Adaptive Resource Sharing in a Web Services
Environment

Vijay K. Naik!, Swaminathan Sivasubramanian?, and Sriram Krishnan?

L IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, vkn@us.ibm. com
2 Vrije Universiteit, Amsterdam, The Netherlands, swami@cs.vu.nl
% Indiana University, Bloomington, IN 47405, srikrish@cs. indiana. edu

Abstract. One effect of the push towards business process automation
and IT consolidation is that low-level resources from multiple administra-
tive domains are shared among multiple workloads and the middleware
is called upon to bring about the integration while masking the details
of sharing such resources. Web services and grid based technologies hold
promise for developing such middleware. However, existing solutions do
not extend well when resources to be shared belong to multiple adminis-
trative domains and when resource sharing is governed by local policies.
In this paper, we describe an architecture for adaptive resource sharing
among two types of workloads: (i) local resource specific workload and
(it) global web services based grid workload. Each resource can set its
own policies regarding how the resource is to be shared. Our approach
leverages both the grid and the web services based technologies and over-
comes the limitations of existing solutions by providing an additional
layer of middleware. This layer provides services for dynamic discovery
and aggregation of resources, policy based and transparent management
of resources, and dynamic workload scheduling using the concept of vir-
tualized resources. We discuss some of the design choices we made and
present performance results to show the effects of policy-based resource
sharing on the throughput delivered to the grid workload.

1 Introduction

In an Enterprise many different types of applications are used to deliver IT ser-
vices (e.g., financial, accounting, supply-chain management, e-commerce, billing,
customer relations). Each serves its own workload and typically each service is
run on servers dedicated to provide that service. One drawback of using a dedi-
cated set of servers is that sufficient server capacity must be allocated to handle
peak workloads in order to meet the response time and throughput guarantees.
Since not all workloads are correlated, when one service is dealing with peak
workload, demand on other services may be at or below average. Therefore, if
resources can be shared by two or more non-correlated services, average utiliza-
tion of the resources can be raised and higher workload demands can be met
without provisioning resources for the worst case scenarios.

While resource sharing is beneficial from IT consolidation point of view,
sharing of resources by different types of applications and their workload is not

straightforward even when resource capacity is not an issue. This can be because
of application-legacy reasons, workload-resource affinity issues, unpredictability
in the workload arrival patterns, security and isolation needs, and so on. Obvi-
ously, applications that require special hardware or non-generic platform config-
urations cannot easily share their resources with other applications. Workloads
that have affinity to specific resources (e.g., desktop users sending their inter-
active workload to their own desktops) cannot be sent over to other resources,
but it may be possible to share the underlying resources with other types of
workloads. In this paper, one of our workloads is of this type. Unpredictability
in the demand leads application and system administrators to take conservative
approaches and to over-provision resources. However, even limited predictability
about the demand can help administrators in setting policies so the underly-
ing resources can be shared adaptively and dynamically in anticipation of the
predicted demand. We use such an approach in our present work. Security and
isolation are real concerns even when all workloads are generated within the
same organization. Resource sharing can lead to security related compromises.
In this paper, we describe an approach that uses hypervisor-based virtual ma-
chines. This is an extension of our earlier work described in [11]. Specifically,
we make use of the VMWare Workstation product [4] to isolate the two types
of workloads. Hypervisor-based virtual machines such as these address OS and
application level security concerns and thus facilitate resource sharing without
compromising isolation.

In this work, we describe a middleware that enables resource sharing among
two classes of workloads that characterize a typical enterprise environment: (i)
resource specific workload, in particular, the interactive workload submitted by
users to their desktops and (ii) workload for applications that conform to the
J2EE programming model and, in particular, to the Web Services programming
model. In an enterprise environment, desktops, in aggregate, represent one of the
largest set of underutilized resources and their raw capacities are increasingly
matching server capacities. Secondly, the Web Services programming model is
increasing being adopted by enterprises to automate many of their business pro-
cesses and many different types of workloads can be handled by Web Services [5].
The Web Services abstraction allows development of general purpose containers
that can be supported by a variety of platforms. General availability of such
containers makes it possible to deploy and process Web Service requests on a
variety of platforms.

Although desktop systems are resource rich and they are highly underutilized,
harnessing the available cycles from desktop based resources and applying them
in an aggregate manner for supporting business processes is a hard problem.
The problems are primarily related to the conflicting requirements placed by the
desktop users and by the workload for the Web Services. For the desktop users,
interactivity, responsiveness, and security are of prime concern. From the point of
view of the business process clients, discovery, responsiveness, and security are of
prime concern. While the desktop users want the entire system at their disposal
when they want to use it, for the Web Services clients it is important that a

sufficient number of resources be available at all times to handle the workload.
As we discuss in Section 2.3, desktop users may set policies, independent of
other users, that determine how their desktop system is to be shared with some
other workload. It is impractical for the Web Services clients to go hunting for
resources that may be idle at that instance. Because of the unpredictability in
the desktop resource availability, a mechanism is needed to identify resources
available for processing the Web Services dynamically and to route the requests
to the appropriate resources transparent to the client(s) generating the workload.
It is also equally important to mask the changes in the resource pool available
for sharing.

Transparent management of resources that belong to multiple administrative
domains is at the core of grid computing architecture. The Open Grid Services
Architecture (OGSA) defines a uniform service semantics (the Grid service) and
standardized basic mechanisms required for creating and composing distributed
computing systems [8]. With this service oriented approach of OGSA, Grid com-
puting has become an attractive platform for deploying business applications
and for supporting commercial workload. OGSA makes it possible to manage
and administer large scale systems, in a standardized manner, across multiple
administrative domains. Using the Grid architecture, it is possible to associate
individual policies with each participating Grid resource and to determine the
manner in which a resource is to be shared by grid and non-grid workload.
Thus, grid based technologies, and OGSA in particular, are ideal candidates for
enabling desktop (and in general, any resource) sharing among multiple types
of workloads. However, existing grid enabling toolkits such as Globus (versions
2.x and 3.0) do not adequately address the business application requirements,
which we explain in more detail in Section 2.2.

