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Abstract. Simulation studies are frequently used to evaluate new peer-to-peer
searching technigues as well as existing techniques on new applications. Unless
these studies are accurate in their modeling of queries and documents, they may
not reflect how search techniques will perform in real networks, leading to in-
correct conclusions about which techniques are best. We describe how to model
content so that simulations produce accurate results. We present a content model
for peer-to-peer networks, which consists of a tripartite graph with edges con-
necting queries to the documents they match, and documents to the peers they are
stored at. Our model also includes a set of statistics describing how often queries
match the same documents, and how often similar documents are stored at the
same peer. We can construct our tripartite content model by running queries over
live data stored at real Internet nodes, and simulation results show that searching
techniques do indeed perform differently in simulations using this “real” con-
tent model versus a randomly generated model. We then present an algorithm
for using real content gathered from a small set of peers (say, 1,000) to gener-
ate a synthetic content model for large simulated networks (say, 10,000 nodes or
more). Finally, we use a synthetic model generated from World Wide Web docu-
ments and queries to compare the performance of several search algorithms that
have been reported in the literature.
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1 Introduction

A flurry of recent research activity has centered on peer-to-peer search networks and
their applications to a variety of tasks. A consensus has emerged that initial protocols

(such as Gnutella’s flooding protocol) are not scalable enough, and this has spurred a
great deal of interest in developing new search protocols and strategies. However, it is
difficult to accurately evaluate the performance of these new techniques, since it is hard

for research groups to deploy and test a real peer-to-peer network of any significant size
(i.e., more than a few hundred nodes). As a result, many investigators use simulations
of large peer-to-peer networks to evaluate either new techniques or existing techniques
for new applications [1,3,5,6,12,18,16,17, 24, 26].



Our focus is primarily on so-called “unstructured” peer-to-peer networks like those
in Gnutella or Kazaa. Although “structured” networks (such as CHORD [23] and CAN
[20]) have important strengths, research interest in unstructured networks remains high
because of their ability to do content-based searches; see for example [6]. In unstruc-
tured networks, peers process searches over locally stored content. An overlay network
is used to forward search messages between peers according to some routing protocol.

Simulations of unstructured peer-to-peer networks must model both the topology
of the network and the content within the network. The topology model describes how
peers are connected, while the content model describes two things: the documents that
different queries match, and at which peers documents are located. In this context, a
“document” is any atomic piece of content, such as a text document, music file, video
file, and so on. The topology model is important, since the topology of a network deter-
mines how queries will be forwarded, and several recent techniques rely explicitly on
certain topology characteristics for performance [1, 6]. However, the content model is
equally important, since a simulator must be able to determine when a query reaches a
peer with documents matching that query.

There are two general approaches for creating a content model for use in P2P sim-
ulations. One approach is to collect real documents and process real queries over these
documents [3, 12, 24, 26]. When the simulation runs, the matching between real queries
and documents is used to determine when a corresponding simulation query matches
a simulation document. In the simulation, documents are assigned to nodes either ran-
domly, or to follow the real location of the collected documents. This approach accu-
rately captures the characteristics of real content, but it is difficult to collect very large
sets of real documents. Typical studies examine tens of thousands of documents [12]
or perhaps hundreds of thousands of documents [24, 26]. However, existing deployed
networks may have many more documents; Kazaa for example has reported as many
as hundreds of millions of documents. Techniques that work well at a relatively small
scale may not work well at a much larger scale.

The second approach is to generate the content model randomly. In this approach,
the matching between simulation queries and simulation documents follows some ran-
dom distribution, such as uniform [1, 6] or Zipfian [5, 18,16, 17]. The choice of which
peers documents are assigned to is again random, although several existing techniques
involve replicating content proactively [7]. While a random approach can be used to
generate content models for simulations of very large networks, the model may not
accurately reflect the distribution of queries and documents in real applications. In sim-
ulation studies described in Section 4, we found that several techniques appeared to
perform significantly better using a random content model than when using a content
model that matched real documents and queries. For example, a simple random walk
search over a power law network topology required twice as many messages when using
a real content map than when using a random map.

Our goal is to develop a content model that 1. matches query and document distribu-
tions from real applications, and 2. can be scaled up for use in simulations of very large
networks. Our approach is to measure useful statistics using small but real collections,
and then generate large synthetic content models that match the measured statistics.
First, we model content as a tripartite graph: vertices in the graph represent queries,



documents and peers, and edges represent the documents that queries match and the
peers that documents are stored at. Then, we measure two kinds of statistics about the
graph:degreestatistics, such as the number of documents that a given query matches,
and similarity statistics, such as the number of common documents matched by two
different queries. Using these statistics, we can generate a tripartite content graph of
the desired size. This content graph can be used as the input to a simulation of peer-to-
peer searching techniques. Our model is general enough to capture content distributions
found in existing networks, such as filesharing networks, where it has been observed
that a few “popular” documents are replicated widely [6]. At the same time, our model
can represent content in other applications that may have different characteristics.

We have developed a simulator for peer-to-peer systems to evaluate the performance
of various searching techniques. This simulator uses our content model to determine
when a searching technique has found matching results. We present a case study of
generating a large synthetic content model and using it with our simulator to evaluate
several techniques that have been proposed in the literature. However, our content model
is a general model, and can be used with any simulator to evaluate peer-to-peer systems.

