
Subscription Propagation in Highly-Available
Publish/Subscribe Middleware

Yuanyuan Zhao, Daniel Sturman, and Sumeer Bhola

{yuanyuan, sturman, sbhola}@us.ibm.com
IBM T.J.Watson Research Center,

Hawthorne, NY 10532, USA

Abstract. Achieving availability and scalability while providing service
guarantees such as in-order, gapless delivery is essential for deploying
publish/subscribe messaging middleware in wide area networks. Scalabil-
ity often requires a publish/subscribe system to propagate subscription
information and perform content matching across the network. Exist-
ing subscription propagation algorithms do not support in-order, gapless
delivery in a redundant overlay network.
This paper presents a novel approach that utilizes virtual time (VT)
vectors to convey temporal consistency in propagating incremental and
consolidated subscription information. The VT vectors provide a means
of testing sufficiency of filtering information, by comparing a broker’s VT
vector with that of a message. When the test fails, indicating insufficient
broker subscription information, safety may be preserved by ’flooding’
the message to all neighbors on a routing tree. This approach does not
require subscription state agreement across redundant paths and hence
is highly available. We present a detailed evaluation of the approach.

Keywords: publish/subscribe middleware, subscription propagation, high
availability

1 Introduction

Content-based publish/subscribe(pub/sub) messaging is a popular paradigm for
building asynchronous distributed applications. A content-based pub/sub system
consists of publishers that generate messages and subscribers that register interest
in messages. The interest is usually expressed through content filters in the
form of Boolean expressions. The system ensures timely delivery of published
messages to all interested subscribers, and typically contains routing brokers for
this purpose. Publishers and subscribers obtain service by connecting to brokers
and are decoupled with each other.

In many cases, publishers and subscribers also want strong service guaran-
tees, such as in-order, gapless delivery [3, 4] (referred to as reliable delivery in the
rest of the paper). These services are usually provided by the broker network
and made available to clients through standard messaging interfaces, like the



Java Message Service (JMS) [1]. Reliable delivery guarantees that for every sub-
scription s and a published message stream, the system finds a starting message
m0 and from m0, delivers all and only those messages matching s in an order
conforming to the original stream.

In addition to providing reliable delivery guarantees, commercial deployment
over wide-area networks requires a pub/sub system to be scalable, highly avail-
able and utilize network bandwidth efficiently. In order to efficiently utilize net-
work bandwidth, a pub/sub system usually propagates information about sub-
scriptions across the broker network. A broker stores, for each of its neighboring
part of the network, the information on what messages are needed by subscribers
from the network. When a new message is published and routed, a broker filters
out and does not send the message to parts of the network where no subscriber
is interested. However, the amount of subscription information could get very
large as it approaches the publishers. A scalable pub/sub systems should ag-
gregate and only maintain a subset of subscription information for each routing
direction of a broker as long as the subset of information is sufficient to match
all messages that are needed by subscribers from that routing direction.

The combination of content-based routing and reliable delivery provides some
unique challenges. Unlike in topic or group-based pub/sub systems, reliability
cannot be based only on detecting gaps in publisher-assigned sequence numbers
as each content subscriber may request a completely unique set of messages to
be delivered. Reliable delivery protocols typically rely on brokers on the routing
path to assist on detecting gaps. A routing broker with incorrect subscription
information may decide not to forward on a message. Given that gaps cannot
be detected by checking publisher-assigned sequence numbers, an end subscriber
may never discover that a message was missed.

Numerous studies have shown that loss of connectivity is common in wide-
area networks, due to hardware and software failures and network misconfigura-
tions. Hence, pub/sub systems should be built on networks with redundant links.
This further complicates subscription propagation as alternative routes with dif-
ferent subscription information may filter out messages matching subscriptions
that are unknown to a route.

In this paper, we present a subscription propagation algorithm that supports
reliable delivery in redundant overlay networks. Using this algorithm, a pub/sub
system is able to (1) propagate and aggregate subscriptions; (2) support reliable
delivery; (3) choose freely (based on other criteria such as traffic load, system
faults) among multiple redundant links for data message routing; and (4) not
require heavy consensus protocols among brokers that serve as alternatives or
backups of each other. Our approach deals with link failure, message losses and
re-ordering and broker crash failures. Byzantine failures are outside the scope of
this work.

We have implemented our algorithm in the Gryphon system. Gryphon is a
content-based pub/sub system designed for high-volume, low latency, Internet-
scale distribution. Gryphon can be deployed using multiple geographically-distributed
application-level routers (called brokers), with tens of thousands of clients and



with tens of thousands of messages being delivered across the system each sec-
ond. Our algorithm, however, applies to a wide range of messaging systems.

Previous pub/sub systems have mainly focused on efficiently utilizing net-
work bandwidth and on scalability issues concerning propagating and aggre-
gating subscriptions. However, few of these systems efficiently exploit the net-
work redundancy and recover from failures in a timely fashion. Indeed, existing
pub/sub systems are usually unable to utilize the redundant links or do not sup-
port reliable delivery. Simply extending existing work that utilizes only a single
path requires consensus between multiple brokers on alternative paths and will
incur a lot of overhead.

The remainder of this paper is organized as follows: Section 2 presents a
redundant overlay network model. Section 3 describes the basic algorithm, and
then discusses a number of variants. Section 4 discusses liveness and failure
recovery, and Section 5 describes our implementation and experimental results.
Section 6 is an overview of related work and we conclude in Section 7.

2 Context: Redundant Overlay Network

In this section, we describe a simplified topology model of a redundant overlay
network of messaging brokers. We assume a redundant routing tree where each
tree node may contain more than one broker/server(Figure 1). We further restrict
the edge nodes (e.g. N11, N12, N13, and N31) to contain only one broker. We
assume there are bi-directional links between any two brokers in neighboring
nodes. Furthermore, we assume brokers residing in the same tree nodes are fully
connected when there is no failure. The algorithm, however, does not depend on
the full connectivity.