In this paper, we describe a middleware architecture that overcomes the
above discussed resource sharing difficulties. In our architecture, a virtual ser-
vice layer is created that provides an additional layer of indirection. This helps
to mask the actual changes in the physical resource layer from the workload for
the Web Services. To reduce the overhead of this additional layer of indirection,
the dynamic effects of the policies governing the physical resources (in this case
the desktop systems) transcend the multiple layers and make their effect vis-
ible to the request scheduling layer without reducing the transparency or the
administrative independence of the individual resources.

The rest of the paper is organized as follows. In the next section, we first
briefly discuss the J2EE programming model and describe the characteristics
of the transactional business oriented workload. In Section 2.3, we discuss the
requirements of desktop systems, when used as shared resources. In Section 3,
we describe the highlights of our middleware architecture. In Section 4, we dis-
cuss the design and implementation of the Gateway that acts as the coordinator
between the deployed Web Services and the Grid clients. Performance results
from an implementation of our architecture are described in Section 5. In Sec-
tion 6, we discuss how our work relates to other work in the literature. Finally,
we present our conclusions in Section 7.

2 Preliminaries

2.1 J2EE Programming Model

Java 2 Enterprise Edition (J2EE) is a standard for developing enterprise appli-
cations in a composable manner using reusable Java components, called Enter-
prise Java Beans (EJBs). The standard spells out programming interfaces that
the EJB components conform to. The EJBs provide services to local and re-
mote clients. The EJB components and their life cycle are managed within a
special container provided by an application server such as IBM’s WebSphere
Application Server [3]. The J2EE standard makes it possible so that EJBs can
be developed in a container independent manner and the a J2EE compliant ap-
plication server can handle its life cycle by providing a set of standard runtime
services specified by J2EE. These services include naming and directory services,
authentication and authorization, state management, interfacing with a Web
server, and so on. The application server handles all the platform and vendor
specific details such as those involved initializing and maintaining interactions
with the OS, databases, and network subsystems. The J2EE programming model
provides an abstraction for the multi-tier architecture implicit in many business
processes. The persistent state is maintained in the database tier, processing of
this state is performed in the business logic tier, and the results of which may be
rendered in a presentation tier before being sent to a remote client. The remote
client itself could be an application. This makes it possible to integrate multiple
business processes using standard technologies.

For more information on the J2EE standards and the associated program-
ming models, we refer interested readers to [10]. In the context of our work,
Web Services are specialized EJB components. Web Services further standardize
the distributed interactions by conforming to Web based technologies. Complex
business processes can be modeled and deployed using reusable components.
However, application servers such as IBM WebSphere Application Servers need
to be deployed in order to run the Web Services and handle their workload.

2.2 Characteristics of Transactional Applications

In the following, we highlight the requirements posed by the transactional busi-
ness applications and services. We contrast these against the requirements posed
by the scientific and engineering applications, which have motivated the devel-
opment of the classical grid related middleware work.

Transactional business services exhibit high degree of interactivity with hu-
man operators and/or with databases where business state information is held
in a persistent manner. The time spent interacting with the external environ-
ment is typically comparable to the time spent in performing local computations.
Moreover, the frequency of interactions with the external environment is rela-
tively high. On the other hand, typical scientific and engineering applications
start with a state encapsulated in a small number of static files or other objects
and evolve that state over a period of time and/or space. Such computations can

continue in batch mode without significant interactions with a database or with
a human operator. The time spent in batch mode can be order of magnitude
higher than the time spent interacting with the external environment.

One effect of the interactivity is that business services need to be much more
sensitive to response time constraints posed by the users. This is not only because
of the human factors involved (e.g., on-line shoppers may not have patience
for long response time delays), but also because of the role played by these
applications in time sensitive business processes. In such cases, any processing
delays can result in financial losses and/or competitive disadvantages. Typical
response times are of the order of seconds or minutes.

The flip side of response time is the throughput, which is a measure of the
number of transactions performed per unit time. Although many types of busi-
ness interactions tend to be bursty (i.e., low activity followed by sudden rise in
the demand, which is again followed by weak demand), they also require that
the service throughput should rise with demand, without deteriorating the re-
sponse time. Unless enough resources are allocated at all times to handle the
peak demand, necessary resources must be allocated dynamically and on de-
mand. Moreover, the resource management mechanisms must be sensitive to the
changes in the workload and must respond rapidly so the response time and
overall throughput do not deteriorate.

Finally, many of the business processes are mission critical. This means the
business services and the state information they process, must be available to
corporate customers at all times — 24 hours a day and 7 days a week. This
results in the high availability requirements on the on-line business services. At
the minimum, services need to recover gracefully from failures and user data is
not to be lost.

In contrast, typical scientific and engineering applications have low response
time requirements and no availability requirements to speak of, but they do
have reliability and service time requirements. This means users of such appli-
cations, who many times are also the application developers, are more flexible
about the turnaround time as long as their applications run to completion in a
reliable manner. The job arrival patterns are much less bursty and demand on
resources fluctuates within a narrow range. Because of these characteristics, Grid
systems catering to users of scientific applications emphasize services related to
reservation mechanisms, job queuing, launching, checkpointing, migration, file
transfers, and so on.

