or maintained in an effective cost manner, its core business knowledge
that is hard to enhance or impossible to replicate, its difficulty to interoperate, or its
dependence on old technologies or specific architectures. These systems, even though
with enormous investments, they work.

For a large number of organizations the need for legacy migration is usually
triggered by certain external events such as the need to provide Web-access to an
existing application or the need to abandon an unsupported platform. In [3], legacy
migration is defined as the transformation of data and procedures from the old to new

system. For government organizations, legacy migration is a crucial part of their day-
to-day business requirements. Legacy transformation provides the means to address
these requirements using systematic and low risk approaches.

The OMG has issued a request [6] soliciting proposals for a metamodel
representing the structure of the legacy software and its related artifacts (referred to as
the Legacy Knowledge). The primary purpose of this metamodel is to provide the
ability to document legacy systems, discover reusable components in legacy software,
support transformations to other languages, or enable other potential transformations.
The metamodel will also enable information about legacy software artifacts to be
exchanged among different tools. Standardization of legacy transformation
metamodels will reduce the risk of undertaking software improvement initiatives. The
ability to share common information across projects that use a variety of tools and
processes will lessen the time, risk and cost of software transformations.

Common Warehouse Metamodel – CWM [5] is another relevant OMG
specification related to legacy transformation. A primary objective of the CWM is to
define a metamodel of a generic data warehouse architecture. Additionally, the CWM
specification covers basic transformations among all types of data sources and targets:
object-oriented, relational, record, multidimensional, XML, OLAP, and data mining.

OMG`s request for a legacy knowledge metamodel also seeks a common
repository structure to represent information about existing software assets and its
operating environment, creating, though, knowledge bases.

In this paper we present a MOF-based repository system, which will enable the
definition, modeling and exchanging of models that represent existing software assets.
In this section we addressed the motivation of this work. In section 2 we review main
concepts on information and knowledge as metadata entities captured by the concepts
and relations described in the MOF Model. MOF and XMI foundations are presented
as well. In section 3, a MOF-based repository system is detailed. An e-government
scenario application is presented in section 4 and finally, in section 5, final
considerations and future work are presented.

2 Foundations

The distinction between data, information and knowledge is often blurred, but for our
purpose, data is a raw thing, like a fact represented as an item. Information is data
given context, and vested with meaning and significance [8]. Information is made by
data with metadata and context and it is inherently static. Knowledge is applied
information, that is transformed through reasoning and reflection into beliefs,
concepts, and mental models, and that is used to produce results and is learned from
experience and happens in the human brain. It is inherently dynamic and changing.

Metadata is information about data and its main objective is to facilitate the access,
the management, the processing and the sharing of a great collection of structured
and/or non-structured data [4]. The metadata definition is strongly related to the
modeling and meta-modeling concepts. Modeling refers to the description of
structured metadata representing the data that compose a domain, as well as the
relationships among such data. The collection of these metadata encompasses a model

of the domain. Metamodeling refers to the ability to represent and manipulate
metamodels, which are models that define constructs used when modeling a domain.

The Meta-Object Facility – MOF [5] is a model driven distributed object
framework for defining, managing and integrating metadata in software systems.
MOF has been designed with the main objectives of being:

• open: it is capable of describing a wide range of metamodels; and
• extensible: it is a core model and is capable of extension by inheritance and

composition.

In order to achieve this, the MOF uses a layered metadata architecture, which key
feature is a meta-modeling layer that provides a common language that ties together
the metamodels and models. The MOF metadata architecture is illustrated in Figure 1.

Fig. 1. MOF metadata architecture

The MOF Model, in layer M3, defines an abstract language to describe
metamodels. Metamodels, in layer M2, are instances of the MOF Model. A Model, in
layer M1, is an instance of a metamodel. Finally, in layer M0 reside instances or data
described by M1 models.