In this paper, we discuss our content model and how it can be used in simulations
of large peer-to-peer networks. In particular, we make the following contributions:

— We define the Map-Degree-Similarity content modelN®@S content modglThis
model includes the tripartite graph representation of queries, documents and peers
(the “map”), and formal definitions for the degree and similarity statistics. (Sec-
tion 2)

— We present an algorithm, SynthMap, for synthesizing large MDS content maps
from degree and similarity statistics. SynthMap treats degree statistics as constraints,
and uses hill climbing to form a map that best approximates the similarity statistics.
(Section 3)

— We present simulation results that demonstrate the need for an accurate content
model by showing the discrepancy in performance of several existing algorithms
on “real” and “random” maps. We also validate our model by showing that the
performance of these algorithms on a synthetic MDS content map closely matches
their performance on the “real” map. (Section 4)

— We present a case study of generating a large synthetic MDS content map from a
smaller real map, and using it in simulations to compare the performance of several
search techniques reported in the literature. (Section 4)

We have implemented a set of tools for gathering statistics from real content and gen-
erating synthetic content models, and these tools are available to researchers who wish
to use them. In Section 5 we examine related work, and in Section 6 we discuss our
conclusions.

2 Map-Degree-Similarity content model

Our content model consists of two components. aprepresents queries matching
documents, and documents located at peersstdisticsdescribe the properties of the
map.



Fig. 1. Example content map.

2.1 Map
ThemapM is defined as a 5-tuple Q, D, P, qd, dp >:

— @ is a set of queries

— D is a set of documents

— Pis asetof peers

— gdis a set of pairs over the domaihx D, where a pailg; € @),d; € D) represents
the fact that query; matches document;

— dp is a set of pairs over the domail x P, where a paifd; € D,p, € P)
represents the fact that a copy of documgnis stored at pegyy,.

The®, D andP sets are disjoint; thatiQND =0,QNP =0andD NP = 0.

In other words, a map is a tripartite graph with vertices for queries, documents
and peers. Edges from queries to documents represent the documents that each query
matches, and edges from documents to peers represent the peers that each document is
stored at.

The set) contains distinct queries. For example, if the system uses keyword queries,
each queryy; € @ would have a different combination of keywords. In a run of a sim-
ulation, eachy; may be submitted multiple times, possibly at different peers. Similarly,
the documents i represent distinct documents. If the same docurdgigtreplicated
at multiple peers, this is represented by sevépaddges incident od;.

A simple example map is shown in Figure 1. This content map represents five
queries, nine documents and four peers. Qugrsnatches documentg,, d, andds.

If query gy reaches pees,, the query will find matching documendg andd, ; if the
query reaches pegy it will find matching documerd,. Some documents in this exam-
ple are located at only one peer (i) while some documents have copies at multiple
peers (i.e.ds).

2.2 Statistics
We define four statistics as part of the MDS model:

— query-degreeepresents the number of documents matched by each query.



— document-degreepresents the number of peers at which each documentis located.

— query-similarityrepresents the similarity between pairs of queries, defined by the
number of common documents matched by each query in the pair.

— query-peer-similarityepresents the probability that multiple documents matching
a given query will be located at the same peer.

We believe that our choice of statistics captures important properties of content maps.
There may be other interesting statistics that can also be defined. However, in Section 4,
we present results which validate that the statistics we have chosen are useful for accu-
rately simulating peer-to-peer search techniques.

We now formally define each of these statistics.

Query-degreeounts the number of documents matched by a given query. Formally,

query-degre€y;) = [{(¢,d) € qd|q = ¢;}|

where|A| denotes the number of elements in detn Figure 1,query-degregy,) = 4.
Document-degreeounts the number of peers at which a given document is stored.
Analogously toquery-degreg

document-degréé€;) = |{(d,p) € dp|d = d;}|

In Figure 1, document-degréé;) = 2.

By measuring the distribution of these statistics in addition to their average, we can
capture the variance present in real networks. For example, some queries will match
large numbers of documents, while others may only match one or two. Since the distri-
bution of these statistics for a real set of queries, documents and peers may not match
a smooth distribution, such as the normal or Zipfian distributions, exactly, we represent
these statistics as histograms.

The next two statistics attempt to capture notions of simila@yery-similarity
represents the similarity between pairs of queries. Two queries are defined to be highly
similar if they match many of the same documents. Query-similarity measures the prop-
erty often observed in real collections that related queries will match some (though not
necessarily all) of the same documents. Consider two keyword queries, “apple” and
“banana.” Both queries are likely to match documents about fruit, but “apple” may also
match documents about “Apple Computer” while “banana” may not. Query similar-
ity measures the amount of overlapping documents matched by pairs of queries. The
amount of query similarity can affect the performance of search protocols that route
gueries based on past results, such as “intelligent search” [12] or routing indices [8].

In order to formally define query-similarity, we must first define a related statistic,
query-overlapThe query-overlap for a pair of querigsandg, is the number of shared
documents betweey, andg,. Formally,

query-overlagg,, ¢) = |{d € D|(qa,d) € qd A (qv,d) € qd}|

We could simply use query-overlap as the definition of query-similarity, but this def-
inition is unsatisfactory since query-overlap is unnormalized. For exampjg,ahd

q» both match the same single document, andndg, both match the same ten doc-
uments,query-overlagfq,, g») = 1 andquery-overlagg.,gs) = 10. However, intu-
itively, ¢, is as similar tog, asq. is to g4, since for each pair, each query matches all



of the documents of the other query. We therefore normalize query-overlap to define
query-similarity. To do so, we divide query-overlap by the query-degree of the queries.
Since the queries might have different query-degrees, we get

query-similarity{q,, ¢») = query-overlagq,, g»)/query-degregy,)

query-similarity g, ¢.) = query-overlagyq,, g»)/query-degregy;)

In other words, the query-similarity statistic is not symmetric. Intuitively this makes
sense; if the query-similarity statistic were symmetric then it would not capture the
difference between pairs of queries with overlapping sets of matching documents and
pairs of queries where one query’s matching documents are a subset of the other query’s
matching documents. In the map in Figurgliery-similarityq; , g2) = 2/2 = 1, while
query-similarityfg2, ¢1) = 2/4 = 0.5.