In short, typical Grid systems used for scientific computing workloads pro-
vide services that focus on maintaining high utilization of Grid resources. But
such systems provide inadequate or no support for response time guarantees,
continuous availability of applications, work-flow type of application setup, or
for dynamic provisioning of resources in response to changes in the request ar-
rival patterns. To provide these functionalities, middleware services are needed
to provide monitoring mechanisms to evaluate the rate at which different types
of requests are processed, analytic capabilities to determine if these processing
rates are adequate, prediction capabilities to anticipate future demand and re-

sources needed to satisfy the demand. Such a middleware also needs to provide
support for deploying services that can persist and remain available even if the
underlying resources become unavailable for some reason.

In Section 3 we describe our architecture that responds to response time,
throughput, and availability requirements.

2.3 Sharing Desktop-based Resources

The primary objective of desktop systems is to provide a high degree of in-
teractivity to desktop users and to create an environment that is conducive to
high-levels of productivity in a collaborative environment. The nature of the
desktop-based interactive applications is such that the demand on the desktop
resources occurs in frequent, but short bursts and the load dissipates rapidly.
On a desktop system, there are many unused cycles, but their frequency and
duration are highly unpredictable. Moreover, desktop users (or administrators)
may set policies that enforce conditions under which desktop resources may be
used for processing other workload. Each desktop may have a unique local pol-
icy, which may change over time. Examples of local desktop policies include: (i)
interactive workload always has the highest priority, (ii) allocate no more than a
certain percent of the desktop resources to Web Services at any given time, (iii)
allow processing of grid workload only when the interactive workload is below a
certain threshold, (iv) allow participation in the Grid computations only during
certain time of the day or on certain days of the week, and so on. Thus, pol-
icy enforcement requires evaluation of certain conditions, which may be static
and predictable or dynamic and unpredictable such as the current interactive
workload. Moreover, policies may be defined using a combination of static and
dynamic conditions. The architecture needs to take into account individual poli-
cies and the heterogeneity in the capacities associated with each desktop resource
while addressing the availability, throughput, and responsiveness requirements
associated with the transactional services.

Clearly, for effective utilization of desktop systems in a Grid like environment,
one needs to take into account the following requirements: (i) Utilize the desktop
system whenever conditions allow it to be used in Grid computations, and (ii)
not to schedule any computations on a desktop system, beyond its available
capacity.

The first requirement implies that a mechanism is needed to accurately pre-
dict when a desktop system becomes available for Grid computations. The second
requirement implies that the Grid workload assigned to a desktop should match
the available capacity. Note that desktop policies may not allow full utilization
of the maximum available capacity of a desktop system. For example, a policy
may specify the maximum fraction of the CPU, memory, and network bandwidth
that a particular Web Service may use at any given time.

Clearly, the desktop resource availability and capability is more predictable
when the desktop user is away from the system (e.g., in the evening and night
hours). This information can be gathered and analyzed by running a monitoring
agent on the desktop to understand the daily, weekly, monthly and seasonal

patterns in “macro” usage of the system. Even when the desktop system is
being used by the desktop user, there are many opportunities for running Grid
workload on the system under the specified policies. However, because of the
unpredictable nature of the interactive usage, only short term predictions about
the future usage by interactive applications can be made with a given level of
confidence.

Thus, to effectively utilize desktop-based resources, the middleware architec-
ture needs to provide support for monitoring desktop resource usage patterns,
both for the interactive workload as well as for the Grid workload. It needs to in-
corporate analytical mechanisms to predict resource availability and capabilities
at various time intervals in the future. Furthermore, the system needs to be able
to bound the uncertainties in the predictions. We now describe our architecture
that takes into account these requirements.

3 Architecture Overview

3.1 Requirements

Availability and responsiveness to the changes in the client demands are the key
criteria that a transactional service provider must meet. The primary figure-of-
merit is throughput and response time. This means the architecture should be
able to deliver a service requested by the clients on demand and it should be
able to adjust the capacity of the underlying resource so as to meet the intensity
of the demand. The client requests can be complex (e.g., requests resulting in
a work-flow), request arrival rates can be unpredictable, and clients may have
multiple levels of service-level-agreements (SLA) with the service provider. The
architecture needs to address these requirements.

Intuitively, the desired architecture needs to facilitate (i) deployment of ap-
propriate Web Services on the desktop resources, and (ii) route client requests
to appropriate Web Service instances. These tasks are made challenging because
of (i) the uncertainties in the resource availability for deploying a Web Service
at any given instance in time and (ii) the uncertainties in the client demand on
a Web Service at any instance in time. If we assume that there are enough idle
desktop-based resources available to meet demand at any given time, then the
task of the architecture is (i) to deploy Web Service instances on appropriate
desktop resources so as to empower them with the desired capacity just-in-time
for delivering the service, and (ii) to identify and match Grid client requests with
Web Service instances with appropriate capacity (i.e., with ability to respond
within prescribed time limits).

Even when sufficient desktop resources are available on an aggregate basis,
efficient identification of the once that can provide the desired capabilities at any
given time requires good prediction mechanisms. Given the ability to discover,
monitor, and predict resource availability and demand, the architecture is ba-
sically reduced to scheduling appropriate number of service instances, mapping
the service instances on to the physical resources, and routing client requests to

appropriate service instances. Note that the predictions need to be only reason-
ably accurate and not highly accurate.

SLA monitor
& Demand lg == Request/
predictor Response
Resource *
3 . Scheduler 4
Configuration 2 i
& Mapping Router . !
Tables Grid j
N Service
/ Layer ;
- - |
Grid Grid i
: Servicel | T Service n Y
[}
i 4
v - Virtual !
Grid Grid Service Grid Service Resourcd
Resource Container1 | “7rtttttTTYTYTY Container n Layer !
Manager

N T

!

!

!

Virtual Virtual Virtual Virtual !
Machine 1 Machine2 | === Machinej | = Machine m !

N e B S L D H T X
I i

lg=— Desktop 1 "I Desktop 2 ||_{ Desktop i | .IDesklopM | i
e e

!