As we describe the protocol from the standpoint of a single publisher con-
necting broker, we arbitrarily designate an edge node as the root of the tree
and other edge nodes as the leaves. Publishers connect at the root broker (also
called publisher connecting broker) and subscribers at leaf brokers (subscriber
connecting brokers). The full algorithm with publishers/subscribers connecting
at any edge node is a repetition of this simplified description with repetitive
information avoided. As a convenience, we refer to where the root node resides
as upstream, and leaf nodes as downstream.

The singleton broker in an edge node can be replicated but requires strong
consistency to ensure client connection and failover from one replica to another
does not cause message loss or duplication.

Figure 1 shows a redundant routing tree that contains: 2 non-edge nodes N21

and N22 each with two brokers; 1 root node N31 with broker PB1 for publisher
connections; and 3 leaf nodes N11, N12 and N13 each with one broker (SB1, SB2

and SB3, respectively) for subscriber connections.
This model may seem a bit restrictive at first glance. However, the brokers

referred here are logical brokers. A broker process may represent multiple logical
brokers and hence participate in more than one node and have virtual links
between its multiple presence in neighboring tree nodes. Furthermore, publishers



Fig. 1. A Redundant Routing Tree

and subscribers can connect to any physical brokers. The physical broker in
this case implements a logical leaf broker. Thus we abstract the topology to
have publishers and subscribers connecting only at the edge nodes. How to map
physical brokers to logical brokers, and what brokers reside in which tree nodes
is an important part of the Gryphon technology. We do not describe it here.

3 Algorithms

3.1 Solution Intuition

To properly introduce the intuition behind our algorithm, we revisit in detail the
challenges facing subscription propagation. We use the example network shown
in Figure 1 to illustrate.

One challenge is to decide the delivery starting point of a subscription, that
is, to find a position in a published message stream from which the system can
deliver messages in order and without gaps. This problem is complicated because
the new subscriptions may partially overlap with existing subscriptions. Suppose
in the network in Figure 1, subscriber/subscription s1 of stock = nyse : ibm has
been propagated to all brokers in the tree nodes on the path from N11 to N31,
that is, broker SB1, b1, b2 and PB1. When subscriber s2 submits subscription
stock = nyse : ∗ (which matches all messages matching s1 and more), broker
SB1 propagates this information toward PB1. However, when message m1 with
content (nyse : ibm, 92) arrives, broker SB1 does not know whether it should
deliver it to subscription s2 as well. It might be an error to deliver m1 because
m1 arrives only as a result of matching subscription s1. If this is the case, there
is no guarantee that a later message m2 of (nyse : t, 19) will be routed by the
system and thus result in a gap in the messages delivered to subscription s2.

Another challenge arises when messages that are part of the same ordered
stream travel along different paths. This might be a result of a load sharing



decision or a failed link. Furthermore, the message delivery path could be differ-
ent from the path subscription has been propagated. For example, subscription
s2 might have been propagated from SB1 to b1 and PB1 but not yet to b2. If
message m1 is routed through broker b1 and m2 through b2, b2 would not send
m2 to SB1 without knowing subscription s2. Delivery for s2 might have already
started and SB1 would not detect the gap created by missing m2. This kind
of gap can not be detected by the reliable delivery protocol because it relies on
correct subscription information.

Our algorithm solves these problems by making two types of information
explicit, i.e., the set Sm of subscriptions a message should be matched against
and the set Sb of subscriptions a broker has information of and uses for message
matching. Using this information, delivery starting point of a subscription can be
detected by choosing the first message whose Sm set contains the subscription.
In addition, the system guarantee that for every message published in the same
stream after the first message, its Sm set (eventually) includes the subscription
until it is unsubscribed. How and when the Sm set of a message is assigned and
changed is a dimension in which an algorithm can vary.

To prevent a broker (e.g. b2) to filter out a message by mistake, the broker
compares its Sb set with the Sm set of the message. The broker contains infor-
mation of the subtree where a subscription in Sb set is connected and thus can
project/partition the Sb set onto each subtree rooted at the tree node where the
broker resides. The broker can also project the Sm set onto each subtree but
only partially because the Sm set may contain subscriptions that is not in the
broker’s Sb set. The comparison of Sm and Sb is thus performed for each subtree
rooted at a child node (e.g. N11). It is possible that in subtree N11 there is a
subscription that is contained in Sm but not in Sb, and the subscription matches
the message. However, since the broker does not have information about the
subscription, its filtering result will probaby indicate that the message does not
need to be sent to subtree N11. Our algorithm takes the comparison result of Sm

and Sb as an indicator that whether the broker matching/filtering result should
be used. If Sb is the same or a superset of Sm for a subtree, the broker contains
sufficient information to perform matching and can decide whether or not to
send the message to a subtree based on the existence of matching subscriptions.
Otherwise, as a conservative measure, the message should be sent to the subtree
regardless of the matching result. We call this comparison of Sb and Sm sets the
sufficiency test.

With this type of algorithm, there is no need to maintain consistent states
of subscription information between redundant path brokers. As a result, the
solution is light-weight and highly available.

3.2 Solution Overview

Obviously, concise representation of Sm and Sb sets and efficient computation
of the sufficiency tests are crucial for system performance. In our approach,
each leaf broker maintains a virtual time clock. We assign each subscription a
virtual start time (vst) at its subscribing time and a virtual end time (vet) at its



unsubscribing time using the current value (V T ) of the virtual clock at the leaf
broker to which the subscription connects. We call a subscription that has not
unsubscribed active. Such a subscription has a vet that is greater than the V T of
the leaf broker to which the subscriber is connected. The virtual clock advances
whenever necessary and more than one subscription/unsubscription can occur
in a single virtual time tick.

