Causeway: Support for Controlling and
Analyzing the Execution of Multi-Tier
Applications

Anupam Chanda!, Khaled Elmeleegy’,
Alan L. Cox!, and Willy Zwaenepoel?

! Rice University, 6100 Main Street, Houston, Texas 77005, USA
{anupamc,kdiaa,alc}@cs.rice.edu
2 Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
willy.zwaenepoel@epfl.ch

Abstract. Causeway provides runtime support for the development of
distributed meta-applications. These meta-applications control or ana-
lyze the behavior of multi-tier distributed applications such as multi-tier
web sites or web services. Examples of meta-applications include multi-
tier debugging, fault diagnosis, resource tracking, prioritization, and se-
curity enforcement.

Efficient online implementation of these meta-applications requires meta-
data to be passed between the different program components. Examples
of metadata corresponding to the above meta-applications are request
identifiers, priorities or security principal identifiers. Causeway provides
the infrastructure for injecting, destroying, reading, and writing such
metadata.

The key functionality in Causeway is forwarding the metadata associated
with a request at so-called transfer points, where the execution of that
request gets passed from one component to another. This is done auto-
matically for system-visible channels, such as pipes or sockets. An API
is provided to implement the forwarding of metadata at system-opaque
channels such as shared memory.

We describe the design and implementation of Causeway, and we eval-
uate its usability and performance. Causeway’s low overhead allows it
to be present permanently in production systems. We demonstrate its
usability by showing how to implement, in 150 lines of code and without
modification to the application, global priority enforcement in a multi-
tier dynamic web server.

1 Introduction

Many applications, e.g., web sites generating dynamic content and web service
applications, have multi-tiered implementations. A multi-tier application is com-
posed of multiple program components communicating among themselves to ex-
ecute incoming requests. In such applications, a request is executed by multiple
threads of control on different application components, the threads of control

exchanging data among themselves along communication channels. For exam-
ple, an application may be composed of a web server, an application server, and
a database server: requests are executed by all three programs communicating
with each other to exchange request data.

Often, systems to control or analyze the execution of multi-tier applications
are written to perform tasks like multi-tier debugging, fault diagnosis, resource
tracking, prioritization, and security enforcement. Examples include Pinpoint [5],
Magpie [4,9], and Domain and Type Enforcement (DTE) [3] for Unix systems.
We term these and similar systems that control or analyze the execution of
multi-tier applications as meta-applications.

Traditionally, there have been two approaches to writing such meta-applications:
a log-based approach, and a metadata-passing approach. The log-based approach
operates in two phases — first, execution events of the application are recorded
in logs, and next, the log records are analyzed. Magpie [4,9] and TraceBack [2]
are examples of systems employing this approach. The log-based approach can-
not affect the execution of requests in an online manner because processing of
a log record lags the corresponding execution event by a positive time delay.
Additionally, the execution events on the different tiers belonging to the same
request need to be identified and connected while processing the log records.

The metadata-passing approach propagates metadata — arbitrary, out-of-
band data — in addition to request data along execution paths. The meta-
application accesses and utilizes this metadata to achieve its goal. Often, the
metadata also serves in connecting a request’s execution events spread across
the tiers of the system, e.g., if it contains a request identifier. Several examples
of meta-applications using this approach exist in the literature, e.g., Pinpoint [5]
and DTE [3]. Pinpoint and DTE use request identifiers and security principal
identifiers as metadata respectively. These meta-applications use hand-crafted
code to handle and propagate metadata.

Unlike the log-based approach, the metadata-passing approach can affect the
execution of requests in an online manner, e.g., Real-Time CORBA [10] which
propagates priorities among application components to affect scheduling. Hence,
we adopt the metadata-passing approach to building meta-applications. Our
objective is to provide a framework that makes development of meta-applications
using this approach easier.

In this paper we introduce Causeway, a framework to facilitate the associa-
tion and propagation of metadata along request execution paths in a multi-tier
application. Causeway provides an interface to associate metadata with threads
of control and facilitates the propagation of metadata across communication
channels. Causeway aids the development of meta-applications by performing
all necessary management to handle and propagate metadata. This obviates
the need for hand-crafted code for the common requirements of different meta-
applications employing the metadata-passing approach.