Physicall

Resourcd

Legend Layer 1

S
Database
Server *
{———) Request/Response

- —— Control Flow

-+ Mapping

Physical Connection

Fig. 1. Layered architecture for the enabling policy-based resource sharing. The inter-
active workload for the desktops is not shown.

3.2 Highlights of Our Architecture

The architecture is defined using a layered approach. This allows addressing the
requirements of the transactional workload separately from the requirements of
interactive workload and desktop related policies. The architecture, as shown in
Figure 1, has three layers: (i) The Grid Service Layer, (ii) The Logical Resource
Layer, and (iii) The Physical Resource Layer. In the following, we describe the
salient features and functionality of each layer.

Each layer is associated with Control and Management Components (CMCs).
The interactions among the CMCs and the functionality they provide largely

define the architecture. The SLA Monitor and Demand Predictor, shown in
Figure 1 is one such CMC. This component monitors request arrivals per Web
Service type and per Grid client class basis. It also monitors SLA violations on
a per client basis. In addition, predictions on future arrival rates are made for
each Web Service type. Based on the predicted arrivals and available Web Service
capabilities, a scheduling strategy for request processing is adopted to meet the
SLA requirements. This process is repeated frequently as arrival patterns change
and/or as the Web Service capabilities change. Some of examples of scheduling
strategies are weighted round robin, priority based scheduling (with priorities
derived from SLAs), one-to-many scheduling (i.e., simultaneous processing of a
request on multiple Web Service instance to overcome uncertainties in service
capabilities), and so on.

The CMCs in the Physical Resource Layer enforce desktop related policies,
monitor and analyze the interactive workload, and predict the short range avail-
ability and capability of the desktop system for a particular Web Service. This
are described in more detail in [11]. The CMCs in the Logical Resource Layer act
as coordinators between the Grid Service Layer and Physical Resource Layer.

The Grid Resource Manager (GRM) shown in Figure 1 acts as a facilitator
across all three layers. One function provided by GRM is to discover desktop re-
sources that are available and are capable of deploying one or more Web Services.
This is accomplished by coordinating and heart-beating with a CMC known as
a Virtual Machine Manager (VMM). One instance of VMM runs on each physi-
cal desktop resource as long as that resource is participating as a grid resource.
It controls and monitors all virtual machines on that resource. Using the same
mechanisms, it also detects when a desktop resource is no longer provisioning
a particular Web Service or is no longer available as grid resource. A second
key function provided by GRM is to allocate the predicted capacities of each
participating desktop resource to Web Services requiring the resource during
that future time interval. It tries to locate and allocate as many resources to
each Web Service as possible making sure that the conflicts caused by sharing
are minimized. To perform this task, GRM collects from each VMM the usage
and policy related data for its resource and predicted availabilities. The VMM
in turn uses a platform specific CMC known as the Host Agent for monitoring,
gathering, and aggregation of performance and usage related data. GRM nor-
malizes the raw capacity of each desktop against a standard platform. In case
the desktop node is to be shared among multiple Web Services, it further re-
duces the available capacity in proportion to the share made available for other
Web Services. This represents the maximum normalized capacity available to a
particular Web Service. It then takes into account the predicted available capac-
ity as a fraction of the total capacity and uses that to compute the predicted
available capacity from a desktop resource for each Web Service. This forms the
basis for the allocation of resources to the expected workload. This information is
represented in the Resource Configuration & Mapping Tables shown in Figure 1
and is dynamically updated by GRM.

The Scheduler uses this information to determine the number of service in-
stances to deploy for each Web Service for which it anticipates demand. The
number of instances deployed is proportional to the allocated capacity and to
the expected demand. When requests arrive, the Router routes those requests
to the physical resources where the service instance is actually deployed. The
Scheduler also takes into account the uncertainty in the predicted allocations.
When the uncertainty is high, it may decide to schedule a request on more than
one service instance simultaneously, making sure that the service instances are
mapped on-to distinct physical resources. In such cases, the Router replicates a
request and multicasts it to multiple instances of the same Web Service.

4 Gateway Architecture and Design

4.1 Gateway Requirements

An important component of our architecture is the request scheduler responsible
for scheduling requests from Grid clients, based on the relative priorities of the
requests and their SLA requirements. Another essential component is the request
router, which routes the client request to an appropriate end point resource (also
referred to as a Grid node), where the request is processed. Recall that this may
be a shared resource. The request router monitors the execution status of each
request it has dispatched. It is capable of restarting a request, if a request fails
(possibly due to a Grid node failure, network failure etc.) to ensure that the
request is not dropped.

The request scheduler and router components together form a single logical
component referred to as the Gateway, which serves as the entry point for the
requests from Grid clients. It is a logically centralized component. However, if
necessary (for reasons of scalability), it can be implemented as a federation of
gateways, as described in section 4.2.

In addition to scheduling and request tracking, Gateway must be capable of
handling the variability in resource availability and smoothen it so that Grid
clients do not see the effects of variability. In our system, this is handled by
the Grid Resource Manager, which coordinates with various CMCs of physical
and Grid layers, and smoothes the variability in the resource availability of the
desktops. As noted before, the process of handling this variability can be done in
two ways: (i) predicting the resource availability in a Grid node and scheduling
based on that prediction or (ii) schedule assuming they are available all the
time and migrate the request, if they become unavailable during the course
of execution of a request. In our system we adopt the first approach, since for
transactional workloads the execution times are much smaller compared to those
of the batch-computing applications. The overhead introduced in migrating an
active transaction can be comparable to the service time of a transaction itself.
However, the success of the first approach design relies on the accuracy of the
prediction mechanisms.

10

4.2 Gateway Design and Implementation

In our design, we make a clear demarcation of resource prediction models from
on-line allocation and scheduling components. Such a demarcation is required
for the following two reasons:

i. The availability of each Grid node is governed not only by its (interactive
workload) usage pattern but also by the local policy set by the desktop user.

ii. Separation of resource prediction components from allocation and scheduling
components allows the system to use different resource prediction algorithms
without affecting other system behavior.

