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Abstract. In this paper, we propose a dynamic game theoretic approach for
choosing power optimization strategies for various components(e.g. cpu, net-
work interface etc.) of a low-power device operating in a distributed environ-
ment. Specifically, we model the energy consumption problem as a dynamic
non-cooperative game theoretic problem, where the various components of the
device are modelled as the players in the game that simultaneously consume a
common resource(device battery power). An analysis for the Nash and social
optima of the game is presented. We then introduce an adaptive distributed
power-aware middleware framework, called “Dynamo”, that incorporates the
game theoretic approach for determining optimal power optimization strategies.
We simulate the distributed game environment for proxy-based video streaming
to a mobile handheld device. Our performance results indicate that significant
energy savings are achievable for the device when the energy usage of the indi-
vidual components achieve a social optima than when the energy usage achieves
the strategic Nash equilibria. The overall utility of the system is measured both
in terms of energy gains and the quality of video playback. Our results indicate
that the device lifetime was increased by almost 50%-90% when compared to
the case where no power optimization strategies were used, and 30-40% over de-
vice lifetime when Nash equilibrium is achieved; the overall utility of system for
both types of equilibria were similar(utilities differ by ≤ .5%), indicating that
the Nash equilibrium strategies tend to overuse the battery energy consumption.

1 Key words: power optimization, game theory, power-aware middleware

1 Motivation

Limiting the energy consumption of low-power mobile devices has become an impor-
tant research objective in recent years. The capabilities of these devices are limited by
their modest sizes and the finite lifetimes of the batteries that power them. As a result,
minimizing the energy usage of every component (e.g. CPU, network card, display, ar-
chitecture etc.) in such devices remains an important design goal and continues to pose
significant challenges. These issues have been aggressively pursued by researchers and
numerous interesting power optimization solutions have been proposed at various cross
computational levels - system cache and external memory access optimizations [18], dy-
namic voltage scaling(DVS) [9, 7] of the CPU, dynamic power management of disks and

1 This work was supported by funding from ONR MURI Grant N00014-02-1-0715 and NSF
Career Grant ANI-9875988.
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network interfaces(NICs) [10, 4, 5], efficient compilers and application/middleware [20,
19] based adaptations for power management. Consequently, future generations of these
low-power mobile devices will represent a new class of “power-aware” systems. These
power-aware systems will be able to make the best use of the available battery power
by adapting their behavior to the constraints imposed by their operating environments
(users, network topology etc.). Additionally, components of these systems will be ca-
pable of multiple modes of operation for power management. Already, current wireless
network cards have various power modes (sleep, transmit, idle etc.) and some CPUs
(e.g. Transmeta’s Crusoe) can be operated at various lower voltages(or frequencies).
Moreover, the selection of the modes would be accomplished through various strategies
that would control the aggressiveness of the power management for that component.

Interestingly, power optimization techniques developed for individual components
of a device have remained seemingly incognizant of the strategies employed for other
components. Therefore, increased research effort needs to be devoted to study the im-
portant issues involved in the interplay between the power management [25, 18] of the
various components. While focussing their attention to a single component, researchers
make a general assumption that no other power optimization schemes are operational
for other components. Consequently, only the most aggressive forms of power manage-
ment for individual components are investigated. We contend that unless a study is
made of the trade-offs involved in the joint operation of the various components and
the customizations/adaptations therein, the power gains (or performance) may turn
out to be reductive instead of cumulative. For example, a cache optimization strat-
egy for power optimization might adversely affect the performance of an aggressive
DVS based algorithm, as the execution times of the tasks might be affected. Therefore,
when multiple components are co-operating to effect power savings, the most aggres-
sive strategies may not necessarily be the best ones. At a very high level, we view the
system as a collection of components, that draw power from a common shared energy
source (battery) and provide some utility in return. The overall utility of the system
can be considered to be a function(e.g. sum, product etc. and is usually defined by
the system designer) of the individual utilities of the components. We now need to
solve the following problem: how can we maximize the cumulative user experience (e.g.
quality of video for multimedia applications) of the system while ensuring that the low-
power device is operational for the longest time? Fortunately, this problem is amenable
to game theoretic analysis, which provides powerful tools for analyzing precisely such
interactions.

Game Theory [1, 21] provides a set of tools to model interactions between agents
with conflicting interests. For decades, game theoretic tools have been used by economists
and others to model economic agents such as firms and stock markets. Game theory
typically assumes that all players seek to maximize their utilities in a perfectly rational
manner. Economists have a hard time as human players are seldom perfectly rational.
However, as in our case, when players are computational entities, it is reasonable to
assume some notion of strong rationality (at least as far as computationally possible).
Therefore, game theoretic analysis has also been widely used in the study of power con-
trol [17], flow control [3] and routing problems [23] in wireless networks. The purpose
of our study is to use game theoretic analysis to tailor aggressiveness of power opti-
mization techniques (for individual components), such that both the battery lifetime
as well as the cumulative system utility are optimized.
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2 Modelling Power Optimization as a Dynamic Game

To model a joint management strategy for power optimization, we must first identify
the sources of power consumption. In modern mobile systems, there are three pri-
mary sources of power consumption: the CPU, the network interface and the display.
At the architectural level, components such as caches, memory and logic gates are
also driven by battery power. In this section, we present our view of the system and
model the power management problem as a dynamic game. A basic introduction to
game theory and some preliminary definitions are posted at http://www.ics.uci.edu/˜
dsm/dyn/prelim.pdf. In a typical low-power system, we have multiple components
jointly utilizing a resource (the battery) to which they all have access. In exchange
for the extraction of some fraction of the resource, they provide some utility to the
user of the system. As an example, for streaming media applications a measure of util-
ity could be both the battery lifetime of the device and the application output quality
as perceived by the user. The actual representation of the utility is in itself a rather
hard research issue as it might contain both objective and subjective elements. We
will revisit this topic in a later section. Moreover, in this case, the residual power of
the device (battery) evolves through time according to the pattern of past component
usage; note that the overall utility of a set of power management strategies is impacted
as the residual power vanishes.