Thus, we can represent the set Sm of a message as a vector Vm, with one
element per leaf broker. Assume a Vm vector (SB1 : v1, · · · , SBn : vn), the set
Sm of the message is “any active subscription at broker SB1 with vst no later
than v1 and vet later than the current virtual time V T1 , · · ·, plus any active
subscription at broker SBn with vst no later than vn and vet later than the
current virtual time V Tn”.

Similarly, we represent the set Sb of a broker as a vector Vb, with one element
per leaf broker. Assume a Vb vector (SB1 : v′1, · · · , SBn : v′n), the set Sb of the
broker is “ subscriptions at broker SB1 with vst no later than v′1 and vet later
than v′1, · · ·, plus subscriptions at broker SBn with vst no later than v′n and vet
greater than v′n”.

Because virtual time is generated from a leaf broker’s virtual clock, v′i ≤ V Ti

(i = 1..n). If v′i ≥ vi (i = 1..n), Sb ⊇ Sm. Thus, the sufficiency test can be
efficiently implemented as comparison of Vb and Vm on the relevant elements.
That is, for a downstream where certain subscriber-connecting/leaf brokers exist,
the sufficiency test succeeds when Vb is element-wise no less than Vm for those
brokers. In Figure 1, when broker b1 or b2 routes a message to tree node N11, the
sufficiency test succeeds when its Vb is no less than Vm for the element of SB1.
When broker PB1 in node N31 routes a message toward N21, the sufficiency test
succeeds when its Vb is no less than Vm for the elements of both SB1 and SB2.

In the remainder of this section, we describe in detail how subscriptions are
assigned virtual start and end times, how subscription information is propagated,
how messages are routed and how the system decides a message delivery starting
point for a subscription. We discuss in Section 5.1 the optimization techniques
to avoid sending full Vm vectors in messages and to cache sufficiency test results.

3.3 Assigning Subscription Virtual Start/End Times

Clients submit subscriptions to a pub/sub system through their connecting bro-
kers. A broker assigns a virtual start time to a subscription during its subscribing
process. As mentioned in Section 2, these brokers are in the leaf nodes of the
redundant routing tree. A leaf broker usually aggregates subscriptions and only
propagates to upstream the aggregated results.

A client subscription/unsubscription may or may not change the aggre-
gated subscriptions of its connecting broker, depending on existing subscriptions.
Whenever a leaf broker’s subscriptions change and the broker decides to prop-
agate the change to upstream, the broker advances its virtual time clock by 1.
The virtual clock is maintained in an integer counter and is also used to assign
virtual start/end times to subscriptions.



(a) Sub DAG w/ s1&s4
(b) Sub DAG w/ s1&s4&s2

Fig. 2. Broker SB1 Subscription DAGs

The leaf broker ensures the monotonicity of its virtual clock, despite crash
recovery. There are many possible techniques to achieve this, such as using a
monotonic system clock, or persisting an upper bound on the highest clock value.
We assume that the clock time never overflows, which is reasonable for a value
that is 64 bits.

We assume that a client subscription is in the form of a set of Boolean
conjunctions. Any other form of Boolean expression can be transformed into
disjunctive normal form (DNF). We define the following “covering” relationship
of conjunctions similar to that of [5].

Definition 1. Conjunction c1 covers c2, denoted as c1ºc c2, if and only if all
messages matching c2 also match c1. That is

c1ºc c2 ⇔ {M(c1) ⊇ M(c2)}
where M(c) is the set of all messages matching conjunction c.

Conversely, c2 is said to be “covered by” c1.

Subscribing Process To assign a virtual start time to a new subscription, we an-
alyze the covering relationship of its conjunctions with the existing subscription
conjunctions. We use a directed acyclic graph (DAG) by modeling conjunctions
as nodes and drawing a directed edge from a covering conjunction to a covered
conjunction. As the covering relationship is transitive, we omit the transitive
edges. Initially, broker conjunction DAGs are empty. Examples of conjunction
DAGs are shown in Figure 2 and 3. Each conjunction is represented as a rectan-
gle, with a virtual start time and an oval representing the list (called subscriber
list) of subscribers or downstream routing tree nodes whose subscriptions contain
the conjunction.

For each conjunction c of the new subscription, the broker finds existing
conjunctions that cover c and set c.vst to the minimum of these conjunctions. If
no covering conjunction exists, c.vst is set to the broker’s current virtual time.

To ensure reliable delivery, message delivery for a new subscription cannot
start until matching messages for all its conjunctions start to arrive, hence vst
of the new subscription is set to the maximum of its conjunctions’. The new
conjunction nodes are added into the conjunction DAG.



(a) Sub DAG w/ s1&s4 (b) Sub DAG w/ s1&s4&s2

Fig. 3. Broker b1 Subscription DAGs

Example 1. Suppose clients in Figure 1 submit the following subscriptions:
1. s1:stock = nyse : ibm (submitted at SB1)
2. s4:stock = nyse : ∗ (submitted at SB2)
3. s2:stock = nyse : ibm&p > 90 or stock = nyse : t&p > 19 or stock =
nasdaq : msft (submitted at SB1)
The conjunction DAGs and Vb vectors of broker SB1 and b1 after subscription
s1 and s4 are shown in Figure 2(a) and 3(a). When s2 is subscribed, its first
conjunction is covered by the only node in the conjunction DAG (Figure 2(a))
and thus has a vst of 1. The other two conjunctions are not covered and thus
have vst of 2. Hence s2.vst = 2. SB1 increments its V T to 3 and changes the
conjunction DAG to Figure 2(b). ut

It is interesting to observe that the nodes in the conjunction DAG are as-
signed non-increasing vst’s as one travels from a root node to the covered nodes.
Thus computing vst of a new conjunction only takes into consideration the im-
mediate covering nodes. As a reminder, transitive arcs are omitted from the
conjunction DAG.