The alternative to Causeway, propagating metadata at application level, in-
volves augmenting all application-level inter-process communication protocols —
a tedious solution. By making propagation of metadata a system-level function,

it becomes independent of the application-level communication protocol used.
Further, in a multi-tier application, it is possible that some individual compo-
nents are unaware of the presence of metadata or choose to ignore it. Consider
a three-tier system, where the middle tier component is unaware of metadata.
The front and the back-end tiers may still, however, need to access metadata. In
this scenario, system support for metadata propagation is required in the middle
tier.

Causeway performs automatic propagation of metadata across system-visible
communication channels. Such channels are those implemented in the operating
system kernel and system libraries, e.g., pipes and sockets. Augmented kernel
and system libraries provide Causeway’s support for system-visible channels.
Causeway provides an API to be called from application code to perform meta-
data propagation across system-opaque channels, e.g., shared memory. Support
for system-opaque channels is the essential difference between Causeway and
Stateful Distributed Interposition (SDI) [11].

We have implemented a prototype of Causeway, measured its overhead, and
built a useful meta-application using Causeway. We summarize our experience
with Causeway as follows:

— Adding support to propagate metadata across system-visible channels re-
quired modest effort.

— The measured overhead of Causeway to propagate metadata was small in
absolute cost (order of microseconds) and it scaled well with increasing meta-
data size. The overhead of Causeway, while not propagating any metadata,
was insignificant — less than 3% for a microbenchmark involving the pipe
channel. Thus Causeway may reasonably remain a part of a production en-
vironment whether implementing a meta-application or not.

— Using Causeway we could rapidly implement a distributed priority enforce-
ment system where the priority of a request is injected and propagated as
metadata, and accessed to implement global priority scheduling. This re-
quired writing only about 150 lines of code on top of Causeway to change
the priority of threads executing requests. We evaluated this system on an
implementation of the TPC-W [12] benchmark.

The rest of the paper is organized as follows. We describe the design of
Causeway in Section 2. In Section 3 we measure Causeway’s overhead with two
microbenchmarks. In Section 4 we evaluate Causeway’s complexity to support
system-visible channels, and measure the overhead of Causeway on an implemen-
tation of the TPC-W benchmark. We describe the distributed priority enforce-
ment system using Causeway in Section 5. Related work is covered in Section 6.
We conclude in Section 7.

2 Causeway Design

At an abstract level, Causeway works as follows. A request to an application is
executed by one or more threads of control, possibly in one or more tiers. Threads

exchange request data along communication channels, e.g., sockets, pipes and
shared memory. Causeway’s interface supports injection, inspection, modifica-
tion and removal of metadata. Metadata is assigned to a thread when it performs
injection. When a thread sends request data to another thread along a channel,
Causeway transfers metadata from the former thread to the latter. Support for
metadata propagation is required at transfer points where an application thread
sends to or receives data from a channel. In this way, metadata, once injected,
is propagated along the request execution paths.

Causeway has two parts: (1) a set of interfaces that are used by applications to
manage and utilize metadata, and (2) mechanisms that implement propagation
of metadata. First, we describe the structure and composition of metadata.

2.1 Metadata

Metadata in Causeway consists of a two-tuple containing the metadata type
and the metadata value. Examples of metadata types include request priority,
request identifier, and security principal identifier. Meta-applications can define
new metadata types, if required.

2.2 Interfaces

Meta-applications can interact with Causeway in two ways — through an in-
terface to inject and access metadata and through a callback interface in which
Causeway calls handlers registered by the meta-application.

Metadata Interface Causeway provides interfaces for injection, inspection,
modification, and removal of metadata. These interfaces may be called from
user-level or kernel-level.

int cw_type_query(void *addr, int types[], int ntypes)

int cw_data_lookup(void *addr, int mtype, struct cw_metadata *md_p)
int cw_data_insert(void *addr, int mtype, struct cw.metadata md)
int cw._data remove(void *addr, int mtype)

Table 1. The Causeway API

Causeway manages metadata in a dictionary keyed by the address of the
associated entity. An entity is either a thread of control or data that is read from
or written to a channel. A thread’s metadata is propagated to the data written
on a write operation, subsequently this metadata is propagated from the data to
a thread performing a read operation. Further, a thread can remove metadata
associated with itself or a data entity. Table 1 shows the function signatures of
the Causeway API. The Causeway API performs metadata operations in the
following manner:

— cw_type_query retrieves the collection of all metadata types associated with

addr in the types array of size ntypes. On successful completion, cw_type_query

returns the number of metadata types retrieved and -1 on error. The types
array must be large enough to hold all the metadata types associated with
addr otherwise an error is flagged.