We can characterize the conjunctive operation of the various components of a low-
power device as a non-cooperative dynamic game(Γ ). We denote the primary power
consuming components of the system as the set of players (P ) in the game. Therefore
P = {Pcpu, Pnet, Pdisplay, ...} and let PN denote the number of such players. Note that
all the players concurrently draw energy from a common exhaustible resource(battery).
We define the “game environment” at a period T as the current residual energy of
the device(or battery) = ET

R ≥ 0 , which evolves over time depending on the energy
consumptions of the individual components of the system. The period identifies the
frequency at which a sub-game is played and identifies the points in time at which
the strategies can be re-evaluated. The strategy space S of each player is represented
by an aggregation of all the power management strategies that are available for that
player. For example, the strategy space for the processor can be denoted as Scpu =
{S0

cpu, S1
cpu, S2

cpu, ..., SN
cpu}, where there are “N+1” independent power optimization

strategies available for the cpu. These strategies could represent the various dynamic
voltage scaling (DVS) algorithms suggested for slowing down the cpu under various
conditions for energy gains. In general, this strategy space would include all power
management strategies available for cpu slowdown. Additionally, we define a basic
strategy denoted by S0

cpu, which denotes a strategy that does not employ any power
optimization technique for the cpu. Consequently, the power consumed by a basic
strategy would be the maximum of all the strategies in the strategy space of that player.
Similarly, the strategy spaces are defined for other players(components) in the game.
We denote player Pi’s (Pi ∈ P ) energy consumption during a period T by CiT (for
strategy Sk

i ); C0T is assumed to be the energy consumed by the player under its “basic
strategy”, i.e. S0

i , where i = cpu, net, display, etc.. It is natural to consider CiT ≥ 0
and that consumption gives player Pi a payoff or utility. The value of ER (residual
energy of battery) constraints the total amount of energy that can be consumed by the
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players, i.e. at every period T , it must be the case that
∑

i=1..PN

CiT ≤ ET
R (1)

The amount of residual energy that would remain when each player plays its basic
strategy (no power optimization) is given by XT = ET

R−
∑

C0T , However, when power
optimization strategies are employed, each player generates an energy saving over the
energy consumed by its basic strategy. We denote these energy savings as 4k

i , where i
is the player index {cpu, disk etc.} and k is the strategy used by the player. Therefore,
the residual energy available in the period T + 1 is (E(T+1)

R ≥ XT ) and is given by

E
(T+1)
R = ET

R −
∑

C0T +
∑

4k
i (2)

Now if energy gain was the only measure of the utility, then maximizing 4k
i would

maximize the utility. However in practice, the payoffs for power management strategies
are influenced by a number of factors beyond the control of the players. The form
factor of the device, the number and type of executing applications, energy gains,
perceived user satisfaction, QoS guarantees, application response times etc. are all
factors that could define the utility of a particular strategy. This makes defining an
ideal utility function a very hard research problem. For our purpose, we define the
utility for a particular strategy as a function of the energy savings from the strategy
(can be measured) and the perceived user satisfaction (determined subjectively). From
experience, we know that these two factors are somewhat in conflict. For example, if we
slowdown the cpu for power savings, the response times of the applications will increase
thereby reducing the perceived user satisfaction. In multimedia applications, a slower
processing of video frames might cause a jitter. In general, a more aggressive power
saving strategy tends to save more power, but might have a greater negative impact
on the user perception. Consequently, higher 4k

i may not directly translate to a higher
utility. Our objective is to determine a value for 4i such that both the device lifetime
and the overall utility of the device is maximized. A logarithmic function closely depicts
such an utility function. In Sec. 4.2, we study the utility functions for the CPU and
the network card and show that they can be approximated using logarithmic functions.
We therefore define player i’s utility function when it employs strategy Sj

i as log(CiT ).
Moreover, the amount of power saved by any strategy can be expressed as a function
of the residual energy of the device at the time the strategy is employed; therefore
we can define 4k

i = f(ET
R) for each player. We can say that the power optimization

strategies regenerate(in some sense) some of the energy that would otherwise be used
up with the basic strategies. We therefore assume that the residual energy for the next
period can be expressed as E

(T+1)
R = f(XT ). This characterization lends the game to

be analyzed as a classical game theory problem called the tragedy of the commons [2,
15]. Note that duration of this potentially infinite game can be restricted by setting a
threshold battery energy level until which the game is played. This level can be selected
such that minimum energy requirements for the device components are reserved.

The extensive form of the game (with 2 players) is shown in Fig. 1. Initially, the
residual energy of the low-power device is assumed to be E0

R. At this point, both the
CPU and the network interface card(NIC) choose their power management strategies
indicated by Si

CPU and Si
NET . The game is played in accordance with these strate-

gies for the period T0. At the end of the period the strategies are again re-evaluated
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R
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dT
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CPU Si

NET
player 2player 1

T1
E1’

R

Si’
CPU Si’

NET

T1

player 1 player 2

E1
R

Si
CPU Si

NET

Fig. 1. Extensive form for a 2 player game(CPU,Network)

depending on the residual device power. We assume that the evaluation takes a small
time δT as shown in the figure. At this point, both players decide on the new strategies
and the game continues over period T1. Note however, that depending on the initial
strategies chosen the game could take one of many courses (2 of them are depicted in
the figure). The oval represents the range of the strategies that can be employed by the
players. This game continues indefinitely until either the battery drains out of power
(inevitable) or the device is stopped.

2.1 Game Analysis

By designing the conjunctive component power management for low-power devices as
a non-cooperative dynamic game (as above) makes it amenable to several different
types of game theoretic analysis. In this section, we investigate the game from the
perspective of Markovian strategies that provide Nash equilibrium for each period. This
is representative of the current research approaches, where each player(component)
unilaterally chooses its strategies with the objective of maximizing its own utility.
We also present a social optimality analysis wherein the objective is to maximize the
conjunctive utility of the system. This is representative of the approach we suggest. A
brief comparison of the analytical results is made and its implications to our overall
problem is discussed. Using our analysis, we can answer the following questions - how
does the residual energy of the device yt evolve over time? Does strategic interaction
of the components lead to persistent overuse of the battery resource?