In our system, the scheduling and resource allocation components are also
separated. Thus, the Gateway schedules the request onto logical resource pools
and routes it to the actual Grid nodes based on the routing and mapping tables
populated by the GRM. The GRM (resource allocator) is responsible for allocat-
ing the Grid nodes onto these logical resource pools such that the overall Grid
throughput is maximized. The advantage of this approach is that the Gateway
can schedule client requests independent of the changes in the participating Grid
nodes. However, as noted in the preceding section, the Gateway (through the
SLA monitor) must communicate with GRM and inform the expected demand
for a particular Web Service, to ensure that enough resources are allocated for
provisioning each type of Web Service requested by clients.

Design Choices The design of Gateway can be done in several ways: For
example, Gateway can be built using network-level redirector such as IBM Net-
work Dispatcher [2]. The other way to build the Gateway is by modifying the
application-level transaction scheduler. In the following, we discuss the relative
merits and demerits of these two approaches:

— Network-level solution: Gateway Router can be built using network-level
redirectors that cluster together the available servers into a logical resource
pool and route requests to the cluster [9]. APIs are provided to allocate or
deallocate servers from the pool. The primary advantage of this approach is
its performance. Since all the routing is done in network level, it does not
suffer the overhead of call marshaling and unmarshaling. However, it has the
following disadvantages: It assumes that all the servers are equally capable
of serving all Web Services. If not, then it requires the use of one network-
level redirector for each Web Service. Thus, this approach lacks flexibility
in adding new Web Services dynamically. Further, network redirectors are
built for server clusters and is not suitable for our desktop pools, where the
maximum number of desktop nodes in a pool can be relatively high, with
dynamic change in their availability.

— Application-level solution: Gateway can also be built using application level
redirector. In this approach, the Gateway receives service requests from
clients, unmarshals them and, based on the type of service required, it sched-
ules the requests using the routing table populated by the GRM for that

11

service. GRM, by populating a per-service routing table, essentially creates
a per-service resource pool, based on which the Gateway Router schedules
the service requests. The primary advantage of this approach is that this
design can support different types of Web Services, without any changes or
addition of new hardware. Further, this design can possibly manage a larger
resource pool. However, this approach introduces some processing overhead
as it needs to marshal and unmarshal a service request.

In our system, we adopt the application-level solution as it is more flexible
to add/remove more Web Services dynamically. We have also observed that the
overhead introduced by processing the request at application-level is negligible
compared to the overall service execution time.

Gateway Implementation In our system, we have implemented GRM as a
Web Service and is deployed in IBM WebSphere Application Server [3]. Similarly,
Gateway Router is also implemented and deployed as a Web Service. The Grid
clients submit their requests with Web Service calls to the Gateway Router.
However, since the Grid clients make Web Service calls as if the service is running
on the gateway, we have to implement our router in such a way that forwarding
of request from the Gateway to the Grid node is transparent to the client.

In WebSphere Application Server (versions 4.x and 5.x), every Web Service
call is being trapped by its appropriate RPCProvider, as defined in Apache
SOAP [1]. This provider is responsible for locating the actual class and method
that needs to be invoked to make a (Web Service based) transaction. In our
system, we implemented a new provider (which is in conformance with regula-
tions of Apache SOAP specifications) that similarly receives this request at the
Gateway. However instead of finding a method to invoke, it makes a call to a
forward method of Gateway Router Service. This method receives the call object
and consults the routing table for that service request, and forwards requests to
different Grid nodes on a weighted round robin fashion.

By implementing a new provider, we have made no changes to WebSphere
or its SOAP implementation and have just added a new plug-in to support our
new provider. Thus, Grid clients make service requests as normal Web Service
calls with no change in their code. The GRM Web Service populates the routing
tables of the Gateway Router by making a standard Web Service call.

4.3 Design Scalability

The design described above assumes a centralized Gateway and a centralized
GRM. Such a system will have scalability problems as the number of desktop
nodes increases and/or the number of Grid clients rises. However, this scalability
issue can be addressed in several different ways. In the following, we briefly
describe some of these concepts.

12

Federated Gateways One way to alleviate the Gateway congestion is to pro-
vide multiple Gateways, each responsible for serving a subset of Grid clients
using a subset of Grid nodes. The problem to address here is that of load bal-
ancing among the Gateways. One possibility is to use DNS servers and another
possibility is to use a network dispatcher type of mechanism in front of the
Gateways. Both of these approaches suffer the shortcomings described above
and in [6]. We now describe third approach which is more appropriate when
Grid clients perform many transactions within a session. When a new session is
to begin, a Grid client registers for that session with a single well known Grid
Registry. As a part of the registration the client receives address to one of the
multiple Gateways that is capable of serving the client requests. The Registry
keeps track of the current load on multiple Gateways and randomizes new client
requests among lightly loaded possible Gateways.

Similarly, GRM allocates Grid nodes among multiple Gateways by knowing
the current load among the Gateways. If it detects that some of the Gateways are
not able to keep up with their demand, then it readjusts the current allocations
among the Gateways and resets the Mapping Tables provided to each Scheduler
& Router.

Hierarchical Control Structure Another potential source of bottleneck in
scaling up the system is the GRM and associated control structure. Here again
the answer is to provide an hierarchy of GRMs. At the lowest level, each GRM
looks after a manageable number of Grid nodes and then it forwards the allo-
cation information to the GRM at the next higher level. The GRM at the top
level has the consolidated information from all GRMs. This is then forwarded
to the one or more Gateways in the system.