Unsubscribing Process During client’s unsubscription of its conjunctions, the
client is removed from the subscriber lists of the nodes in the conjunction DAG.
Conjunctions with empty lists are removed from the DAG. The subscription is
assigned a virtual end time using the broker’s current virtual time. Note that
since a subscription is removed, there is no need to store information for it. The
vet is not really assigned and is never maintained in the system. We only use it
for convenience in describing the subscription sets Sm and Sb.

At the end of the client subscribing/unsubscribing process, if any roots are
added or removed, the leaf node broker advances its virtual clock by one. In ad-
dition, an incremental update is generated and propagated to upstream brokers
in the redundant routing tree.

We should note that although we have discussed the subscribing and unsub-
scribing process as if there is only one request at a time, the algorithm actually



processes requests in batches. The broker only advances its virtual clock at the
end of the batch process if the set of root nodes is changed.

3.4 Propagating Subscription Changes

As described previously, if client subscription/unsubscription results in changes
in the set of root nodes of a conjunction DAG, the leaf broker generates and
propagates incremental changes. An incremental change contains the name of the
originating leaf broker SB1, the virtual time v1 of SB1 when the change occurred,
a list of additive/subtractive conjunctions {+c1,+c2, · · · ,−ci,−ci+1, · · ·}, the
subscribing tree node, and a constraint vector on receiving broker’s Vb vector. c1

and c2 are the new root DAG nodes. ci and ci+1 are the old roots that were just
removed from the DAG. The constraint vector is initially (SB1, v1 − 1). That
is, we require a broker have information of all subscriptions connected at leaf
broker SB1 with vst < v1.

Example 2. Continuing with Example 1, the incremental change SB1 generated
as a result of s2 subscription is:
SB1,2, {+(stock = nyse : t&p > 19), +(stock = nasdaq : msft)}, N11, cons =
(SB1 : 1). ut

The leaf broker sends the incremental change to a broker in its parent node,
e.g., broker b1 in N21 in Figure 1. As brokers in the same tree node are usually
fully connected, b1 forwards the incremental change to other brokers (b2) in N21.
How this incremental change is propagated to all brokers in the parent node is
not fixed and a specific algorithm may adapt if the topology assumptions are
different.

Upon receiving an incremental change, a broker checks whether its Vb vec-
tor satisfies the constraint. If so, it updates its Vb vector and applies the ad-
ditive/subtractive conjunctions by adding/removing the tree node (e.g., N11)
to/from the subscriber lists of conjunction nodes and inserting new conjunctions
or removing conjunctions with empty subscriber lists from the DAG. A non-leaf
node broker’s conjunction DAG (e.g., Figure 3(a) and (b)) is similar to that of
a leaf node broker’s, except that vst’s are not recorded for conjunctions. Same
as in a leaf broker, the additive/subtractive conjunctions in the new incremental
change are computed as a result of the root node changes in the DAG. If the in-
cremental change is a pure additive change and no aggregation happened in the
current broker, the constraint vector of the new change is unchanged. Otherwise,
the constraint vector is set to the old Vb vector of the broker. The subscribing
tree node of the new incremental change is set to the tree node where the cur-
rent broker resides. The original receiving broker of the incremental change then
forwards the new incremental change to a broker in its parent tree node.

If the constraint is not satisfied, the broker cannot apply the incremental
change. Furthermore, if some elements of the broker’s Vb vector are smaller than
that of the constraint vector, the broker detects its subscription information is
lagging behind, and initiates liveness mechanism to get up-to-date (described in
Section 4).



Example 3. In our example, broker b1 satisfies the constraint vector of the incre-
mental change. As conjunction stock = nyse : t&p > 19 is covered by an existing
conjunction stock = nyse : ∗, it is aggregated away. Hence the new incremental
change is:
SB1, 2, {+(stock = nasdaq : msft)}, N21, cons = (SB1 : 1, SB2 : 1)
b1’s Vb vector is set to (SB1 : 2, SB2 : 1). ut

In our examples below, we use a vector such as (1, 1, 1) to represent Vm or
Vb vectors without mentioning the leaf broker names SB1, SB2 and SB3.

Similar things happen at the root broker in the routing tree. Continuing with
our example, broker PB1 updates its Vb vector from (1, 1, 1) to (2, 1, 1).

3.5 Data Message Routing

Data messages are published through the root broker (e.g., PB1) of the routing
tree. Before sending a newly published message, PB1 assigns to it a Vm vector.
How this Vm vector is assigned is a dimension in which the algorithm could
vary and is further discussed in Section 3.7. For now, we assume PB1 keeps
a persistent record of the highest Vm vector it has ever assigned and ensures
non-decreasing Vm’s for new messages. When Vb ≥ highest Vm, Vb is used.

For an incoming message, a broker performs matching to decide which down-
stream routing tree nodes it should send the message to. Many efficient matching
algorithms exist such as [2] [8]. Our algorithm works with any of them.

Furthermore, the broker compares its Vb vector with the Vm vector of the
message for each child node. It does so by slicing both vectors with only the
elements for the leaf brokers in the subtree rooted at the child node. If the Vb

vector is no less than the Vm for the slicing, the broker sends the message if and
only if the matching results show a match for the downstream. Otherwise, the
broker conservatively sends the message down, regardless of the matching result.
This is the sufficiency test we have mentioned in Section 3.1.

As we can see, it is possible for the broker to send down messages that
do not match any subscription. This only happens at non-leaf brokers. In the
leaf broker, as it always has the latest subscription information, its Vb vector
(containing only one element for itself) always satisfies the sufficiency test and
only the matching messages will be delivered to subscribers.

Example 4. Suppose PB1 assigns Vm vector (1, 1, 1) to message m1(nyse : ibm, 95)
and m2(nyse : t, 20). m1 is sent to b1 and m2 to b2. Suppose Vb vectors of b1 and
b2 are (2, 1, 0) and (1, 1, 0). Both messages will be sent to SB1 as the sufficiency
tests are satisfied for SB1 and there is a match from node N11.