Before we present the analysis, we redefine some of the notations presented in
the last section for easier readability. Let the “game environment” (residual energy of
device) at the beginning of period t be yt ≥ 0. We denote player i’s energy consumption
due to the adopted strategy in period t as cit ≥ 0. Furthermore, in the event that the
players attempt to consume energy in excess of the current residual energy, we assume
that the total amount is split equally among the players. We perform our analysis on
a two player game (CPU, network interface card) for power/utility management for
two components). In low-power devices, the CPU and the network card account for
a significant percentage of the overall energy consumption. In the case of the LCD
displayo, the main energy drain comes from the backlight, which has a predefined user
setting and therefore has a limited degree of controllability by the system through
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various strategies. This remains a subject of ongoing research and therefore we do not
include the backlight in our analysis. In the two player game: i) the analysis is much
simpler and is easier to understand and (ii) it is representative of the general “N” player
game, that is a ”N” player game can be analyzed in much the same manner. Fortunately,
for our purposes, the maximum number of players is three (N=3) (considering the LCD
display and the fact that most handhelds do not have disks).

Furthermore, as the analysis is quite complex for a two player game [2, 15], we
show the analysis for specific forms of the utility function and the energy regeneration
functions. An analogous analysis is possible for other types of functions. Without loss
of generality, we assume that player i’s utility from consuming ci amount of energy
in any period is given by Blog(ci) + C, and that yt+1 = A.Xt

D, where A,B,C and D
are constants. We simply denote the players by subscripts 1 and 2. More specifically,
we use the functions log(ci) (B=1,C=0) for the utility function and yt+1 = A.

√
Xt

(D = 1
2 ) to improve readability of the analysis.

2.2 Social Optimum Analysis

From an analogous economic game theory standpoint, social optimality is defined as:
In a society of two individuals having simultaneous unrestricted access to a common
resource, how should each player extract the common resource such that this society
of two individuals remain as “happy” as they can be. In our case, the “happiness”
is represented by the joint utility of the players with the common resource being the
battery energy. Therefore to derive the social optimality solution we need to consider
the sum of the two players’ utilities - and maximize it. This can be achieved through
analysis by backward induction. Suppose to begin with, there are exactly 2 periods (as
shown in Fig. 1). If we are in the last period with residual energy y, then we need to
solve

Max {log(c1) + log(c2)} (3)

where c1 + c2 ≤ y. In order to maximize utility, all the available residual energy should
be used up at this period; that is it must be that c1 + c2 = y. Hence, the maximization
problem can be written as

Maxc1 {log(c1) + log(y − c1)} (4)

Using the first order condition for maximization (1st order derivative = 0) we get
1
c1

= 1
y−c1

; that is consumption by both the components should be equal (c1 = c2 and
equal to y

2 ). Consequently, each components socially optimal utility when there is one
period left and the residual energy is y, is given by V 1(y) = log y

2 = log(y) − log(2).
This can be written as log(y) + B(1), where B(1) stands for the constant -log(2). Let
us now consider the penultimate period (i.e fold back the tree in Fig. 1). Clearly, when
there are 2 periods left the socially optimum energy consumption is found from solving
the following problem:

Max {log(c1) + log(c2) + 2δV 1[A(y − c1 − c2)0.5]} (5)

where c1 + c2 ≤ y and δ is the discount factor. In our case the discount factor is
important because as the device runs out of power, the energy resource gets more
valuable, and therefore so do the utilities. Since, V 1[A(y− c1− c2)0.5] = log[A(y− c1−
c2)0.5] = log(A) + 1

2 log(y − c1 − c2) + B(2); we can write the problem as

Max {log(c1) + log(c2) + δlog(y − c1 − c2)} (6)
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where c1 + c2 ≤ y, where we have suppressed the additive constants log(A) and B(2),
as they do not affect the optimal choice. Again, the first-order conditions for maxima
are obtained by equating the derivative of the above equation to zero. We have 1

c1
=

δ[y − c1 − c2]−1 and 1
c2

= δ[y − c1 − c2]−1. Since, the expressions are identical, it must
be that the two consumptions are equal. Using the above equations it follows that the
common consumption is y

2+δ . Note that the energy consumption is less than it is when
there is only one period left. After collecting the terms, the socially optimal utility for
a component can be written as (1 + δ

2 )log(y) + B(3), where B(3) is a compilation of
constants.

Now we consider the case when there are more than 2 periods. Instead of solving
the general case right away, let us do one more step of induction to see if there is a
solution pattern. Now, suppose there are three periods of resource usage. In the first
period we have the following problem to solve:

Max {log(c1) + log(c2) + 2δV 2[A(y − c1 − c2)0.5]} (7)

where c1 + c2 ≤ y. Now, by substituting for V 2 and by suppressing all the (irrelevant)
constants we can rewrite the last expression as

Max {log(c1) + log(c2) + δ(1 +
δ

2
)log(y − c1 − c2)} (8)

where c1 + c2 ≤ y. Proceeding similarly as before we can get the first-order conditions
for this problem as 1

c1
= δ(1+ δ

2 )[y−c1−c2]−1 and an identical expression for c2. It can

be shown that the socially optimal consumption equals y
2 (1+ δ

2 + δ2

4 )−1 and the socially
optimal utility for each player is of the form (1+ δ

2 + δ2

4 )log(y)+A(3), where A(3) is a
compilation of the constants. At this stage a pattern is clearly observed. Similarly, the
analysis for “T” remaining periods is present in Table 1.
Using the above conjecture, we now know the equilibrium consumptions for the game

periods remaining consumption (fraction of y)

1 1
2

2 1

2(1+ δ
2 )

3 1

2(1+ δ
2+ δ2

4 )

T (conjecture) 1

2[1+ δ
2 +...+( δ

2 )T−1]

Table 1. Energy consumption for various remaining periods

for T periods. Note that in an infinite period model, we can get this identical consump-
tion function (call it c(y)) by taking the limit of the optimal consumption as T→ ∞.
Since, 1 + δ

2 + ... + δ
2

T−1
+ ... = 1

1− δ
2
, we can say that

c(y) =
1− δ

2

2
y (9)

Based on this optimal energy consumption rule an optimal power management strategy
can be executed for each component. In a later section, we will discuss some component
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based power management strategies and how we profile such strategies for various
components.