Databases In case of commercial applications, client state is typically stored in
backend database servers. This information may be accessed multiple times when
a single transaction is being processed. Thus, in a large Grid system, a single
backend database server can be a source of bottleneck. If the database is mostly
used for retrieving information (e.g., content distribution or page serving), then
the bottleneck problem can be alleviated by replication and periodic refresh.
However, when transactions result in database update, the backend databases
need to consistent with one another. While the database community has de-
veloped solutions to provide concurrent database systems, we admit that for a
large scale system, the database subsystem may prove to be the true source of
bottleneck for certain class of applications.

As we noted earlier, a Grid request can be executed in multiple Grid nodes
for reasons of fault-tolerance. Replicating a transaction is straightforward if the
transaction does not update the backend database. However if the transaction
modifies the database, then the system must commit only one of the replicated
transactions. Such scenarios warrant a database middleware that identifies such
replicated transactions (using an unique transaction identifier) and commits only
one of them. Our current implementation supports only replication of read-only

13

transactions. For update transactions, we plan to build such database middle-
ware for replicated transactions in the future.

5 Performance Evaluation

5.1 Performance Modeling

We now describe a model for quantifying the variability in the capabilities of
the resources that are used to form the resource grid. From our model, we try
to infer the maximum throughput that is deliverable to a Grid client by our
system, and compare it with our observations.

Assuming that a set of resources 0..m are available to be utilized, we as-
sociate a normalization factor, f;, with each resource i. This factor quantifies
the capabilities of a computing resource, and is the ratio of the capability of a
particular resource with that of the best one available. Thus f; varies in the set
(0..1].

We assume a set, of types of requests from Grid clients 0..n. For each request,
we define the normalized service time, s;, which is the time required by a Grid
node with f; = 1 to service a request of type j. In addition, we define the node
service time, s;;, as the time required by the node 4 to service a request of type
j. It follows from the definition that s;; = s;/f;. We note here that both s;
and s;; are defined assuming that the nodes on which they are running are fully
available for the Grid workload, without any timesharing or multitasking.

The availabilities of each resource are predicted at regular intervals, dt. This
availability is a function of time (which varies from 0 to T'). We define p;(t) as
the fraction of the i*" resource available at time ¢. p;(t) varies from 0 (when
the machine is not available to the Grid) to 1 (when the machine can be fully
dedicated to the Grid workload).

If a;(t) is the actual fraction of resource i available at time ¢, and da is the
time interval between our observations of resource availability (note that da need
not necessarily be the same as 6t), 4;;(g), the maximum number of requests for
service j that can potentially be processed by node i over time 0..q is equal to
thi%“ a;(t*da)x f;*da/s;. The maximum number of requests that can potentially
be processed by the Grid, A;(q), equals ", A;;(q).

If O;(q) is the observed number of requests for service j that are processed
in our implementation during time 0..¢, we can define the observed efficiency of
our system, 0;(q), as O;(q)/A;(q).

It is worth noting that our model has a few limitations. In particular, it
assumes no latencies between the Grid client and the Gateway, and between the
Gateway and the Grid node. In addition, we neglect the scheduling overhead at
the Gateway.

5.2 Experiment Setup

We tested the performance of our system on a small scale with a set of five Grid
nodes. We logged the CPU utilization of the interactive workloads of desktops

14

used by the administrative personnel in our lab. These logs were used to simulate
the interactive workloads on three of our Grid nodes. By doing this, we are able
to simulate a real world situation where idle cycles can be used from desktops
serving common users. These desktops will typically be highly available for Grid
users as compared to the ones serving as development and production machines.
We assumed two of our Grid nodes to be available all the time.

From our experiments, we compare the observed throughput (O;(g)) with
the maximum available throughput (A4,(¢)) and determine the efficiency of our
system. This efficiency depends on the accuracy of our predictions, and the
associated overheads (as noted in the preceding subsection). Also, we verify that
our predictions are reasonably accurate for the type of workloads we used in our
experiments.

In order to measure the maximum observed throughput, we had to generate
enough requests to keep the Grid nodes busy at all times they were available.
To do so, we created a traffic generator that would generate a request as soon as
it would receive a response to its prior call. In addition, this traffic generator is
multi-threaded ensuring that multiple requests can be made in parallel, in order
to keep all the Grid nodes busy at all available times.

5.3 Performance Analysis

The individual service times for our transaction on different Grid nodes is as
shown in Table 1. We calculate the normalization factors f; for each of the Grid
nodes from the individual service times. We computed the actual availabilities
of the individual Grid nodes, a;(t), from the utilization logs used for simulating
the interactive workload on the desktops and is given in Table 2. The average
availability of the three non-dedicated Grid nodes is close to 100%. This is be-
cause the CPU utilization of interactive workload is bursty in nature and lasts
for a short period, thereby providing a high average availability. For example,
the actual availability of Node 3 can be seen in Figure 2, and its bursty usage
pattern is apparent from it.

Table 1 Table 2
Node |Service Times (ms) Node |Availability|Prediction Accuracy
Node 1 914 Node 1| 100% -
Node 2 912 Node 2| 100% -
Node 3 1060 Node 3| 99% 90%
Node 4 1384 Node 4| 99% 89%
Node 5 1652 Node 5| 99% 93%

From Tables 1 and 2, we computed the maximum number of requests that
can be potentially served A;(g), where q, the duration of the experiment, is 3570
seconds. A;(q) is found to be equal to 15872. We observed that our system was
able to service 14594 requests during the same time (O,(g)). Thus, the efficiency

15

100

= 60
=
=
=i
<
)
o_
(&) 40 |+ .
20 —
o

Time

Fig. 2. The actual usage pattern for Node 3

of our system, o0;(q), is 0.92. Apart from the overheads in the system, a potential
factor that can cause a decrease in the efficiency is a faulty prediction scheme.
From Table 2, we can see that our predictions are accurate for around 90% of
the times for each of the Grid nodes.