The fourth statisticguery-peer-similaritycaptures the notion that queries are likely
to find multiple matching documents at the same peer. Since users tend to collect mul-
tiple documents on each topic they are interested in, if a query matches one document
at a peer it will probably match several others as well. Query-peer-similarity measures
the probability of such co-occurrence of matching documents for a given query. The
query-peer-similarity impacts the performance of protocols that attempt to find results
by routing searches to a promising subset of peers, such as in [13, 15], since the query-
peer-similarity determines the probability that multiple matching documents are indeed
found in that promising subset.

The query-peer-similarity for a given queyyis defined as the probability thatgf
matches two documents, those two documents are located at the same peer. Formally,

query-peer-similarityy;) =

{(da,dp);da,dy € D| do # dy A (gi,da) € gd A (q;,dp) € gdA
Ip((da,p) € dp A (dy,p) € dp)}
query-degrefy;) x (query-degregy;) — 1)

The numerator of this expression calculates the number of ordered pairs of doc-
uments(d,, d,) such thatd, andd, both matchg; and are stored at the same peer.
The denominator calculates the total number of ordered pairs of docuifaknts)
such thatd. and d; both matchg;. Thus, the statistic calculates the probability that
an ordered pair of documen{d,, d) thatq; matches is stored at the same peer. The
definition is the same if we consider unordered pairs of documents; then, both the nu-
merator and the denominator in the expression above overcount by a factor of two, and
the factors of two cancel. In Figure query-peer-similarityg,) = 2/6 = 0.3333.

As with the degree statistics, we can measure the distribution of values of query-
similarity and query-peer-similarity for a given map. These distributions capture the
diversity of query, document and peer similarities. For example, in one map there may
be groups of related queries that all match roughly the same set of documents alongside
individual queries that are the only ones to match certain documents. Similarly, for
some queries, the matching documents may be clustered at a few sites, while for others
matching documents may be scattered all over the network.



3 Synthesizing content maps from statistics

We want to generate large synthetic content maps that we can reasonably expect will
accurately model real applications. In this section, we describe how to generate a syn-
thetic map from a set of degree and similarity statistics. Probably these statistics will
be computed by analyzing a map representing real content. However, it is possible that
researchers may want to generate maps that have arbitrary properties not found in an
existing map. For example, a researcher may postulate that an as yet undeveloped ap-
plication would use content distributed in a certain way. The researcher could generate
statistics matching his assumptions and then construct a synthetic content map match-
ing those statistics. As such, our techniques do not require the original, real content map
in order to generate the synthetic map. Instead, only the degree and similarity statistics
are required.

The quality of the generated map depends on the quality of the statistics. If the
statistics are generated from inaccurate samples of real data, then the resulting synthetic
content map will be flawed. Therefore, researchers using our model must be careful to
gather an accurate sample of data before generating statistics. Similarly, a synthetic
content map for a new application will produce accurate results only if the underlying
statistics accurately model the new application.

First, we describe how we scale the values of the statistics to the size of the syn-
thetic map by treating the statistic histograms as vectors and multiplying by a constant.
Next, we present an iterative algorithm based on hill climbing, called SynthMap, for
generating the synthetic map from the statistic vectors.

3.1 Scaling MDS statistics

Recall thatthe MDS content model uses four statisjogry-degresdocument-degree
query-similarityandquery-peer-similaritySince the distribution of these statistics may
not be smooth, we manipulate the distribution of each statistic using histograms.

The query-degree statistic histogram has one bin for each dégteeM Q D)y,
where M Q D), is the maximum query-degree in map. The count in bini is the
number of queries i/ that have query-degréeFor convenience, we represent this
histogram as a vector; the value in positioaf the vector is the count for bify and
the vector had/ @ D, + 1 elements. Similarly, the histogram for the document-degree
statistic has one bin for each degfed...M D Dy, whereM DD, is the maximum
document degree in/. The vector for document-degree hasD D), + 1 elements,
where element is the number of documents with degrieén our discussion, we call
the query-degree histogram vectp-histq and the document-degree histogram vector
dd-hista

The similarity statistics query-similarity and query-peer-similarity have values in
the interval]0, 1]. Therefore, we must chooselan-interval BI that represents the
width of the histogram bins for these statistics. For example, weB#se= 0.1, so
we have bing0,0.1], (0.1,0.2] ... (0.9,1], and the counts in each bin represent the
number of items within the intervals of the bin. Note that we assume that all bins are of
equal width and are contiguous. In general, histograms can be constructed with varying



intervals and non-contiguous intervals, but we do not necessarily need this general-
ity for our purposes. However, we do find it useful to have a special “zero” bin that
represents the intervfll, 0]. For the query-similarity statistic, the bin counts represent
the number of ordered pairs of queries that have a query-similarity within the bin in-
terval. For the query-peer-similarity statistic, the bin counts represent the number of
queries whose query-peer-similarity falls within the bin interval. In our discussion, we
call the query-similarity histogram vectgss-histg and the query-peer-similarity his-
togram vectops-histo

The histogram counts depend on the size of the map from which the histograms were
derived. For example, the sum of the elements of qd-histo equals the number of queries
in the map. Before we can generate a synthetic map, we need to scale the histogram
counts to the size of the map we are generating. We choose a scalingSaatot the
histograms will represent a map withtimes as many queries, documents and peers as
the map for the original histograms. We make a simplifying assumption that empty bins
in the small histogram remain empty in the scaled histogram. In general, this may not be
true; increasing the number of samples in a distribution may add samples to previously
empty histogram buckets, especially in the tail of the distribution. However, since we
do not attempt to derive a smooth distribution for our histograms, it is impossible to
predict the probability that bins which were empty in the small histogram would have
samples in the large histogram. Therefore, we make our simplifying assumption.