2.3 Best-Response(Nash) Equilibrium Analysis

We now present a parallel analysis in a strategic (rather than social) setting. Here
the assumption is that the players are consuming the battery resource unilaterally.
Therefore, each player (component) will only consider its own utility and seek the
strategy that maximizes this utility. Much like the social optimality analysis, the game
equilibrium can be solved by backward induction. We present a similar analysis for a
two player game. As before, suppose we are in the last period with residual energy y.
At this point, all the energy can be consumed. Hence, the stage sub-game equilibrium
is one where each player’s actual consumption is y

2 . Consequently, each components
equilibrium utility is given by W 1(y) = log(y

2 ) = log(y) + B(1), where B(1) is a
constant (= -log(2)). Let us now fold the tree back to consider the penultimate period.
When there are two periods left, player 1 faces the following best-response problem:

Max log(c1) + δW 1[A(y − c1 − θy)0.5] (10)

where c1 ≤ (1− θ)y, δ is the discount factor and θ is the fraction of the resource that
player 2 is expected to consume in the first period . Note that we have assumed that
the consumption of player 1, c1 ≤ (1 − θ)y. Otherwise, we know that there will be
no consumption for either player in the last period. Since, W 1{A(y − c1 − θy)0.5} =
log(A) + 1

2 log[(1− θ)y − c1] + B(2), we can rewrite the problem as

Max log(c1) +
δ

2
log[(1− θ)y − c1] (11)

where c1 ≤ (1−θ)y and the constants are suppressed. Applying the first order condition
we have 1

c1
=

δ
2

(1−θ)y−c1
. Therefore, the best response consumption is given by (1 +

δ
2 )c1 = (1 − θ)y. If we write the consumption as a fraction of the residual energy at
that time - that is, if we write it as b(θ)y - then it follows that

b(θ) =
1− θ

1 + δ
2

(12)

If we do a similar analysis for player 2, we get the symmetric equilibrium condition,
wherein each player has the same consumption, and the rate is such that it is the best
response to itself. Therefore, b(θ) = θ. Put differently, the extraction rate 1

2+ δ
2

is a
symmetric equilibrium. As before, after collecting the terms, the equilibrium utility
when there are two remaining periods, W 2, can be written as (1 + δ

2 )log(y) + B(3),
where B(3) is a constant. After substituting the formula for W 2, it can be shown that
the first period best response problem for player 1 is

Max log(c1) +
δ

2
(1 +

δ

2
)log[(1− θ)y − c1] (13)

where the previous conditions for the variables hold. Solving for the first order condition
we get 1

c1
=

δ
2 (1+ δ

2 )

(1−θ)y−c1
. We get the symmetric consumption level for each player equal

to 1

2+ δ
2+ δ2

4

. As with social optimality we can generalize the solution for T periods as
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follows: when there are “T” remaining periods, the energy consumption fraction of
each player is given by 1

2+ δ
2+...+( δ

2 )T−1 . In the infinite period model, the equilibrium
consumption function (call it c∗(y)), will be given by the limit of the equilibrium
consumption as T →∞. Since 2 + δ

2 + ... + ( δ
2 )T + ... = 1 + 1

1− δ
2
, we can say that

c∗(y) =
1− δ

2

2− δ
2

y (14)

Using the above equilibrium consumption, a best response strategy can be chosen for
each component.

Discussion: From the above analysis we observe that when each component (player)
employs its power optimization strategies unilaterally, there is a possibility of overuse of
the battery resource. As mentioned earlier, such one-sided decisions do not necessarily
translate to the highest overall utility for the system. Comparing the two consump-
tion functions: the socially optimal function c(y) (eqn 9) and the strategically optimal
function c∗y(eqn 14), we see that

c(y) =
1− δ

2

2
y <

1− δ
2

2− δ
2

y = c∗(y) (15)

The equation holds as (2− δ
2 ) < 2. It can be concluded that the strategic equilibrium

are suboptimal. While theoretically it has been proved that the social optimal is better
than the strategic optimal, it is a challenge to design a system that can facilitate such
optimal battery usage. In the next section, we present a middleware framework that
can be effectively used for optimal use of the system battery resource.

3 The Dynamo Middleware Framework

In the previous section, we presented a theoretical analysis for optimized power con-
sumption for a generic set of components and their power management strategies.
However, in practice, the options available for power optimization are limited by type
of low-power devices used and the context of the applications. For example, a cpu
slowdown strategy that slows down the cpu by 70%(say) may not be feasible for mul-
timedia applications(as frames cannot be decoded in time); again a handheld without
a network card need not be optimized for that component. Therefore, we need to con-
duct a case-specific analysis for a given environment and device context. Furthermore,
in our case, it is important to reevaluate the strategies used for various components
as the game environment evolves (network/device conditions dynamically change). A
distributed adaptive middleware framework designed for cross-level power optimization
is a natural choice for performing such an optimality analysis. The system architecture
for such an adaptive middleware framework (called Dynamo) is depicted in Fig. 2. A
prototype implementation of the framework is presented in section 5.