Suppose now PB1 processes an incremental change and advances its Vb vector
to (2, 1, 1). On the other hand, b2 does not receive the incremental change and
thus its Vb vector stays at (1, 1, 0). PB1 assigns Vm vector (2, 1, 1) to m3(nyse :
ibm, 98) and m4(nyse : t, 22) and sends m3 to b1 and m4 to b2. Both broker b1

and b2 send the messages to SB1 because b1 has a match and b2, even though
without a match for N11, detects its sufficiency test fails. ut



Justification of Correctness The sufficiency test is satisfied when a broker’s Vb

vector is equal to or greater than Vm with regard to the relevant leaf brokers.
When it is greater, the broker can have wider (matching more messages) con-
junctions as new subscriptions may have happened. It can also have narrower
conjunctions as unsubscriptions may have happened. When the conjunctions are
wider, the broker obviously passes all messages matching the subscriptions re-
quired by the Vm vectors plus more that match the new subscriptions. In the
narrower case, a broker drops messages matching only unsubscribed subscrip-
tions at a leaf broker sb. Those subscriptions have vet ≤ Vb(sb) ≤ V Tsb and
hence are not in the Sm set.

3.6 Detecting Subscription Delivery Starting Point

For a new subscription, its connecting leaf broker must decide a safe point from
which the system can deliver a gapless, in-order stream of published messages.
The actual protocol for reliable delivery is a complicated scheme and has been
discussed in our work in [3] [4]. We do not deal with that problem here, rather we
deal with how subscription propagation will not produce subscription informa-
tion that is wrong for reliable delivery. Our solution can work with any reliable
delivery protocol.

Detecting delivery starting point is accomplished by comparing a message’s
Vm vector element with the vst of the subscription s. As soon as the leaf broker
sb sees a message with Vm(sb) ≥ s.vst, it starts to deliver matching messages
for s.

Example 5. Broker SB1 receives m1. Even if m1 matches subscription s2, this
is not a delivery starting point for s2 as m1’s Vm(SB1) == 1 and is less than
s2.vst == 2. This is correct because there is no guarantee a later message (nyse :
t, 20) will not be filtered out if it is routed through broker b2. Broker SB1, instead,
starts delivery for s2 from message m3. ut

3.7 Algorithm Variants

We have extended our basic algorithm with two variants. These extensions con-
tinue to support reliable delivery. Due to space restriction, we only provide brief
description of these extensions:

– Non-monotonic assignment of Vm vectors to messages in a published stream;
– Non-fixed Vm vector for a message m.

Our basic algorithm stores persistently the highest Vm assigned and assigns
monotonically non-decreasing Vm vectors to messages at the publisher connect-
ing brokers. Our extension does not require persistent storage and allows non-
monotonic Vm vector assignments to messages. This could happen due to a
publisher connecting broker crash/recovery.

In the basic algorithm, a message’s Vm vector is fixed once assigned. In some
cases, the aggregation of subscriptions may result in incremental updates with



empty lists of additive/subtractive conjunctions. The basic algorithm requires
such empty updates to propagate to the root broker as a means of conveying
the latest Vm the broker could use. Our extension does not require propagation
of this kind of update, rather we record the fact that a Vm vector could be
automatically changed to V ′

m due to the empty incremental update. This is
recorded at the last broker where such an empty update occurred.

In both extensions, not only are published messages assigned Vm vectors,
so are the silence periods between them. In addition, the leaf brokers hosting
subscribers perform monotonicity checking on message/silence Vm vectors and
initiate negative-acknowledgments if monotonicity is violated.

4 Liveness and Failure Handling

Our solution intrinsically supports pub/sub message delivery with high availabil-
ity and light failover. The solution itself has to deal with failures as incremental
subscription updates can be lost and arrive out-of-order. This section describes
the failure handling with regard to the subscription propagation protocol. This
is an important part of our work, however, due to space restriction, we only
describe it briefly.

Broker Crash Recovery Upon recovery from a crash, a leaf broker sets its virtual
clock time V T to be greater than all previous values it has assigned. The leaf
broker initializes its conjunction DAG to contain conjunctions for the durable
subscriptions ([1][4]) it maintains. All conjunctions are then propagated by send-
ing a full state update and the current V T . The broker then advances its V T
by one.

Non-leaf brokers recover from a crash by initializing an empty conjunction
DAG and resetting its Vb vector to all 0’s.

Leaf Broker Driven Liveness As the sources of subscription changes and virtual
times, leaf brokers ensure all publisher connecting brokers receive up-to-date
subscription information and assign latest Vm vectors to messages. For subscrip-
tion/unsubscription received during virtual time vt and propagated, a leaf broker
SB maintains an expected starting time from which data messages should have
Vm vector with an element vt′ for SB such that vt′ ≥ vt. This expected time can
be dynamically adjusted through similar techniques that estimates TCP round
trip times. Messages received after the elapsed time with vt′ < vt trigger a full
subscription state update with SB’s latest propagated V T . Alternatively, SB
can repeat the incremental updates sent from vt′ to vt. This requires a cache for
the latest incremental updates at SB.

Non-Leaf Broker Driven Liveness A non-leaf broker (including publisher con-
necting brokers) b detects that its subscription information is lagging behind in
two ways: (1) receives a data message with Vm vector that is greater than Vb vec-
tor for the elements of downstream leaf brokers; (2) receives incremental updates



with constraint vectors 6≤ Vb. Broker b initiates a negative acknowledgment mes-
sage toward the leaf broker SB for whom b’s Vb vector is lagging behind. Such
negative acknowledgment may be satisfied by SB or a broker on the route from
b to SB with the required subscription information.

5 Implementation and Experimental Results

5.1 Implementation

Our implementation performs monotonic and fixed Vm vector assignment at
the publisher connecting brokers. These brokers persist the highest Vm vector
assigned. The liveness and failure handling utilizes full-update messages.