For the gd-histo, dd-histo and gps-histo, the sum of the counts is equal to the number
of queries, documents, and queries (respectively) in the map. We can therefore gener-
ate scaled histograms by multiplying the histogram vector$byhus, to generate
histograms for a synthetic mayd’ from histograms representing map:

qd-histg,,, = S x qd-histg,,;; dd-hista,, = S x dd-hista; gps-histq,, = S x qps-histq,

In contrast, the gs-histo represents all ordered pairs of queries (excluding queries paired
with themselves; e.dg;, ¢;)). Thus, the sum of counts in the gs-histo is equaltpx
(|Q]—1), and the scaled histogram must have counts summiSgid)| x (S x |Q|—1).
Therefore, to scale the gs-histo:

Sx QI x(§x|Q|—-1)
QI x (1@ —1)

S x(Sx|Ql—1)
QI -1

gs-histq,, = x gs-histq, = x gs-histq,

3.2 Generating synthetic maps

We want to generate a syntheticmap =< @', D', P', qd’', dp’ > with MDS statistics
matching a set of histograms. These histograms may be scaled versions of histograms
from a real mapM/, althoughS = 1 is also possible. For example, in Section 4, we
validate our model by comparing a real map and a synthetic map “scaledSwtH .

Our SynthMapalgorithm takes as input qd-histo, dd-histo, gs-histo and gps-histo
histogram vectors, and produces a synthetic fapvith MDS statistics whose distri-
butions closely approximates these histograms. It is straightforward to generate maps
that exactly match the qd-histo and dd-histo distributions by randomly generating edges.
For example, to create a random query-document mapping matching a given qd-histo:

1. For each query, € @', choose a non-empty qd-histo hin



(a) Create edges fromy, to randomly chosen documenis D'.
(b) Decrement the count in gqd-histo hin

A random document-peer matching that matches dd-histo can be constructed in a sim-
ilar way. However, it is more difficult to generate maps that match the gs-histo and
gps-histo distributions, since those statistics represent multiple interacting objects.

Our approach is to generate a map matching dd-histo and qd-histo exactly, and that
is as close as possible to gs-histo and gps-histo. As such, we treat the problem of gener-
ating a map as an optimization problem where dd-histo and gd-histo act as constraints,
and we want to maximize the similarity to gs-histo and gps-histo. The general idea of
the algorithm is that we generate an initial map according to dd-histo and qd-histo, and
then use hill climbing to successively improve the map until it closely matches gs-histo
and gps-histo.

The SynthMap algorithm, shown in Figure 2, creates sets of queries, documents
and peers. The sizes of these sets are specified by the userQrsikg ;,, D-sizey,
P-size, parameters; these parameters should describe the same size map as that mod-
eled by the histogram parameters. SynthMap then generates a query-document match-
ing gd’, using the SynthMap-QD algorithm, and a document-peer matehifgising
the SynthMap-DP algorithm.

In SynthMap-QD, we iterate, producing a series of matchings that are better and
better matches to gs-histo. In each iteration, we try to replace each query-document
edge with an edge that reduces the “badness” of the matching. To see if a maithing
with a changed edge is better than the curgdhtwe calculate a histogrags-histd for
the query-similarity of;d’,. We define the “badness” of a matching, as the Euclidean
distance between thgs-histd vector and the goajs-histd? " vector. Formally:

n—1
badnesgs-histd, gs-histd” ) = | " (gs-histd” — gs-histd)>2

=0

wheren is the number of buckets in a histogram, anadhistch andgs-histd repre-
sent histogram buckets. Eventually, we will find a matching that minimizes badness,
and this matching is used as th& for our synthetic mapl/’. (Since we are trying
to minimize badness, our algorithm is more properly described as “gradient-descent”
rather than “hill-climbing.”) Ideally, we find a matching withadness= 0 and the
synthetic map matchess-histd”? ' exactly. However, if we cannot matds-histd” " ex-
actly, we iterate SynthMap-QD until the badness is satisfactorily small; e.g., less than
sometarget-badnessdNote that the algorithm is not guaranteed to converge to a match-
ing with a badness less than tterget-matching In particular, the algorithm might
reach a local minimum in the search space whose badness is undesirably high. In prac-
tice, if the algorithm stops making progress we can terminate it early. Then we must
decide whether to accept the matching it has produced, or to restart with the hope that
it will find a better search space minimum. In our experiments, the algorithm produced
matchings with satisfactorily small badness.

The initial matching is created by calling some function createlnitialMatching().
This function could create a matching randomly from the qd-histo (as described above).