In Fig. 2, the lowest level shows the various hardware components targeted for
power optimization. The driver interfaces and the power optimization strategies for
the various components are available at the operating system layer. A battery mon-
itor provides higher layers with realtime information on the current residual battery
level of the low-power device. Dynamo consists of a lightweight middleware runtime



10

Directory
Service Mgr

Network task
Partitioning

Game
Strategy
Analysis

Network/proxy
Specific info

Display

memory Cache Memory
Access

Register
Allocation

bus

CPU

NIC

U S E R   A P P L I C A T I O N S  (Utility)

App. specific info

Quality perception
Power saved

display
driver Operating System

DVS 
Strategies

network
driver Profiled Payoff

Base

DYNAMO Device Runtime    (API Interface)

E
xe

cu
te

 o
n

 d
ev

ic
e

E
xe

cu
te

 o
n

 p
ro

xy

Dynamo proxy middleware

battery
monitor

H/W

Fig. 2. The Dynamo middleware architecture

layer that executes on the device and provides an API interface for dynamically de-
ploying power management strategies for the various components. Additionally, the
framework contains a more heavy weight component that can execute on a network
node (e.g. a proxy server) and performs the game theoretic analysis remotely using a
distributed protocol; As the more computationally expensive game theoretic analysis
is shifted onto a distributed proxy, the middleware on the low-power devices can have
a lightweight footprint. By using this model, the middleware can exploit knowledge
of the local device state (e.g. residual power levels stored & updated at a directory
service) and global state (e.g. network congestion, node mobility etc.) that can be
available at the proxy to dynamically select optimal power optimization strategies for
the components. We assume that the middleware has at its disposal a knowledge base
of the strategy space and corresponding utility functions for each of the components.
Such a knowledge base can be created by extensively profiling (or using research liter-
ature) each component and its various strategies under different operating conditions.
Additionally, the middleware can implement various policies that affect the analysis
of the strategic interaction of the components. For example, the middleware can fix
the number of periods for which the game is played (or if the game is infinite) using
various policies(e.g. constant,infinite etc.); dynamically modify the game environment
incase there is a sudden drift in the battery energy level, assign value of the discount
factor(δ) and set the threshold energy level before the start of the game. By using a
distributed approach, much of the computationally expensive analysis is moved away
from the low-power device to a network entity (proxy). Furthermore, the proxy is bet-
ter suited to make dynamic global adaptations because it has information of the global
state that would be unavailable at the device. The communication overheads in this
approach are minimal as the proxy communicates with the device only when power
management strategies for individual devices need to change.

The high level algorithm employed by the middleware for determining the socially
optimal energy strategies are presented in Fig. 3. Fig. 3(a) presents the algorithm for
a static scenario where parameters of the power management game are fixed. Given
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( a ) ( b )

GetSocialOptimum( ) 

INPUT: # of periods, device residual power, network noise, 
Application QoS

BEGIN

. Determine social optimum energy usage for period “T”.

. Calculate the energy usage for CPU during period “T”

(the game analysis returns these values)

. Determine CPU slowdown factor (s). 

. Choose CPU strategy (SCPU) that slows cpu by s. 

. Determine the energy usage for NIC during period “T”.

. Select NIC strategy that has same energy usage.

. Determine the optimal network strategy(SNET) 

. Compute Residual Energy for period “T-1”

. Set T = T-1;

. GetSocialOptimum(T);

END

DynamicSocialOptimum( ) 
BEGIN
WHILE (TRUE)
. case A:  (applications executing on the device changes)

. Device runtime detects this and sends msg. to game module
(includes current residual power, # of current applications)

. Proxy component determines new network noise levels

. call GetSocialOptimun(# of periods, new res. power, …)

. case B:  (network noise level changes)
. proxy network monitor component detects noise changes
. call GetSocialOptimun(# of periods, res. power, new noise …)

. case C:  (device power threshold changes)
. Device runtime sends message to proxy runtime, with current

residual energy, appl. Information.
. Game module at proxy re-evaluates the game with the new 

parameters. 
. GetSocialOptimun(# of periods, res. power, new noise …)

END WHILE;
END

Fig. 3. High-Level Algorithm used for determining the Social Optimum Strategies

a residual power of the device, the number of applications and application QoS re-
quirements and a constant network noise level, the algorithm can be used to determine
strategies that achieve a social energy consumption equilibria. In a dynamic scenario,
some or all of the game parameters can change randomly. The middleware can imple-
ment a dynamic algorithm(Fig. 3(b)) that detects these changes in application load,
network noise levels and diminishing device power levels and repeatedly executes the
static equilibrium algorithm continuous adaptation.

4 Performance Evaluation

We adopt a two pronged approach to evaluate the performance of our framework. First,
we use profiled results to simulate the game environment and compare the performance
of the game strategies. In Sec. 5, we present a prototype implementation of the mid-
dleware framework on a Linux based system. In this section, we focus on the results of
our simulations in the context of video applications.

In our simulations, we consider two system components(CPU & NIC) for power
optimization. We measure the energy consumption and overall utility of the system
and the individual components, when the components consume energy according to
“social” and “best-response” equilibria conditions. A comparison is made with the
energy consumption of the baseline condition in which no optimizations are made for
either the CPU or the NIC. We use a streaming video player as the user application
executing on the device. Streaming video applications are ideal for our simulation, as
they heavily use both the cpu and the network. The values used in our simulations
are based on our extensive work [18] in profiling the power consumption characteristics
of streaming video onto handheld computers. The next section presents the details
of the simulation environment and a discussion on the strategy spaces used for both
components.
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4.1 Simulation Environment

We model our low-power device after a Compaq iPAQ 3650, with a 206Mhz Intel
StrongArm processor, with 16MB ROM, 32MB SDRAM. The iPAQ is equipped with
a Cisco 350 Series Aironet 11Mbps wireless PCMCIA network interface card for com-
munication. The streaming video application is modelled after the Pocket Video Player
available for Windows CE. Table. 2 present sample values for optimized network and
cpu operating points for videos of different qualities. We then identify the strategy
spaces for the CPU and the NIC for the above device.