Standard mappings provided by MOF and JMI [7] specifications, expose instances
of MOF compliant metamodels to CORBA IDL and Java interfaces, respectively. The
prime purpose of these mappings is to define a generic framework for managing, in

terms of repository, the metadata described by the metamodel. The standards
interfaces ensure structural and logical consistency in manipulating the metadata
described by the metamodel.

As for the problem of metadata exchange, the OMG has standardized the XML
Metadata Interchange – XMI [5]. XMI defines how XML tags are used to represent
serialized MOF-compliant models in XML. MOF-based metamodels are translated to
XML Document Type Definitions (DTDs) or XML Schemas and models are
translated into XML Documents that are consistent with their corresponding DTDs or
XML Schema. XMI is an interchange mechanism to be used between various tools,
repositories and middleware.

3 GRM – A MOF-based Repository System

The Centro de Pesquisas Renato Archer – CenPRA is particularly interested in
creating a platform to support the development of Internet collaborative systems in
the government context. A central component of this platform is a MOF-based
repository to manipulate metamodels from different domains. GRM is the MOF-based
repository system developed for this purpose.

In the legacy domain, we believe that work on legacy migration will require
different metamodels such as metamodel for data transformation, metamodel for
representing languages and metamodel for describing platforms.

According to Bernstein in [1], the goal of a repository is to store models and
contents of engineered artifacts, such as software, documents, maps and information
systems. In this sense, we define the objective of a MOF-based repository as being to
store MOF compliant metamodels. In the next sub-sections, the architecture, main
functionalities and GRM implementation details are presented.

3.1 GRM Architecture

The components of a repository system include a database, a repository manager, an
information model and tools for populating the database and accessing its contents
[1]. GRM is composed by the same components and the basic difference is that the
information model is the MOF Model and the contents manipulated are metamodels
described by the MOF Model. Additionally, GRM supports XMI format as the
mechanism for metadata exchange. Figure 2 illustrates GRM architecture.

The database provides standard database management facilities, such as persistent
storage, keys, data integrity and etc. The repository manager and the MOF Model
form the repository engine. Services are provided to access and manage the repository
itself and the metamodels it stores. Features like version control, check-in/check-out,
access control and configuration management are needed for a shared use of the
repository.

Fig. 2. GRM architecture

GRM provides a set of metamodeling tools for the definition, access and
manipulation of metamodels stored in the repository. Relevant tools are described
next:

• MODL compiler. Meta-object Description Language [DSTC 2001] is a textual
notation to describe MOF metamodels. An MODL compiler is an alternative to a
graphical editor, providing a way to describe complete metamodels using a textual
notation.

• XML DTD/XML Schema generator. This tool, automatically, generates XML
DTD/XML Schema for a metamodel by applying the XMI generation rules. The
generated XML DTD/XML Schema is used to validate models against its
metamodel.

• Generic browser. A generic metadata browser enables the navigation through the
metamodels and their respective models.

• Corba/Java server generators. These two tools are very important in a MOF-based
repository system. They automatically generate standard Corba IDL/Java interfaces
and their corresponding server implementation. The generated code is a standard
software component of a repository, which information system is the metamodel
mapped.

• XMI import/export APIs: These APIs enable the streaming of metadata in the XMI
format.

3.2 Implementation Details

GRM specific requirements are: i) platform and operating system independence; ii)
adherence to open standards proposed in the distributed system context; iii) use of the
orthogonality concept when adding a new feature, applying it to any metamodel.

The repository has been realized using the Open Source Complex Information
Manager (CIM) [9] developed by Unisys Corporation. CIM is a Java implementation
of the MOF and JMI specifications. Its goal is to provide a platform independent
metadata infrastructure for developing model driven tools. CIM standard edition is
available with the following features: a GUI-based administrative tool for configuring
and managing the CIM, Java interfaces generator and metamodel server generator,
XMI importer/exporter, access control and persistence using XMI format files.