Thus, from our experiments, we observe an efficiency factor of 0.92, which
implies that the system is able to utilize over 90% of the unutilized desktop
resources for running transactional workloads. This also implies that (i) the
overheads introduced by request redirection at the Gateway is minimal, and
(ii) the prediction algorithm is effective enough to handle the bursty desktop
workloads with minimal overhead. We note that our studies are simple in nature
as they were conducted with a relatively small number of desktops. We are
planning to extend this study to include a larger number of desktops with more
comprehensive workload scenarios. We are also planning to develop a simulator
to analyze our model with a large set of parameters.

6 Related Work

There are several groups working on resource management in the context of grid
and peer computing, although their motivations and approaches differ from ours.

One of the leading projects addressing scheduling for the Grid is Condor.
Condor is a specialized workload management system for compute-intensive jobs
[14]. It provides mechanisms for job queuing, scheduling, resource monitoring and
resource management. The ClassAd mechanism provides a way of matching job
requirements with resource offers. A central manager is responsible for scheduling
the jobs on resources by matching these ClassAds. Certain types of jobs can also

16

be checkpointed and migrated if the availability of the resources change during
the course of execution of the job. Our target workloads are not the typical long-
running scientific workloads that Condor targets, but are instead transactional
workloads that have shorter turn-around times. Hence, migration does not make
much sense in our case. In addition, evaluation of complicated ClassAds may be
too much of an overhead for transactional workloads. In our case, requests from
Grid clients for these transactions may arrive at a high rate. This necessitates
replication of services so that requests from Grid clients can be processed in
parallel. Condor is not based on such a request-response model, and does not
need to replicate any jobs explicitly. To ensure higher throughput, it is also
imperative that we predict the availability of our resources. Condor does not do
any prediction of resource availability, and this makes sense in the case of long-
running computational workloads, since the availability of resources can not be
accurately predicted over long lengths of time. However, in our case, each request
from a Grid client can be serviced in a short period of time, and predictions can
be made reasonably accurately for shorter time intervals.

Another class of applications that are related to our work are the several
projects dealing with Volunteer Computing, viz. Bayanihan [13], SETI@home,
distributed.net, Entropia [7], etc. Typically, all such applications try to lever-
age cycles from voluntary underutilized resources on the Internet, and deal with
applications that are embarrassingly parallel. In general, no guarantees are pro-
vided for the performance that can be obtained from such a set of resources.
The scheduling policies of most such systems are not very complicated, since the
participating resources pull work from a centralized Work Manager as and when
they run out of work to execute. There is generally enough work to be pulled
from such Work Managers to keep all the resources busy when they would other-
wise be idle. In our case, we don’t have a pool of work to keep distributing among
the grid resources. Instead, the amount of work to be done depends on the out-
standing requests from the Grid clients. Thus, our work differs from traditional
Volunteer Computing in the type of workloads that we target.

Leff et al [9] try to address delivering Service Level Agreements (SLAs) for
commercial (transactional) workloads. However, their emphasis is not on lever-
aging idle cycles from resources, but reconfiguring resources inside a resource
pool so that the number of resources that are currently serving customer re-
quests are optimal for the SLAs agreed upon. They provide the scheduling of
requests using a Network Dispatcher (ND) [2], which is a load-balancing switch
that distributes requests across a server cluster. Hence, it is not very suitable
to deal with requests to multiple services in the same resource pool. Currently,
there is no prediction information being used, although it is part of their long
term goals. Crawford et al [6] have also discussed a Grid using dedicated set
of servers for deploying financial and content distribution type of applications.
They describe a Topology Aware Grid Services Scheduler (TAGSS) for dynamic
creation and deployment of Grid services.

17

7 Concluding Remarks

In this paper, we have described a middleware architecture that enables policy
based sharing of enterprise resources by two types of workloads: (i) a resource
specific workload and (ii) a Web Services based grid workload. We have designed
and implemented the system where desktop based resources are the shared re-
sources. These type of resources represent a rich source of underutilized resources
in many organizations and also because the resource specific workload (in this
case, the interactive workload submitted by desktop users) is more likely to be
non-correlated with any external grid workload. We address the key concerns
of desktop users for responsiveness, privacy and protection by isolating the grid
workload in a virtual machine in the desktop. The proposed architecture and
its key design concepts are equally applicable to other types of resources in
an enterprise, e.g., they can be the servers that are primarily used for running
backend applications that can be shared by their primary workload and the grid
workload.

The salient components of our middleware architecture are: (i) Grid Re-
source Manager, (ii) End-point resource agents, and (iii) Scheduler and Router.
Together, these components enable dynamic discovery of resources, identifica-
tion of services offered to grid workload on the resources, predicted capacity
available to grid workload, policy management, deployment and provisioning
of services, and transparent scheduling and routing of the grid workload. With
this middleware, individual resources are free to join and disconnect, based on
their local policies, from the pool of resources available to the grid workload.
The middleware manages these changes transparently from the grid clients as
well as from the other resources in the pool. The scheduling of grid workload
adapts dynamically to the availability and sharing capabilities of the individual
resources.

To deploy and process Web Services, we use IBM WebSphere Application
Server — a J2EE container — on each shared resource. Use of such a container
has advantages and disadvantages. The container masks the heterogeneity in
the underlying resources and creates a homogeneous environment so a request
can be processed on any one of resources. For Web Services based workload this
choice works out very well. However, for any workload that is not supported
by the current container technology, the middleware discussed here may not be
readily suitable. We also note that in the current release of WebSphere Network
Deployment Edition (Release 5), multiple application servers can be configured
to form a cell and requests can be processed on any one of the members of such
a cell, transparent to the client making the request [3]. Such a cell is essentially a
static cluster of application servers that cannot dynamically join and disconnect
from the cell without affecting the operations in the rest of the cell. In our
approach, we do not use WebSphere’s network deployment mechanisms. Our
middleware is designed specifically to handle dynamic changes in the resource
availability. The main difference between our system and a statically configured
system is that in our system the actual resources providing a service may enter
and exit the resource pool, but the system continues to service client requests

18

and clients are unaware of the low level dynamic changes taking place in the
system. However, many of the reliability issues are handled in a manner similar
to those in a statically configured system. In addition, the Gateway maintains
the client request state until a response is sent back. By continuously monitoring
the availability of the underlying resources providing a service and by discovering
and provisioning additional resources the system tries to masks the changes from
the clients of the service.