SynthMapgd-histo,,,, dd-hista,/, gs-histq,,, qps-histq,,, Q-size,., D-size,/, P-size,)
returnsM’ {
Create)’, D' and P’ sets withQ-size,, D-size,/, P-sizg,: elements respectively
qd’' = SynthMap-QD@Q’, D', qd-histo,,, gs-histq,,)
ds' = SynthMap-DPQ’, D', P', qd’, dd-hista,, gps-histq,,)
returnM’' =< Q', D', P',qd’,ds' >

SynthMap-QD@Q’, D', qd-histo,,, gs-histq,)
returnsgd’ {
qd'=createlnitialMatchingp’, D', qd-histo,,)

Calculate query-similarity histogrags-histq,;, for qd’

/I lterate
while (badnesggs-histq ;. ,gs-histq,,) > target-badness)
For each edgég.,d;) € qd’ {
Choose a random documeht € D', such tha{q.,dx) ¢ qd’

Il qd., represents removing the ed@g,, d;) from gd’ and replacing it with(q., dx)

qd:c = (qd’ - (Qa,dj)) U (Qa,dk’)
Calculate query-similarity histogram gs-histd for qd.,

Choose a random numbgick on the interval0, 1)

/I If changing the edge decreases the badness, make the change
[/ If changing the edge leaves the badness the same, make the change with some
I probability pick-probability
If [oadnesggs-histd ,gs-histq,, ) < badnesggs-histg,;/,qs-histq,. )] OR
[badnestgs-histd ,qs-histq,, ) = badnesggs-histg,,, ,qs-histq,, ) AND
pick < pick-probability {
qd' = qd' — (¢a, d;)
qd" = qd’' U (qa, )
Set query similiarity histogrargs-histg,;, = gs-histd
}
}
}

returngd’

}
Note: SynthMap-DP is similar to SynthMap-QD and is omitted.

Fig. 2. SynthMap and SynthMap-QD algorithms for generating synthetic content maps.



Alternatively, any easy to create matching can be produced. For example, createlnitial-
Matching() could just assign queries to documents by iterating through documents in
round robin order. In fact, in our experience, SynthMap-QD converged more quickly in
some cases by using this round robin approach rather than the random approach. Our
approach in our implementation is to start by using the random initial matching, and try
other easy to construct initial matchings if the rate of convergence is not satisfactory.

The SynthMap-QD algorithm always replaces an edge if the replacement reduces
the badness of the map. However, sometimes it replaces an edge with another that leaves
the badness unchanged. Tihiek-probabilityconstant determines the probability that
the algorithm takes such a “horizontal” move in the search space. The reason we in-
clude this possibility in the algorithm is that in our experience the algorithm frequently
reaches a “plateau” in the search space. Horizontal moves allow the algorithm to move
off of the plateau and resume gradient descent. Adding the horizontal moves to the
algorithm results in consistently betigf’ matchings.

The most expensive step in this algorithm is the repeated calculation of the query-
similarity histogram gs-histo, shown in boldface in Figure 2. Constructing a gs-histo
requires computing the overlap far(|Q’|?) pairs of queries, and for lard€)’|, re-
peated calculation of this step takes a prohibitively long time. To address this problem,
in our implementation we avoid the full histogram computation. Instead, we determine
which pairs of queries are affected by the change, and then incrementally update the
old gs-histq, histogram by updating the affected bins to produce the gqeistq,,,
histogram. To support this optimization, we maintain two lookup tablegfoone that
maps from a query to its matching documents, and one that maps from a documentto its
matching queries. We also memoize as many query overlap counts as will fit in mem-
ory, preferring query overlaps involving queries with the highest query-degree, as these
queries have a high probability of being affected by changing edges. When an edge is
changed, the affected memoized overlaps are updated. The combination of incremental
histogram updates and overlap memoization significantly sped up our algorithm.

Next, SynthMap-DP takes th@’ query-document matching produced by SynthMap-
QD, and produces @' document-peer matching to closely approximms—hist%’.
SynthMap-DP is very similar to SynthMap-QD, and is omitted from Figure 2. SynthMap-
DP iterates, generating successigé matchings, until the badness of the matching is
satisfactorily small. Again, we use the Euclidean distance to measure the “badness” of
the dp!, matching, which is defined analogously to the badness fogdhematching.

When SynthMap-DP terminates, we have generated syniétenddp’ matchings,
and the process of generating/ has completed.

In our experience, an initialp’ matching that works well is to assign edges so
that all of the documents are clustered on a small number of sites. This is because the
maps we tried to synthesize had high query-peer-similarity, and assigning documents
to a small number of sites creates a matching with higher query-peer-similarity than a
random matching. As a result, the algorithm converges more quickly (and to a matching
with lower badness) than when using a random initial matching.

The most expensive step in the SynthMap-DP algorithm is again the histogram cal-
culations. In this case, the histogram calculation required comparing all pairs of doc-
uments matched by a given query to see which were co-located on the same peer. If



| |Gnutella sef Web set

Queries 321 1,000
Documents 30,247 31,066
Peers 2,000 999
Content Music fileqHTML pages

Table 1. Content sets used in our experiments.

the average number of documents matched by a quégy'ig|@Q’|, then the number of
comparisons needed to calculate the histogram one tit|@'| x (|¢d'|/|Q'])?) =
O(|qd'?/1Q']). Again, incremental histogram updates and memoization sped up the
algorithm. For each query; € @', we memoize the number of co-located documents,
and the total number of matching documents. When a document-peer edge is changed,
the affected memoized counts are updated.

4 Experiments

In this section, we report the results of two types of experiments. First, in Section 4.3
we describe experiments we conducted to validate our MDS content model. These val-
idation experiments measure the performance of several peer-to-peer search techniques
on real content maps generated from Gnutella and Web search traces, content maps
generated randomly using a uniform or Zipfian distribution, and synthetic content maps
generated using our SynthMap algorithm. These validation experiments show:

— The performance of several search techniques differs widely between the real and
random maps, with some techniques sending two or three times as many messages
when using the real map than when using the random map. One technique’s perfor-
mance differed by almost a factor of 10.

— The performance of these search techniques on the synthetic content map closely
matches their performance on the real map.