Video Cache Voltage Original Optimized Savings Video Bursts Power Saved
Quality (Size,Assoc) Energy Energy (in secs) (Watts)

Q1(Highest) 8,8 1 1.29 0.76 47.5% 2.3 0.925

Q2 8,8 1 1.09 0.64 47.8% 3.5 1.0

Q3 8,8 1 0.95 0.56 48.0% 4.6 1.04

Q4 32,2 0.9 0.54 0.26 57.6% 4.85 1.05

Q5 32,2 0.9 0.48 0.23 57.8% 6.8 1.08

Q6 32,2 0.9 0.42 0.20 58.0% 14.5 1.12

Q7 8,8 0.9 0.29 0.14 57.3% 17.5 1.13

Q8(Lowest) 8,8 0.9 0.24 0.11 57.5% 17.0 1.12

Table 2. CPU and Video burst length configurations for ideal energy and performance gains

CPU: Instead of identifying individual CPU strategies for power optimization,
we assumed that the speed of the processor can be varied continuously from the
minimum(Smin) to the maximum(Smax) supported CPU speeds for the device, and
normalize the values such that the operating range varies from [νmin, 1], where νmin

= Smin

Smax
. We then use the commonly used energy model presented in [14] to calculate

the power P as a function of “slowdown factor(ν)”.
P = f(ν) = 0.284 · ν3 + 0.225 · ν2 + 0.0256 · ν +

√
311.16 · ν2 + 282.24 · ν × (0.0064 · ν +

0.014112 · ν2)
We assume that the strategy space for the CPU is the set of strategies that can can
vary the CPU speed between the minimum and maximum supported speeds. However
in practice, these values will be discrete slowdown factors supported by the CPU, so an
approximation to the closest theoretical slowdown factor needs to be chosen. This can
be achieved through an operating system API interface available to the middleware.
Also using the above model, we can determine a CPU slowdown factor that corresponds
to a particular energy consumption level.

NIC: In [4, 18, 22], it is demonstrated that if video packets are buffered and sent
to the device in bursts, then the NIC card on the device can be transitioned from the
“active” to the “sleep” mode, thereby saving significant power. As the energy saved
for a network card is proportional to the amount of time it spends in the “sleep”
mode, the energy consumption of the NIC is dependent on the burst sizes used for
transmitting packets [18]. Note here that “burst size” refers to the number of seconds
of video payload that can be buffered and sent to the device in one burst over the
network. While large bursts sizes can cause significant savings in power, they cause
higher packet drop rates and buffer overflows at the wireless access point resulting in
a significant drop in perceived video quality. We assume the strategy space for the
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network card as the set of strategies that set the burst sizes of video transmissions (in
secs) to continuous values in the range between 1 second to 150 seconds. Note that for
each burst size chosen there is a unique value for the energy consumed by the NIC. In
the next section, we use our empirical studies from [18] to derive the utility functions
for the CPU and the network card.

4.2 Utility Functions

In this section, we describe how we identify the utility functions for the various strate-
gies used for the power management of the CPU and the NIC. Recall that we define
the utility function for a strategy as a function of both the power consumed (essen-
tially equal to power saved) and the satisfaction as perceived by the user. For video
applications, we assume that the user perception is directly related to the quality of
the video(described by frame rate, frame resolution and bit rate of the stream) as in
[18]. Fig. 4 shows how the normalized power savings and the perceived video quality
varies with the cpu slowdown factor. Clearly the power savings increase as the cpu is
slowed. However, the user perception remains at the highest level till the cpu is slowed
by about 48%. Subsequent reduction in cpu speeds causes a drop in the video quality,
due to frame deadline misses. Fig. 5 shows the actual utility curve for the video as
the sum of the curves in Fig. 4, plotted against the cpu energy usage. A curve fitting
technique is then used to determine an approximation of this curve. We determine that
the utility for the video application can be specified as a function of the power con-
sumption as follows: Utility = 0.0408Log(Power) + 1.369, with a R2 value of 0.0197.
Fig. 6 demonstrates how video quality(based on % of pkts dropped) and the power

0

0.2

0.4

0.6

0.8

1

1.2

0
0.

05 0.
1

0.
15 0.

2
0.

25 0.
3

0.
35 0.

4
0.

45
0.

48 0.
5

0.
55 0.

6
0.

65 0.
7

0.
75 0.

8
0.

85 0.
9

0.
95 1

Power saved

Video quality

cpu slowdown factor

N
or

m
al

iz
ed

 p
ow

er
 s

av
ed

 a
nd

 u
til

ity

Fig. 4. power & video quality (cpu)

y = 0.0408Ln(x) + 1.369

R2 = 0.0197

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.
00

321
59

0.
00920

43

0.0
17952

6

0.0
29616

5

0.
04

438
09

0.0
62

441
4

0.0
83998

4

0.1
09254

4

0.1
38

4135

0.1
57

867
7

0.1
71680

6

0.2
09260

7

0.2
51

3597

0.2
98183

1

0.
34

993
7

0.
406

82
74

0.4
69

060
2

0.5
36841

8

0.
61037

81

0.
689

8755

0.7
7554

power consumed (W)

u
ti

lit
y

Logarithmic utility curve vs. actual utility

actual utility

Fig. 5. cpu power vs. utility

savings of the network card vary with the packet burst sizes in seconds. Clearly, the
power savings improve when the burst sizes increase. However, as the burst size be-
comes larger than 1.48 seconds, packets start getting dropped at the wireless access
point. As a result, there is a perceived drop in the user perceived video quality. Fig. 7
shows the actual utility curve for the video against the burst size. Fig. 8 plots the power
savings of the NIC versus the video burst size used. Using a curve fitting method can
specify the network card power savings as a function of the packet burst size as follows:
y = 0.1909Log(x)+0.4139. Using the above strategy spaces and utility functions for the
CPU and the NIC, we now present the results for the overall energy savings achieved
when the CPU and the NIC operate under conditions of “social” and “best-response”
equilibria.
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Fig. 9. Total Energy Consumption

4.3 Experimental Results

We used our simulator to determine the energy consumption of the device under both
static and dynamic application loads and network noise levels. In both cases, we es-
timated the energy consumption characteristics of the device under three different
operating (social,nash and no-optimization) conditions of the CPU and the NIC. For
the static measurements, we assumed that a multimedia application (video player)
playing streaming video on the device with a static network noise level. The energy
consumptions were calculated assuming a fixed number of repetitions of the game while
a single application executed on the device. In the dynamic case, we randomly started
and stopped a set of applications as well as varied the network noise levels randomly. As
a baseline condition, we estimated the energy consumption when no power optimiza-
tion strategies were used. Under this assumption,the CPU operates at its maximum
speed and the network card is in the “active” state at all times. Next we measured the
energy consumption of the device when the components used strategies that achieved
the “social” and the “best-effort” equilibria respectively.