One disadvantage of using managed container such as that provided by Web-
Sphere is that configuring and deploying such a container is not trivial and
requires some domain specific expertise. In our approach, we deploy virtual ma-
chines that are pre-configured with the WebSphere Application Server. This
reduces some of the system management complexities and improves the degree
to which the resource configuration can be automated. However, because of the
bandwidth requirements, our solution is well suited for resources in an intranet
environment and not over a wide area network. Recently efficient mechanisms
have been proposed for migrating virtual machine states [12] and we are in-
vestigating the applicability of such approaches to our work. Similarly, in the
three-tier distributed computing model (i.e., client logic, business logic, and data
logic) that is inherent to most business processes and is supported by the J2EE
technology, a Web Service providing the business logic may require access to a
database for state information. In this work, we assume that a Web Service can
access the necessary state information from any of the resources where it may
be deployed. Again for this reason, the solution discussed here is better suited
for an intranet environment. Note that resources over the intranet can belong to
multiple administrative domains.

Another point to note here is that in our approach, the request to a Web
Service is trapped in the Gateway before it is routed to the most suitable resource
available at that time. This requires partial processing of the request at the
“Network Layer 7” and this may introduce significant overhead especially when
the service time of the request is relatively short. However, the advantages of
processing requests at Layer 7 are obvious as reflected in our architecture.

Resource sharing across multiple workloads, as described in this paper, is
effective when the capacity prediction mechanisms are accurate. Primarily, we
rely on predictions about the available capacity on each shared resource for the
grid workload. When a resource is to be shared with an interactive workload,
as we do in this work, the prediction mechanisms have certain limitations. By
sampling over a long period of time and by using techniques based on time series
analysis, one can identify daily, weekly, and seasonal patterns in the utilization
for each type of resource for a specific workload. For example, desktop utilization
during evening and night hours is mostly zero while during the day time on
a weekdays it is significantly higher. In the case of interactive workload, for
the intervals where there are no long term patterns, fairly accurate short term
predictions may be possible. We discuss one such mechanism in [11] that we
found to perform reasonably well. However, the effectiveness of such an approach
diminishes for large time intervals (e.g., larger than tens of minutes) and intervals

19

that are further away in the future. We note that in case of many business
application that run on backend servers, the workload is more predictable than
the interactive workloads on the desktops. In such cases, the resource sharing can
be more straightforward. Similarly, predictions about workload arrival patterns
can improve the effectiveness of dynamic resource provisioning. We note that
the predictions need not be highly accurate, but higher accuracy can result in
better performance (i.e., response time or throughput) using a smaller number
of resources.

Our results and experience so far with the system we have developed have
been encouraging and lead us believe that our middleware provides a flexible
design for sharing enterprise resources by a resource specific workload and a
global Web Services based workload. In an enterprise environment, such a system
can be used for off-loading peak demands at data centers and backend servers,
for testing and deploying new releases of backend applications or for improving
the availability of existing mission critical backend infrastructure, by sharing
underutilized resources across an organization.

In the future, we plan to expand the scope of this word along the following
dimensions: (i) to share a resource across multiple types workloads, (ii) use of
a light weight virtual machine, (iii) development and testing of other prediction
algorithms, and (iv) affinity based request routing.

References

1. Apache SOAP, as of July 2004. http://ws.apache.org/soap/.

2. IBM Network Dispatcher User’s Guide, as of July 2004.

ftp://ftp.software.ibm.com /software/websphere/info/edgeserver /ndugv3-us.pdf.

3. IBM WebSphere, as of July 2004. http://www.ibm.com/websphere/.

4. VMWare, as of July 2004. http://www.vmware.com/.

5. J. Chung, K. Lin, and R. Mathieu. Guest Editor’s Introduction-Web Services
Computing: Advancing Software Interoperability. Computer 36(10), 2003.

6. C. H. Crawford, D. M. Dias, A. K. Iyengar, M. Novaes, and L. Zhang. Commercial
Applications of Grid Computing, Jan. 2003. IBM Research Report, RC22702, IBM
T. J. Watson Research Center, Yorktown Heights, NY, USA.

7. Entropia PC Grid Computing. DCGrid Platform, as of July 2004.
http://www.entropia.com/dcgrid_platform.asp.

8. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Services for Distributed
System Integration. Computer 85(6), 2002.

9. A. Leff, J. T. Rayfield, and D. M. Dias. Service-Level Agreements and Commercial
Grids. In IEEE Internet Computing, Special Issue on Grid Computing, July 2003.

10. S. Microsystems. J2EE Platform Specification, 2002. http://java.sun.com/j2ee/.

11. V. K. Naik, S. Sivasubramanian, D. F. Bantz, and S. Krishnan. Harmony: A
Desktop Grid for Delivering Enterprise Computations. November 2003.

12. C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosen-
blum. Optimizing the migration of virtual computers. In Proceedings of the 5th
Symposium on Operating Systems Design and Implementation, December 2002.

13. L. Sarmenta. Web-based Volunteer Computing using Java. In Proc. 2nd Intl.
Conference on Worldwide Computing and its Applications, 1998.

14. T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Beowulf Cluster Computing
with Linuz, chapter 15, Condor - A Distributed Job Scheduler. MIT Press, 2002.

20