Thus, our validation experiments demonstrate both the need for an accurate content
model and the effectiveness of the model we propose.

Second, Section 4.4 describes a case study of simulations using a synthetic content
map for a 10,000 node network generated from a smaller map representing a trace of
queries over 1,000 web sites. The results of this study show that in such large networks
there is a tradeoff between search cost and search response time, and demonstrates the
value of the MDS content model in simulating peer-to-peer search techniques.

4.1 Content sets and simulation setup

We used two different content sets for our experiments representing two different appli-
cations of peer-to-peer search. The characteristics of these content sets are summarized
in Table 1. The first, calledGnutella was generated from a trace gathered from the
Gnutella network by Yang and Garcia-Molina in September 20011[Z8jis trace was

1 We would like to thank Beverly Yang and Hector Garcia-Molina for the Gnutella trace.



gathered by running a Gnutella peer and logging queries and query responses. We used
a subset of the full trace representing 2,000 randomly chosen peers. The Gnutella set
represents content from the traditional peer-to-peer application, multimedia filesharing.

The second content set, calldéh was generated from web pages we downloaded
from 1,000 web sites in March 2004. We downloaded between 1 and 2,303 pages per
site by crawling the first two levels of the site. Then, we generated a set of keyword
queries from the downloaded pages using term frequencies commonly observed in in-
formation retrieval systems (from [4]). We used standard information retrieval tech-
niques to determine which queries matched which documents; namely, TF/IDF weights
and the cosine distance [2]. The Web set represents an application of peer-to-peer tech-
niques to World Wide Web information discovery and retrieval, where web sites con-
nected in a peer-to-peer network perform searches over their own content.

For our simulations, we generated peer-to-peer search network topologies that match
a power law distribution. Peer-to-peer systems are frequently simulated with power law
topologies [1, 16], as a power law topology is a good (but not perfect) model of the
Gnutella topology [22]. To generate the power law network, we used the PLOD algo-
rithm [19] with an average degree of 5 and a maximum degree of 10.

We used an event-based peer-to-peer simulator that we have developed to conduct
the experiments. This simulator takes as inputs a network topology, MDS content map,
and list of (query,site) pairs, and generates for each pair a search message at the listed
site. A message handler implementing a given search protocol (such as flooding or
random walks) is registered with the simulator, and determines how search messages
are routed. One time tick in our simulator represents the time for a peer to process
a query and then forward it one hop in the overlay network according to the routing
protocol. The simulator counts the total number of search messages generated, as well
as the total search processing time (measured in ticks). Note that our MDS content
model is not restricted to use with our simulator but is general enough for use with any
peer-to-peer simulator.

4.2 Searching techniques

We used four different search techniques for our experiments.

Flooding is the original Gnutella search protocol. When a peer receives a search
message, it both processes the message and forwards it to all of its neighbors in the
overlay network. Each message is given a time-to-live viluand search messages
get flooded to every node withitl hops of the source.

Iterative deepenind26] is like flooding, but search messages are sent from the
source with a progressively highiruntil “enough” content is found (where “enough”
is defined by the user.)

Random walksvoids sending messages to all nodes [1]. When a peer receives a
search message, it processes the message and then forwards it to one randomly cho-
sen neighbor. Messages continue random walking until either a predefined number of
results are found (again, predefined by the user), ttiria reached. Random watkl
values are high and exist mainly to prevent searches from walking forever [16].

Biased random walkadapts random walks to leverage the power law nature of
search networks [1]. Peers forward search messages to the neighbor that has the most
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overlay links. Messages are annotated with a list of where they have been, and are only
forwarded to a given node once if possible. Moreover, every peer tracks the content of its
neighbors. As a result, the peers with many neighbors track a large amount of content,
and by seeking out those peers searches are likely to quickly discover matching content.

4.3 Validating the content model

We ran a set of experiments to validate our content model. We wanted to determine
1. if the statistic distributions differed between real and randomly generated maps, 2.
if the performance of search techniques differed between real and randomly generated
maps, and 3. if the performance of search techniges on synthetic maps matched their
performance on real maps. We compared several content maps:

e Gnutella-Reala content map representing the real content and query traces col-
lected from the Gnutella network.

e Gnutella-Randoma content map generated randomly, with the same number of
gueries, documents and peers as the Gnutella-Real map. Also, the average number
of documents matched by queries, and the average number of copies of documents,
were the same as in the Gnutella-Real map.

e Gnutella-Zipfiana content map generated randomly, where the “popularity” of doc-
uments (e.g., the number of queries that match them) matched a Zipfian distribution.
The number of queries, documents and peers were the same as in the Gnutella-Real
map, and the average number of documents matched by queries, and the average
number of copies of documents, were also the same as in the Gnutella-Real map.

e Gnutella-Syntha synthetic content map generated from MDS statistics collected
over theGnutella-Reamap.

Similarly, we compare®Real RandomZipfianandSynthversions of the Web map.

Statistic distributions First, we asked whether the MDS statistics differed for real and
random maps. The query-degree distributions for the maps are shown in Figure 3. As
the figure shows, queries in the Gnutella-Random map have an average query degree
clustered around the mean degree, while the distribution of the query degrees in the
Gnutella-Real map is much more skewed. The random assignment of edges naturally
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leads to a Gaussian degree distribution. Because our SynthMap algorithm generates
maps with the exact query-degree distribution of the real maps, the distribution of the
Gnutella-Synth map matches that of the Gnutella-Real map and is omitted from Fig-
ure 3. The query-degree distribution of the Gnutella-Zipfian map is also omitted be-
cause it closely matches that of the Gnutella-Random map: the queries matched by a
document follow the Zipfian distribution but the documents matched by a query is uni-
formly distributed. The difference between the query-degree distributions in the Web
maps are similar to that in Figure 3.