— cw_data_lookup retrieves the metadata of type mtype associated with addr.
It returns 0 on successful completion and -1 on error.

— cw_data_insert inserts the given metadata md of type mtype and associates
it with addr, overwriting any prior metadata of that type. It returns 0 on
successful completion and -1 on error.

— cw_data_remove removes any existing metadata of type mtype associated
with addr. It returns 0 on successful completion and -1 on error.

Callback Interface Using Causeway’s callback interface the meta-application
can register a transfer-point callback method. A transfer point is a point where
data is read from or written to a channel by a thread. At a transfer point
Causeway determines if the type of the metadata being passed has a callback
method registered. If a callback method exists, it is invoked with the metadata
as an argument. The callback method reads and possibly modifies the metadata.
The callback method can call arbitrary operating system code, e.g., to change
the priorities of threads.

The signatures of a callback method and the callback interface are shown
in Table 2. A callback method is of type callback_t. The callback interface,
reg_callback method, registers a given callback method for a given metadata
type at a transfer point.

typedef void (*callback-t) (struct cw.metadata **md, int mtype);
callback_t callback method;
void reg_callback method(int mtype, callback.-t callback.-method);

Table 2. The Callback Interface

2.3 Support for Propagation of Metadata

When a thread performs a write on a channel, the thread’s metadata is associated
with the data written into the channel. On a subsequent read on the channel by
a thread, metadata is propagated from the data and assigned to the thread.

There are two ways metadata can be assigned to a thread — injection and
propagation across a channel. Newly assigned metadata replaces the thread’s
existing metadata of the same type.

Transfer Points Places where a thread writes to or reads from a channel are
transfer points. Channels are of two types: system-visible channels that occur
in the operating system kernel and system libraries, e.g., sockets and pipes,
and system-opaque channels that occur in the application, e.g., shared memory.
Causeway exports a Systems Programming Interface (SPI) consisting of a single
function cw_metadata xfer for the purpose of implementing transfer points.
cw_metadata xfer takes a source entity and a destination entity as arguments.
It obtains the source entity’s metadata and assigns the obtained metadata to
the destination entity. At a transfer point for either a system-visible or system-
opaque channel, a single call to cw_metadata_xfer is performed.

2.4 System-visible Channels

For system-visible channels, the metadata transfer SPI is automatically called
from an augmented kernel and system libraries to implement Causeway’s sup-
port for metadata propagation. Sockets and pipes are system-visible channels
supported by Causeway. Further, for a multi-threaded program, metadata needs
to be propagated between the user-level thread and the kernel-level thread on
entry to and exit from the kernel because multiple user-level threads may be
multiplexed on top of a kernel-level thread. Metadata propagation between a
user-level thread and a kernel-level thread constitutes additional system-visible
channels in Causeway. We enumerate below the transfer points for system-visible
channels:

1. User-level thread to kernel-level thread: On entry to the kernel, Causeway
transfers metadata from the user-level thread to the kernel-level thread run-
ning it.

2. Kernel-level thread to user-level thread: On exit from the kernel, Causeway
transfers the kernel-level thread’s metadata to the user-level thread.

3. Kernel-level thread to message: When a kernel-level thread writes a message
on a socket or a pipe, its metadata is transferred to the message.

4. Message to kernel-level thread: When a kernel-level thread receives a message
from a socket or a pipe, metadata is transferred from the received message
to the kernel-level thread.

These transfer points occur in the operating system kernel and the threading
library.

Causeway handles sockets and pipes similarly. When a thread writes to a
socket (or a pipe), Causeway associates metadata from the thread to the data
written via the metadata transfer SPI described above. Similarly, on a subse-
quent read from the socket by another (or the same) thread, metadata is prop-
agated from the data to the thread.