Subscription aggregation is based on covering relations (Section 3). Our cur-
rent covering relation is restricted to identical conjunctions. Since the covering
test is a black-box component in our implementation, a sophisticated covering
relation can be plugged in to replace this simple one.

The number of leaf brokers affects system performance and scalability, since
it directly impacts the length of Vm and Vb vectors and computations involving
them. In our implementation, we utilize the property that links are usually FIFO.
This is true of links implemented as TCP connections such as in Gryphon.

Instead of full Vm vectors, we use fixed-length vector digests. When a new
Vm is first assigned to a message, the publisher connecting broker assigns a
digest to Vm by taking a snapshot of a monotonically increasing value. This can
be implemented in many ways, such as using the system clock. As publisher
connecting broker assigns monotonically non-decreasing Vm vectors and digests
are monotonic, the system satisfies the following monotonicity - d < d′ if Vm <
V ′

m with regard to the same assigning broker. A broker does not persist the
digests, therefore it can assign two different digests to one Vm at different times.
Thus d < d′ ⇒ Vm ≤ V ′

m.
In this scheme, the first message with a new Vm vector going down each link

carries the original Vm and its digest. Later messages only need to carry the
digest until the Vm changes or the link fails and recovers.

In addition, each broker maintains a cache of the sufficiency test results. This
cache is indexed by the digest and the assigning broker. It only maintains an
entry for the highest digest it has seen from a publisher connecting broker. From
the digest monotonicity, any message originated from the same broker with a
digest no greater than the cache entry can reuse the cache result. Otherwise,
the broker conservatively computes false as the sufficiency test result for the
message. The cache entry is updated when the broker advances its Vb vector or
when it receives a message with higher Vm vector and digest. We omit the details
of a negative-acknowledgement scheme that is used to retrieve the original Vm

vector for a digest if the message carrying the mapping was lost.

5.2 Experiment Results

The testbed for our experiments is a set of RS6000 F80 machines with six
500MHz processors and 1G RAM. Each machine has dual network interfaces



(a)

(b)

Fig. 4. System Load(CPU) Comparisons

and is connected through a 100Mbps Ethernet network and a gigabit switch to
other machines.

We focus primarily on metrics that are impacted by the specifics of our so-
lution. Metrics such as routing table (conjunction DAG) size and subscription
incremental update message size are common to subscription propagation algo-
rithms and have been investigated in previous work such as [12, 5].

System Load Comparison in Selective Subscription Tests This test com-
pares the system overhead of using subscription propagation with that of using
flooding when client subscriptions are selective. The workload is motivated by
sensor networks where there are many publishers collecting and publishing var-
ious kinds of data and relatively few subscribers that selectively subscribe to
data of interest.

The test is set up as Figure 4(a) with 4 publisher connecting brokers pb1−4

and 1 subscriber connecting broker sb, each in its own tree node. These brokers
also reside in an intermediate tree node N5 and thus each implements two virtual
brokers. Four redundant routing trees can be defined by taking each of pb1−4 as
root node.

We fix the number of subscriptions at 2000 and vary the number of pub-
lishers from 2000 to 12000. The message rate per publisher is fixed at 2 mes-
sages/second. Each subscription is distinct and to the messages published by 1
publisher. Hence, the total receiving message rate of subscribers is 4000 mes-
sages/second throughout the test. The publishers are evenly distributed among
pb1−4. Figure 4(b) shows the CPU utilization of sb and pb1−4 (averaged) in both
schemes.

With 2000 publishers, all published messages are subscribed. This case is not
favorable to subscription propagation. However, CPU utilization difference at sb
in flooding and subscription propagation schemes are negligible due to the use
of efficient matching algorithm [2]. In addition, when the number of publishers



Fig. 5. Subscription Delivery Start Latency & Message Delivery Latency

increases, sb CPU utilization stays constant in the subscription propagation
scheme but increases linearly in flooding scheme even though the number of
useful messages does not change.

In both schemes, CPU utilization at pb1−4 increases linearly with the number
of publishers. However, the flooding scheme shows a much steeper slope because
each of pb1−4 not only accepts messages from publishers but also sends these
messages to other pb’s and receives all messages published through other pb’s.
As a result, CPU utilization at pb1−4 reaches > 90% with only 10000 publishers
in the flooding scheme compared to 31% with 12000 publishers with subscription
propagation.

Latency Measurements This test examines two latency metrics. Message
delivery start latency (DSLat) measures the time elapsed from a subscription
is submitted to the first message is delivered to it. Message delivery latency
(DLat) measures the time it takes the system to deliver a message to an existing
subscription. We use a linear topology consisting of broker pb for publishers and
sb for subscribers each in its own routing tree node. pb and sb are connected
through n hops of intermediate tree nodes, each with one broker.

DLat is measured by a latency sampler(LS) that publishes messages through
pb and subscribes to its own messages through sb.

DSLat for a new subscription is measured at the subscriber by taking the
difference between time of subscription and time of first message delivery. We
further distinguish DSLat for subscriptions that are covered locally in sb and
subscriptions that are not covered hence must propagate to pb. We call the first
DSLat local and the latter global. Global DSLat is the sum of the following
times: (1) time taken to send subscription to sb; (2) processing time at sb; (3)
processing time at other brokers; (4) network delays(bi-directional) at each hop;
(5) expected interval till next message published that matches the subscription.
If messages that match the subscription are published at a steady rate every t
milliseconds (ms), this time is t/2 on average; (6) time taken to send the message
from sb to the subscriber. Similarly, local DSLat is the sum of (1),(2),(5),(6).