For both the Gnutella and Web traces, each found document was stored only at one
site. Although it has been noted elsewhere [6] that content is often replicated at multiple
sites, we did not observe such replication in our traces. Therefore, the document-degree
distribution was identical in the real, random, Zipfian and synthetic maps for both the
Gnutella and Web data.

The distribution of query-similarity values for the Web-Real, Web-Random and
Web-Zipfian maps is shown in Figure 4(a). This figure also shows, for comparison,
the query-similarity distribution in our generated Web-Synth map, which almost com-
pletely overlaps that of the Web-Real distribution. Note that the vertical axis in the
figure has a logarithmic scale. As the figure shows, most pairs of queries in the random
map have little or no query-similarity. In other words, if a query matches a document,
it is unlikely that any other queries will also match the document. In the Zipfian map,
there is more query-similarity due to the large popularity of some documents, with most
pairs of queries having a similarity around 0.2. In contrast, in the real map, the query-
similarity distribution is more spread out, with several pairs of queries having similarity
as high as 1. The figure also shows that our SynthMap algorithm is able to produce a
synthetic map with a query-similarity closely matching that of the real map. The results
are similar for the Gnutella maps, except that the query-similarity of the Gnutella-Real
and Gnutella-Synth maps is somewhat closer to that of the Gnutella-Random map.

The query-peer-similarity distributions are also different between the real, random
and Zipfian maps. The distributions for the Gnutella maps are shown in Figure 4(b);
the distributions for the Web maps are similar. As the figure shows, the real map has
more query-peer-similarity than either the random map or the Zipfian map, since real
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sites tend to store similar documents, while the random and Zipfian maps scatter similar
documents all over the network. The figure also shows that the query-peer-similarity of
the synthetic map closely matches that of the real map (in fact, overlapping it in the

figure), again showing the effectiveness of our algorithm at generating synthetic maps
that match real statistics.

Query performance Next, we examined whether the performance of search techniques

on the random, Zipfian and synth maps matched their performance on the real map. In
these experiments, we generated 50 search network topologies. For each topology, we
injected 10,000 randomly chosen queries at randomly generated source peers, and we
measured the average number of messages required per query for each search technique
as well as the average time for each query to complete. The goal for each search tech-
nique was to find 10 results. For flooding and iterative deepening, we stt theb,

and for random and biased random walks we setth#® 1,000. We also conducted
simulations where we varied these parameters; while the absolute results differed, we
reached the same conclusions as those reported below.

First, the number of messages sent per query is shown in Figure 5(a) for the Gnutella
maps, and Figure 5(b) for the Web maps. In both figures, the error bars represent 95
percent confidence intervals. As the figures show, the performance of search techniques
on the random and Zipfian maps (dark gray bars) differs from the performance on the
real map (white bars), sometimes radically. For example, the difference in performance
between the random and real Gnutella maps is a factor of two for iterative deepening,
a factor of three for random walks and a factor of 9.6 for biased random walks. The
exception is flooding, which always sends the same number of messages from a given
source node regardless of the query or results. The search techniques also require more
messages on the real Web map than on the random or Zipfian Web maps, by a factor of
1.5 or more. The reason that the techniques appear to perform better on the random map
is that content is scattered uniformly throughout the network, making it easier to locate.
In the real map, content matching a query is concentrated at a few sites, which can pose
problems for random walks and biased random walks in particular. If the query misses
those few sites along its walk then it may walk for a long time without finding content.
Although we might think that the Zipfian maps would do a better job of capturing the
skewed distribution of real content, our results show that Zipfian maps do not produce



performance results comparable to the real maps. The reason is clear from Figure 4; the
Zipfian maps do not accurately model the distribution of queries, documents and peers
in the real content sets.

Figure 5 illustrates the importance of an accurate content map. For example, with
our parameter settings, it appears with the random or Zipfian map that iterative deepen-
ing is significantly better than flooding on both the Gnutella and Web data sets. How-
ever, on the real map the performance of iterative deepening is worse than flooding. In
the real map (where content may be clustered at sites far from the source node), iterative
deepening often ends up sending queries with= 5, which costs the same as flood-
ing. However, the extra messages sent under iterative deepenitiigfob mean that
the total messages is higher under iterative deepening than under flooding. Clearly, it is
important to have an accurate content map so that we avoid such incorrect conclusions.

In contrast, Figure 5 shows that the search techniques perform comparably using
the real map (white bars) and synthetic map (light gray bars). Because the synthetic
content map accurately models the distribution of content in the network, it provides a
better framework for evaluating the performance of the different techniques.

Next, we calculated the time required to process each query. Recall that a time tick
represents the time for one node to process a query and forward it one hop in the overlay
network, and we measured the time for a query in terms of the number of simulation
time ticks before all results reached the source. The results (not shown) are similar to
the results for the number of messages: the search techniques require less time on the
random map or Zipfian than they do on the real map, by a factor as high as 10, while
the search techniques require the same amount of time in the real and synth maps.

All of these results demonstrate the usefulness of the MDS content model for accu-
rately simulating the performance of peer-to-peer search techniques.

4.4 Case study: Evaluating the performance of search strategies

We now describe a case study of using a synthetic content map to examine existing
techniques for a new application: peer-to-peer web search, where web sites themselves
process and route web searches. This application was suggested by Li et al [14] who
proposed using structured DHT networks to perform search. Our study considers un-
structured search techniques. There are a number of motivations for such an application.
First, the web is quite large and growing, and a peer-to-peer architecture has the poten-
tial to be far more scalable than a centralized search engine. Second, long crawling
times cause search engines to be out of date, while a peer-to-peer search system can
locate the most up to date content. Third, decentralization puts search back in the hands
of web site owners, who resent the power of large search engines like Google.