At the moment, we have added to CIM an MODL compiler, a XML DTD
generator and a generic browser to metamodels and their respective models. We have
decided for the implementation of an MODL compiler because CIM comes with only
one way to populate the repository: importing metamodels expressed in XMI format.
XMI was specified to be a machine exchange format and it is neither succinct, nor
easily readable or writable. MODL provides an alternative way to populate the
repository. The generic browser provides a way to visualize the metamodels and the
XML DTD generator is used to validate models against its metamodel

4 Application Scenario in a Public Administration

In the public administration there are many administrative units, such as agencies,
departments and public companies, and each of them contains legacy data used to
manage internal processes. Typical problems in this context are the use of different
names, structures or scales for the same kind of information, as well as information
represented at different levels of granularity, refinement, or precision.

In this scenario, we propose a framework to, effectively, discover, manage and
share knowledge among distinct administrative public units. The proposed framework
is illustrated in Figure 3.

The Knowledge and Metadata Framework is composed by various MOF-based
repository systems, automatically generated by GRM. The information system of each
of this repository is a MOF-compliant metamodel where CWM Data Resources
Metamodels, CWM Data Analysis Metamodels, CWM Extensions (CWMX)
Metamodels and EDOC Entity Metamodel are stored. Metamodels that represent
object-oriented, relational, record, multidimensional, and XML data resources
compose the Data Resources Metamodels. On the other hand, CWM Data Analysis
Metamodels conceive the metamodels that represent data transformations, OLAP,
data mining, information visualization, and business nomenclature. And finally, the
CWMX is a non-normative model extension to the CWM metamodels [5] that
facilitates and enables the access to the legacy system. CWMX consists of: Entity
Relationship, COBOL Data Division, DMS II, IMS, Essbase, Express,
InformationSet, and Information Reporting.

Fig. 3. Knowledge and Metadata Framework

In Knowledge and Metadata Framework tier, there are others components like:

• The Model Transformation, a component that reads an M1 transformation rule
stored in the repository and generates the transformation code that executes the
rules on the XMI document containing the M1 model and the M0 data.

• The Legacy Discovery Module, sends requests to the legacy systems and
receives an answer as a XMI document containing the requested information
(M0 data) and the meta-information (M1 model) that describes it.

XMI

Legacy P

Presentation Layer

Knowledge and Metadata framework

Legacy system

Knowledge Portal
and search engine

Knowledge Creation
application

Legacy A Legacy Z

Applic.
Z

CWM
Object

Oriented

Applic.
Z

CWM
Object

Oriented

MOF-based repository
generated by GRM

Legacy
Discovery

C
W
M

Legacy
Discovery

C
W
M

Applic.
A

CWM
Relational

Applic.
A

CWM
Relational

Applic.
P

CWM
Record

Oriented

Applic.
P

CWM
Record

Oriented

XMI XMI

Model
Transformation

XMI

Entity
Generation

M1
EntitiesXMI

... ...

XMI

Legacy Knowledge Discovery Module

• And the Entity Generation Module that receives XMI documents and fills the M0
EDOC Entities, i.e., representations of concepts in the application domain [5], with
the M0 data contained into these documents.

For clarification, an example of the archittecture’s operation will be exposed. In
this simple example, it is necessary to fill an EDOC Entity called Citizen resident in
the EDOC Module with the resulting information extracted from the legacy system.

The modules present in the legacy system tier receive a request from the Legacy
Discovery Module to query their databases to obtain the required citizen information
stored into the different database resources. So, the modules realize the query and
return the desired information.

Thus, the information (M0) will be encoded together with the respective model
(M1) in a XMI document and transmitted to the above tier. In Knowledge and
Metadata Framework tier, the XMI document is received by the Legacy Discovery
Module that sends to the Model Transformation. The Model Transformation reads the
transformation rule stored in the MOF repository and generates the trasnsformation
code that executes the rules on M0 data. This transformed data fill the M0 EDOC
Entities of the Entity Generation.

So, the Legacy Discovery Module is responsible for collecting knowledge from the
legacy systems present in different database resources and make, the different models
of the collected knowledge, available to the others administrative units.