We make time (5) negligible by using a high publishing rate (200 mes-
sages/second/topic) but on few (16) topics. The aggregated publishing rate is
3200 messages/second. In addition, since we are mainly interested in measur-
ing processing overhead (2) and (3), we do not inject additional latency on the
links. Since we are running in a LAN environment, (1), (4) and (6) are small.
We impose load on sb by connecting 60 steady subscribers to 8 topics. Local
DSLat is measured by subscribers that dynamically subscribe and unsubscribe
to the same 8 topics as the steady subscribers and global DSLat is measured by
subscribers that dynamically subscribe to the remaining 8 topics. We take the
median of all measurements. Figure 5.2 shows DLat, local and global DSLat
when there are 1,4 and 7 hops from pb to sb.

Message delivery latency DLat increases linearly from 3 to 6 to 9 ms. Local
DSLat - delivery start latency for covered subscriptions - stays roughly constant
at 17ms. Global DSLat increases linearly from 26.5ms to 36ms to 45ms. The
differences of global and local DSLat, which shows the network latency and
broker (other than sb) processing overhead also increases from 9.5ms to 20ms
to 28ms, which shows that subscription processing overhead is small.

Scalability Measurements This test examines the system scalability with re-
gard to the Vm and Vb vector sizes, i.e., number of subscriber connecting brokers.
The test is set up with a broker pb for publishers and a broker ib connecting pb to
a number of brokers sb1−n for subscribers. Each of these brokers is in a separate
routing tree node. We vary the number n of sb’s.

Messages are published through pb at a fixed rate of 2000 messages/second
throughout the test. We demonstrate the result in a setup that is not favorable to
subscription propagation to show the low overhead incurred by it compared with
the flooding scheme. We set up each published message to be subscribed by some
subscriber at each sb. Subscribers are evenly distributed onto sb’s. Each sb has
two groups of subscribers with each group receiving 10000 messages/second. One
group is steady and the other is dynamic with periodic unsubscriptions followed
immediately by re-subscriptions. Every 2 seconds on average, an unsubscrip-
tion/subscription occurs at a sb and causes the sb virtual time to advance by 2.
Thus, this simulates the situation where the broker virtual time advances by one
every second at each sb. In situations where subscription/unsubscription occurs
more frequently, they could be batched to reduce the rate at which the sb virtual
times advance. Figure 6 shows the CPU utilization at pb, ib and sb1−n(averaged).

In both the flooding scheme and with subscription propagation (Figure 6(a)
& (b)), CPU utilization at pb and sb1−n stays constant with n changing from
1 − 7. This is due to the Vector-Digest and caching scheme we described. The
CPU differences at ib and sb’s between the two schemes are also very small. There
are (3%) differences on the pb CPU utilization. This is due to the sophisticated
message encoding used in Gryphon. As pb assigns Vm digest to a message, the
message has to be re-encoded and this is not needed with flooding in Gryphon.
Such difference can be eliminated by encoding optimizations.



(a) flooding algorithm (b) subscription propagation

Fig. 6. Scalability: Broker CPU Utilization Versus Number of Brokers

(a) subscriber message rate (b) CPU utilization at ib1−3

Fig. 7. client message rate and intermediate broker CPU utilization with crash failure

Failure Test This test demonstrates the lightweight failover characteristics
of our approach. Even in the absence of a majority of brokers in a cell, our
algorithm is able to accept new subscriptions and deliver messages for them.
When a path fails, the system switches to the remaining available paths and
provides continuing service.

The test is set up as a redundant routing tree of 4 nodes and 6 brokers:
broker pb for publishers and sb1−2 for subscribers, each in a separate node Npb,
Nsb1 and Nsb2 . Broker ib1−3 are all in one node Nib. Node Npb is connected to
Nib, which further connects to Nsb1 and Nsb2 .

In this test, traffic from pb to sb1−2 is shared among ib1−3. Messages are
published through pb at a rate of 2000 messages per second on 100 topics. Ini-
tially, there are 2 groups of clients connected to sb1 and 1 group to sb2, each
group with 250 subscribers evenly distributed among the first 50 topics. Thus,
the aggregated message rate per group is 5000. A fourth group of 100 clients to
the remaining 50 topics connect at a later time. The aggregated message rate
for this group is 2000. Figure 7(a) shows the message rates for one of the first 3
groups and the fourth group. Figure 7(b) shows the CPU utilization at ib1−3.



At time 400, since only the first 50 topics are subscribed to, the messages are
routed through ib1 and ib2. Broker ib3 is not used because of the simple hashing
scheme used for load balancing. At time 475, ib1 crashes, the system fails over
to ib3, and CPU utilization at ib3 increases to 4% to the same as ib2. About 30
seconds later, at time 505, ib2 crashes, and all messages on the first 50 topics are
routed through ib3. CPU utilization at ib3 doubles to 8%. During these routing
changes the client message rate is not affected. At time 565, a new group of 100
subscribers to the latter 50 topics starts to connect. Even though only ib3 is
available, our approach is able to make progress and starts to deliver messages
for the new clients. When ib1 and ib2 recover about 130 and 160 seconds later
at time 691 and 731, traffic is once again shared among the available paths.
During this process, service to clients is not affected as their message rate stays
constant.

6 Related Work

In this section we survey previous work on subscription propagation and ag-
gregation in publish/subscribe systems. Techniques for subscription aggregation
([12]) are complimentary to our work.

Siena [5] and XNet [6] support subscription propagation and aggregation to
achieve scalability. Their topology has redundancy, with multiple routes between
servers. However, the subscriptions are only propagated along a single selected
“best route” in a spanning tree. If a failure occurs on the selected path, the
system must select another path and subscription information need to be set up
for the new path before message routing can be resumed. As a result, recovery
from a spanning tree link failure is slow. In addition, these works do not address
the support of reliable delivery.

Elvin [17] is mainly designed around a single server that filters and forwards
producer messages directly to consumers. It doesn’t have a scalable solution for
multiple servers.

Snoeren et. al [18] propose an approach for improving reliability and low la-
tency by sending simultaneously over redundant links in a mesh-based overlay
networks. The protocol does content-based routing and provides high level of
availability. However, there is no guarantee of reliable delivery when subscrip-
tions are dynamically added and removed.