We used the HTML pages from the Web set, as described in Section 4.1. We gen-
erated a synthetic 10,000 peer content map using the MDS statistics from the real Web
content map. Certainly, this is a relatively small map when compared to the actual size
of the Web. However, it represents a useful first step in studying this application, as we
can rule out techniques that do not even scale to 10,000 sites. In ongoing work we are
constructing even larger maps for simulation.

In this experiment, our goal was to find 10 web pages matching a query, roughly
equivalent to the first page of query results. The search mechanism can continue running



Ty

el
~
=]
3
S
3
]
]

HH

el
@
3
IS]
]
3
3
3

@
S
]
]
HH

Now s
&
1S)
S}
8
3
3

S
3
S

E N @ B oo o
S o 5]
3 3 ]
S 38 ]

H
5 8
8 8
8 8

Average time ticks to query completion

7.00 2139 {

0
Flooding \terative Random _ Biased random Flooding Iterative Random  Biased random
deepening walks walks deepening walks walks

@ (b)

Average number of messages per qu

Fig. 6. Web search case study: (a) messages sent, (b) query processing time.

if the user wants more results. Because of the size of the network, we St fitre
flooding and iterative deepening to 6, and tthdor random walks and biased random
walks to 20,000. We also set the first iteration of iterative deepenittig-to3. By using
an initial ttl larger than one, we can reduce the total number of messages [26].

The total number of messages for each technique is shown in Figure 6(a), with 95
percent confidence intervals. As the figure shows, the best performance was achieved by
biased random walks, which required 915 messages per search on average. Surprisingly,
flooding is the second best technique, requiring 4,895 messages per search, a factor of
5.3 worse than biased random walks. We might expect random walks to perform better
than flooding, but it does not, requiring 5,188 messages per query. Analysis of the data
reveals that random walks perform well for queries that match many documents but
perform poorly for queries that match few documents. This variance is reflected in the
large confidence interval. As before, iterative deepening performed worse than flooding,
despite the optimization of starting witth = 3.

However, flooding is far superior to biased random walks when we consider the time
to process queries, which is shown in Figure 6(b). (In this figure, the bars for flooding
and iterative deepening are so small we print the number of time ticks above where
the bars would be.) The flooding technique required only 7 time ticks to complete (one
tick to submit the query and six ticks to forward it six hops) but the biased random
walks required 915 time ticks. This is because flooding allows many peers to process
the searches in parallel, while biased random walks requires queries to be processed
sequentially, one peer after another. As a result, for an improvement of a factor of 5.3
in message cost, biased random walks causes two orders of magnitude degradation in
response time over flooding. Very long response times may be unacceptable to users
accustomed to quick response times from Google. It has been suggested to use parallel
random walks to improve response time [16]. However, if we simulate multiple parallel
walks, the response time does not approach that of flooding unless we create so many
walks that the message cost becomes prohibitive. We might proactively replicate con-
tent to improve the cost and response time of walks [7]; but unless a large humber of
web site owners are willing to store mirrors of each other’s content proactive replica-
tion will not be effective. Overall, we may not believe that flooding is scalable enough,
but we can conclude from simulations using the MDS model that random and biased
random walks are even less scalable for this application due to the long response time.



5 Related work

Simulation is a common method of evaluating peer-to-peer search techniques. Recent
work that uses simulations includes[1, 3,5, 6,12,18, 16, 17, 24, 26]. Our tripartite graph
model is a formalization of the content models used in these various studies. These
simulation studies use either real [3,12, 24, 26] or random [1,5, 6,18, 16, 17] content
maps. Real maps require extensive effort to gather a large trace from a real system, and
cannot easily scale to very large network sizes. Random maps can be made arbitrarily
large but suffer from the inaccuracies discussed in Section 4.

There are several interesting traces of real peer-to-peer systems available, includ-
ing [11,21,22,26]. These traces can be used to inform accurate simulations. Simi-
larly, topology models have been well studied [9, 25], as have models for download
traffic [11] and peer behavior [10]. Content models for peer-to-peer networks, to our
knowledge, have received less treatment. Chawathe et al [6] discuss the properties of
Gnutella content but do not derive a general model as we do.

6 Conclusions

Accurate simulations of peer-to-peer techniques require both a topology model and
a content model. We have presented the MDS model, a general model of content in
peer-to-peer systems which allows researchers to simulate large networks whose con-
tent shares the characteristics of content in real networks. The MDS model represents
queries, documents and peers as a tripartite graph, with edges representing documents
matching queries and documents stored at peers. A set of degree and similarity statis-
tics describes the properties of the tripartite graph. Our approach is that researchers can
generate a large synthetic tripartite graph that has statistics matching a smaller graph
generated from real data. To this end, we present an algorithm, SynthMap, that takes a
set of statistics and produces a synthetic map matching those statistics.

In a set of simulation experiments we demonstrate two conclusions. First, simply
generating a random content map results in inaccurate simulation results. Second, gen-
erating a synthetic map using our techniques produces results that closely match the
results obtained using a real map. This validation study shows that the MDS model
is an effective one for peer-to-peer simulations. We also present a case study of peer-
to-peer web search that uses a 10,000 peer synthetic content model produced using
SynthMap. As this study shows, the MDS content model is a useful tool for evaluating
the performance of peer-to-peer search techniques.
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