We first present the results of our simulation of the static case. Fig. 9 shows the total
energy consumed by the device under the above three conditions, assuming the initial
lifetime of the device to be 90 minutes and considering 30 repetitions(T=30) of the
two-player game and a discount factor(δ) of 0.95. It is seen that the the overall energy
consumption for the social optima is the lowest. However, both the best-response and
the socially optimal energy consumptions are significantly less than the energy used
when no power optimizations are in place. As seen in the analysis earlier, the social
equilibrium tends to consume all the available energy in the last period of the game,
therefore at that point its energy consumption equals that of the no optimization case.
This is because we considered a finitely repeated game(T=30). However, at T=30,
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clearly the residual energy available at the device would be the maximum when the
components consume energy in accordance with the social optimality condition.
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Fig. 11 shows the lifetime of the device for various initial values for residual en-
ergy. As seen from the figure, the device lifetime is significantly increased using the
socially optimal strategies for both the CPU and the network. This is expected as less
battery energy is drawn under this condition. Fig. 10 compares the energy consumed
by only the CPU under the two equilibria. It is seen that the CPU consumes 13% less
energy when it operates at a social equilibrium than when it operates under the best-
response equilibrium. Fig. 12 compares the normalized video quality levels achieved by
the strategies used for the CPU. Clearly, there is very little difference(≤ 0.1) in the
normalized quality of video attained by the two equilibrium conditions for the cpu.
However, much lower energy consumption levels are attained for the social equilibrium
strategies. Note that the utility for the no-optimization case is much less than either
of the above techniques as it consumes significantly more energy with possibly a slight
increase in the user perceived quality.

In the dynamic case, we used a set of 6 applications and randomly started and
stopped the applications and randomly varied the network noise levels. Fig. 13 shows
the energy consumption characteristics of the CPU as the dynamic adaptation is per-
formed for both social and Nash equilibrium conditions. The small frequent spikes in
the graph indicate the points at which the application load (no. of applications) on the
device changes. Fig. 15 shows the corresponding energy consumption plot for the NIC.
For both the CPU and the NIC, the social equilibrium strategy tends to consume lesser
energy than the Nash equilibrium strategy. The overall energy consumed over time for
both the equilibrium conditions and the baseline case is shown in Fig. 14. The total
energy consumption is much lesser for the socially optimal strategy.

Finally, in order to compare the dynamic adaptation with the static case, we started
out by executing eight applications on the device and computed the static social and
Nash equilibrium energy consumptions. Then we randomly stopped applications one
by one and performed dynamic adaptation for the new application load. Intuitively, as
the number of applications are reduced we should be able to reduce the equilibrium
energy consumption dynamically, while still maintaining the same perceived quality.
Fig. 16 shows the residual energy of the device over time for static and dynamic social
equilibria. Clearly, significant amount of residual energy is saved over time when dy-
namic adaptation is performed. In conclusion, as the number of applications decrease
randomly, dynamic adaptation can increase the overall lifetime of the device. On the
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other hand, as the number of tasks increase, dynamic adaptation can provide a better
quality.
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Fig. 16. Dynamic vs. Static Adaptation

4.4 Summary of Results

We compared the performance of socially optimal power consumption strategies with
the strategies that achieve strategic equilibrium and the ones that implement no energy
optimization under both static and dynamic load conditions. Under static conditions,
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the energy consumed for the socially optimal strategies was lesser(about 20J for every
repeated game) than the energy used by the Nash strategies. The device lifetime was
considerably increased(around 80-90% over no optimization strategies and 20-40% over
Nash strategies) with only a slight decrease in the quality of the video application. We
showed that a dynamic algorithm that adapts to changing application load and network
noise levels using strategies that provide social optima provide significant energy gains
over Nash strategies. Finally, we show that in situations where the application load
changes over time, a dynamic algorithm performs better than a static algorithm. It
was observed that the number of repetitions of the game(T) and the discount factor(δ)
had little impact on energy usage levels of the components.

5 Prototype Implementation

We have implemented a prototype of the Dynamo middleware framework. The hard-
ware platform for our implementation is the Sharp Zaurus (model SL5600) running the
Linux operating system. It uses an Intel 400MHz Xscale processor and has 32MB of
SDRAM and 64MB of protected flash memory. The Xscale processor can operate at
various frequencies ranging from 100MHz(0.85V) to 400MHz(1.3V).As our proxy, we
use a Windows XP desktop system with a 2.4 GHz processor and 512MB of RAM and
a 40 GB disk. The handheld used a Cisco 350 Series Aironet 11Mbps wireless PCMCIA
network interface card for communication. We use a National Instruments PCI DAQ
board to sample voltage drop across the iPAQ at 200K samples/sec. The streaming
video application is modelled after the freely available VLC media player for Linux.
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Fig. 17 shows the integration of the game analysis into the Dynamo middleware ar-
chitecture. The middleware on the device includes four primary components - the game
controller, the system and energy monitors and the communication manager. The mid-
dleware provides an API interface for applications to specify the QoS requirements and
to change QoS requirements for dynamic adaptation. The game controller is used to
specify the details of the game analysis and to set/modify the dynamic game param-
eters. The system monitor monitors the resource usage of the system and notifies the
runtime of changes (e.g. change in the number of applications). The energy monitor
communicates with the PCI DAQ board as well as interfaces with the low-level OS
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APIs to monitor the energy usage of the CPU and the network interface. The power-
aware API (PAAPI) library for Linux is used to adjust the operating frequency of the
CPU. The communication manager defines the middleware communication protocol
and communicates with the proxy middleware. It uses UDP over IP for communica-
tion and a well defined structure interface for exchange of control information. On the

-Set the game specific parameters
-Set a threshold energy level to account for other components

• SetGameParameters( )
• SetThresholdEnergy( )

-Get the current system state information (#apps, utilization)
-residual Battery energy
-Set the CPU frequency level
-Set the idle time for the network

• GetSystemInfo( )
• GetBatteryInfo( )
• SetCPUFreq( )
• SetNetworkIdleTime( )

-Send device specific information to the proxy
-Receive control information from the proxy

• SendDeviceInfo( )
• ReceiveControlInfo( )

-These functions are used to assign QoS (e.g. video quality) 
and application specific parameters (WCET, utilization etc.)