Our approach brings many advantages to government administration and some of
them are listed next:

• It provides a formal representation to knowledge;
• It provides an exchange mechanism, allowing knowledge to be interchanged

among tools and repositories;
• The ability to share knowledge across public units will improve the

understanding of government business and promote data rationalization.

5 Conclusion

In this paper we have presented a MOF-based repository system, which main goal is
to support the definition, modeling, exchanging and integration of metadata spread
over different legacy systems. Metamodeling tools, an MODL Compiler, Metamodel
XML DTD Generator, Metamodel Server Generator, Metamodel/Model browser and
XMI Import/Export APIs improve the capabilities to generate metadata that needs to
be exchanged among heterogeneous systems in an Internet based collaborative
system. New components are being implemented, to increase the functionalities of the
open software.

 The strength of GRM are: i) it is based on a metamodeling architecture that allows
the definition of metamodels from different domains; and ii) it provides a metadata
interchanging mechanism that relies on this architecture.

We have presented a preliminary usage of these artifacts in a government scenario,
considering that in the public administration there are many administrative units, such
as agencies, departments and public companies, and each of them has a lot of physical

and semantic heterogeneity in their legacy systems. We think that this government
scenario is ideal to exercise the many aspects of meta-modeling structure of the
legacy systems and their related artifacts, such as, the ability to document legacy
systems, discover reusable components in legacy software, support transformations to
other languages, or enable other potential transformations.

Further research is ongoing on the basis of the present work. Research is being
developed to define a framework that uses information, about legacy software
artifacts, to be exchanged among different tools in order to facilitate the development
and composition of e-government services.

The framework shall support all aspects related to service collaboration such as
workflow, choreography, contractual interfaces and so on. The metadata for the
services description will be extended in order to incorporate all the necessary
information for service composition (for example using Web Services Standard
WSDL). This information will be mapped and stored in specific MOF-compliant
repositories of the framework.
.

References

1. Bernstein P. A., “Repositories and Object oriented Databases”, ACM/SIGMOD vol. 17,
pages 88-96, 1998. http://www-agce.informatik.uni-kl.de/publications/edcoc.pdf accessed
in Dec 1st, 2003

2. DSTC “dMOF – User Guide (Release 1.1)”, Distributed Systems Technology Centre
(DSTC), University of Queensland, Brisbane, Australia, june/2001.
http://www.dstc.com/Downloads/CORBA/MOF/dMOF1_1.UserGuide.pdf accessed in Dec
1st, 2003

3. Heiler S., Lee W., Mitchell G., “Repository Support for Metadata-based Legacy
Migration”, Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 1999

4. Kerhervé B., Gerbé O “Models for Metadata or Metamodels for Data?”, Proceedings of 2nd
IEEE Metadata Conference, 1997.

5. OMG “Catalog of OMG Modeling and Metadata Specifications”, Object Management
Group, 2003, Needham-MA., USA. http://www.omg.org/technology/documents/

6. modeling_spec_catalog.htm accessed in Dec 1st, 2003
7. OMG Request For Proposal - Legacy Transformations: Legacy Knowledge Discovery

Meta-Model (LKD), October 2003. http://www.omg.org/docs/lt/03-09-01.pdf accessed in
Dec 1st, 2003

8. JCP (2002) “Java Metadata Interface (JMI) Specification”, version 1.0, JSR40 – Java
Community Process, June/2002. http://jcp.org/aboutJava/communityprocess/final/jsr040/
index.html accessed in Dec 1st, 2003.

9. Choo C. W., “Encyclopedia of Communication and Information”. Three-volume
encyclopedia, published in 2001 by Macmillan Reference USA, New York.
http://choo.fis.utoronto.ca/macmillan/ accessed in Dec 1st, 2003.

10. Unisys “JMI-RI Documentation”, CIM Version 1.3, Unisys Corporation, June/2002.
11. http://jcp.org/aboutJava/communityprocess/final/jsr040/index.html accessed in Dec 1st 2003