REBECA [12, 13] supports subscription propagation and aggregation over a
network constructed as a tree of brokers. Their subscription aggregation tech-
niques, such as filter merging, are applicable to our work. The system has a
self-stabilization component that uses time based leases to validate routing en-
tries in brokers. This is a viable technique for best-effort delivery, but does not
support reliable delivery since it is possible for a broker to filter a message that
is relevant for a downstream subscriber.

JEDI [7] guarantees causal ordering of events. Their distributed version of
event dispatcher constitutes of a set of dispatching servers interconnected into
a tree structure. This distributed version, while addressing part of the need of



Internet-wide distributed applications engaging in an intense communication,
does not accommodate and utilize redundant links between dispatching servers
and hence is not highly available and easy for load sharing.

Tapestry [20] provides fault tolerant routing by dynamically switching traf-
fic onto precomputed alternate routes. Messages in Tapestry can be duplicated
and multicast “around” network congestion and failure hotspots with rapid re-
convergence to drop duplicates. However, it does not support content routing.

Scribe [15] is a large-scale and fully decentralized event notification system
built on top of Pastry - a peer-to-peer object location and routing substrate
overlayed on the Internet. It leverages the scalability, locality, fault-resilience
and self-organization properties of Pastry. However, Scribe does not support
content-based routing and wild card topic subscriptions . The system builds
separate multicast trees for individual topics using a scheme similar to reverse
path forwarding and inverts the subscription message path for later event dis-
tribution. This makes it impossible to add a node to the multicast tree for load
sharing. The system recovers from multicast node failures by building new trees.
It does not support reliable delivery, and unsubscription has to be delayed until
the first event is received.

Triantafillou et. al [19] proposed an approach to propagating subscription
summaries and performing event matching and routing. Their subscription prop-
agation algorithm, which affects the way events are routed, requires each broker
to have global knowledge on the broker network topology. In addition, the ap-
proach does not support reliable delivery.

Since Lamport’s work on logical time and clocks [11], significant work has
been done using logical time such as virtual time [9], version vectors [14], vector
times [16] and multipart timestamps [10]. Our work shares the property that
logical time vectors are used as a concise form for representing large information.
However, these works are focused on detecting state inconsistencies or causal
relationships, which is only part of the problem subscription propagation is facing
in pub/sub systems.

7 Conclusions

We have developed algorithms supporting subscription propagation with high
availability, easy load-sharing and light failover in a content-based pub/sub sys-
tem over a redundant overlay network. The algorithm does not require agree-
ments or quorum among redundant brokers. We also presented the experiment
results that show the high performance, scalability, low latency and availability.
Future work includes investigation into support for event advertisement ([5]),
adaptively applying subscription propagation according to different subscription
profile and locality.

References

1. Java (tm) message service. In http://java.sun.com/products/jms/.



2. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.
Matching events in a content-based subscription system. In Proceedings of the
Principles of Distributed Computing, 1999, pages 53–61, May 1999.

3. S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach. Exactly-once delivery
in a content-based publish-subscribe system. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN’2002), pages 7–16, 2002.

4. S. Bhola, Y. Zhao, and J. Auerbach. Scalably supporting durable subscriptions
in a publish/subscribe system. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN’2003), pages 57–66, 2003.

5. A. Carzaniga, D. Rosenblum, and A. Wolf. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems, 19(3):332–
383, August 2001.

6. R. Chand and P. Felber. A scalable protocol for content-based routing in over-
lay networks. In Proceedings of the IEEE International Symposium on Network
Computing and Applications (NCA’03), Cambridge, MA, April 2003.

7. G. Cugola, E. D. Nitto, and A. Fuggetta. The jedi event-based infrastructure
and its application to the development of the opss wfms. IEEE Transactions on
Software Engineering, 27(9):827–850, September 2001.

8. F. Fabret and et. al. Filtering algorithms and implementation for very fast publish/
subscribe systems. SIGMOD Record (ACM Special Interest Group on Management
of Data), 30(2):115–126, 2001.

9. D. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7(3):404–425, 1985.

10. R. Ladin, B. Liskov, and L. Shrira. Lazy replication: Exploiting the semantics of
distributed services. In ACM Symposium on Principles of Distributed Computing,
1990.

11. L. Lamport. Time, clock, and the ordering of events in a distributed system.
Communications of the ACM, 21:558–565, 1978.

12. G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology, September 2002.

13. G. Mühl, L. Fiege, and A. P. Buchmann. Filter similarities in content-based pub-
lish/subscribe systems. In Proceedings of International Conference on Architecture
of Computing Systems (ARCS’02), 2002.

14. D. Parker and et.al. Detection of mutual inconsistency in distributed systems.
IEEE Transactions on Software Engineering, SE-9(3):240–247, 1983.

15. A. Rowstron, A. Kermarrec, M. Castro, and P. Druschel. Scribe: The design of
a large-scale event notification infrastructure. In Proceedings of 3rd International
Workshop on Networked Group Communication (NGC 2001), UCL, London, UK,
November 2001.

16. R. Schwarz and F. Mattern. Detecting causal relationships in distributed compu-
tations: In search of the holy grail. Distributed Computing, pages 149–174, 1994.

17. B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content based routing
with elvin4. In Proceedings of AUUG2K, Canberra, Australia, April 2000.

18. A. Snoeren, K. Conley, and D. Gifford. Mesh-based content routing using xml. In
Proceedings of the 18th ACM Symposium on Operating System Principles, 2001.

19. P. Triantafillou and A. Economides. Subscription summarization: A new paradigm
for efficient publish/subscribe systems. In Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS’04), 2004.

20. B. Zhao, L. Huang, A. Joseph, and J. Kubiatowicz. Exploiting routing redundancy
using a wide-area overlay. Technical Report UCB/CSD-02-1215, University of
California, Berkeley, 2002.