• GetApplicationQoS( ) 
• SetApplicationQoS( )

Middleware API API Description

Middleware Framework 0.6 Watts

Communication (over 
10 min. period, 30Bytes
• Send & Receive

0.34 – 0.4 W

Energy Overhead (Avg.)

Video Playback 6.05 Watts

Fig. 18. Prototype Middleware API and Initial results

proxy the Dynamo middleware uses a module to perform the strategy analysis using an
profiled payoff base. A network monitor module maintains an updated state information
on the overall congestion level. This information is used by the middleware to adapt
the network traffic to the device. Fig. 18 lists a limited set of middleware API used at
the low power device and briefly describes each function. It also presents the energy
overheads of using the middleware framework and the communication overheads.
Discussion: Note that the middleware needs to utilize a set of operating system API
to achieve some of the low-level functionality. While a number of low-level power man-
agement knobs exist for handheld devices, currently many have to be statically con-
figured (e.g. backlight intensity levels). Again, current Xscale processors provide only
frequency scaling and it would be desirable to have voltage scaling as well. Similarly,
the network interface cards have multiple low duty-cycle operating modes. However,
support for dynamically exploiting these at higher levels (middleware and application)
are still very limited. We are noticing a growing trend in the exposing of system level
knobs to applications and middleware through well defined API interfaces, and have
designed our framework to incorporate and exploit future enhancements to APIs at
the OS and architectural levels. We also concur that some of our approaches can be
better incorporated at the OS level, as it currently has a higher degree of control over
hardware power management. The discussion of the low-level API is outside the scope
of this work.

6 Related Work

The mathematical theory of games was first introduced by Neumann and Morgen-
stern [13] in 1944. Since then, game theory [21] has evolved into an important tool for
analysis of conflict situations and has found invaluable application in the analysis of nu-
merous social and economic conflict models. Traditionally, game theory has been used
in computer science for development of computer games (e.g. chess) and in the areas
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of artificial intelligence. More recently, several interesting research efforts have applied
game theoretic analysis to wireless communication systems [17], flow control [3] and
routing [23]. In cellular systems users desire to have a high signal to interference (SIR)
ratio at the base station (for low error rate, and reliability) coupled with the lowest
possible transmit power (for longer battery life). A high transmit power used by a user
can increase interference for other users thereby lowering their SIR. This might lead
to other users to increase their transmit powers. Game Theory has been extensively
used for analysis of such communication systems [17, 16, 8]. The use of game theoretic
analysis for dynamic power management of disks has been suggested in [12]. In our
work, we have used game theory to analyze the power management of various compo-
nents in a low-power system, where we propose that the individual power management
strategies for the various components should be chosen such that a socially optimal
equilibrium condition is achieved. This is in accordance with the classical game theory
problem called the ”tragedy of the commons” [2, 15, 21].

On the other hand, power management for the individual components for low-
power devices have been aggressively researched. Dynamic Voltage Scaling [9, 7] for
saving energy consumption of CPUs have been extensively studied. At the application
and middleware levels, the primary focus has been to optimize network interface power
consumption [10, 4, 5]. A thorough analysis of power consumption of wireless network
interfaces has been presented in [10]. Chandra et al. [4] have explored the wireless
network energy consumption of streaming video formats like Windows Media, Real
media and Apple Quick Time. In [22], Shenoy suggests performing power friendly
proxy based video transformations to reduce video quality in real-time for energy sav-
ings. They also suggest an intelligent network streaming strategy for saving power on
the network interface. Caching streams of multiple qualities for efficient performance
has been suggested in [11]. The GRACE project [25] claims the use of cross-layer
adaptations for maximizing system utility. They suggest both coarse grained and fine
grained tuning of parameters for optimal gains. In [24], the authors enhance the OS to
support process groups which consist of a set of closely related/dependent processes.
Co-ordination between the architecture(cache) optimizations, network and application
adaptations through an adaptive middleware framework has been used in [18] to opti-
mize power and utility for multimedia applications. In [19], a middleware framework
that partitions reconfigurable middleware components between a low-power device and
proxy for improving the costs of computation and communication is presented. Energy
efficient battery management strategies have been extensively studied by Rao et.al [6].

7 Conclusions and Future Work

In this paper, we presented a dynamic game theoretic approach for choosing power
optimization strategies for multiple components that draw energy from a common
resource, the battery. We modelled the components as players in a non-cooperative
game and determined how each component should draw battery power. We evaluated
two techniques - one in which the components employ strategies that aim to maximize
the overall utility of the system (social optimum) and another in which each component
uses a best-response strategy for maximizing its own utility. Our performance results
indicate that strategies that achieved a socially optimal energy usage provided the
maximum energy savings and with similar utility values. We therefore conclude, that in
a multi-component system, strategies for each component should be chosen such that
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they attain a socially optimal energy usage pattern. As an extension of our current
efforts, we plan to employ game theoretic analysis for optimizing power consumption
and performance of low-power devices by exploiting the knowledge of the distributed
environment. It would be interesting to study a more distributed adaptation scheme
involving multiple proxies and devices. We also plan on investigating the impact of
optimizations on non realtime applications such as browsers and text editors etc..
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