The above applies for LOCAL sockets only. For INTERNET sockets, data is
encapsulated in IP packets for send and receive across sockets. Causeway encap-
sulates metadata, in addition to data, in the IP packets. For IPv4, Causeway
encapsulates metadata in the IP header as IP options. In particular, Causeway

defines a new IP option type, populates the IP header with the option type,
length, and payload. At the receiver side, metadata, if any, is extracted from
the received IP options. Since IP options can be a maximum of 40 bytes only,
with 1 byte each for the type and length fields, via this mechanism Causeway
can transfer at most 38 bytes of metadata in IP packets. This limit on metadata
size is deemed enough for most practical purposes. This limitation is an artifact
of Causeway’s implementation and not its design. A general purpose tunneling
protocol could be used to overcome this limitation, if required. For IPv6, Cause-
way uses the destination options in the IP header which does not have any size
limitation. Further details about that are outside the scope of this paper.

2.5 Shared Memory — System-opaque Channel

For system-opaque channels, the application must be modified to call the meta-
data transfer SPI to perform propagation of metadata. Causeway supports meta-
data propagation across shared memory — a system-opaque channel imple-
mented in user-space. A transfer point needs to be inserted in the application
where a user-level thread reads from or writes to shared memory. Producer-
consumer is a popular model of shared memory usage. At an abstract level,
the model works as follows. Producers and consumers share a buffer or queue
of objects. A producer creates an object, acquires a lock to enter the critical
section, adds the object to the shared buffer or queue, and releases the lock.
A consumer acquires a lock to enter the critical section, retrieves and removes
an object from the shared buffer or queue, releases the lock, and then accesses
the retrieved object. The use of system-supported synchronization primitives,
like pthread mutex or pthread rwlock, simplifies the task of identifying the
producer-consumer communication channels through shared memory.

Two transfer points, one in the producer code and the other in the con-
sumer code are inserted. Both transfer points use the metadata transfer SPI.
The producer transfer point associates the producer thread’s metadata with the
produced object. The consumer transfer point retrieves the metadata associated
with the consumed object and propagates it to the consumer thread. Causeway
provides a user-level library that exports the metadata transfer SPI and manages
the metadata associated with shared memory objects.

2.6 Heterogeneity of Operating System Kernel and Hardware

It is quite common for a multi-tier application to be spread across machines
running heterogeneous operating system kernels on diverse hardware platforms.
The design of Causeway mandates that all inter-machine metadata propagation
be typed and be transmitted in network byte order. This ensures correct inter-
pretation of metadata at the receiver. Further, our implementation of Causeway
in FreeBSD lays out a blueprint for its implementation in other operating system
kernels. In Section 4.1 we list the transfer points in the FreeBSD kernel required
for the system-visible channels. An equivalent set of transfer points is required
in another operating system kernel, such as Linux.

2.7 Operating System Specific Meta-applications

Sometimes, parts of a meta-application may require modifications to the oper-
ating system kernel. Under such circumstances, the meta-application becomes
operating system specific. For example, we implemented a distributed priority
enforcement system on top of Causeway which may alter priorities of threads
and processes in a system — an operating system specific task. Thus, this meta-
application is operating system specific. On the other hand, if all we wanted in a
meta-application is to tag identifiers with requests, it would require no operating
system modification other than Causeway itself.

3 Microbenchmarks

In this section we quantify the overhead imposed by our implementation of
Causeway at the transfer points for two system-visible channels. We chose light-
weight applications to provide maximum exposure to Causeway’s overhead. We
wrote two microbenchmarks: the first measuring the overhead associated with
the transfer points for metadata propagation between a user-thread and a kernel
thread, and the second measuring the overhead for the transfer points for the
pipe channel.

In the first microbenchmark, a process creates a pthread which invokes a
getpid call. This test brings out the cost of metadata propagation across the
user-kernel boundary, because on each entry to and exit from the kernel, meta-
data is transferred from user space to kernel and vice versa. We repeat the
getpid call multiple times and measure its average cost. We perform this ex-
periment under the following scenarios: (1) without inserting the transfer point,
which is the base case, (2) inserting the transfer point but transferring 0 bytes
of metadata, (3) transferring 1 byte of metadata, and (4) transferring 32 bytes
of metadata.

[Description |Cost (machine cycles)|Cost (microseconds)|Overhead (%)]
Base case 7001 2.92 -
0 byte metadata 7841 3.27 12.0
1 byte metadata 9369 3.90 33.8
32 bytes metadata 9409 3.92 34.4

Table 3. Causeway Overhead (getpid test)

Table 3 shows the results of the above experiment. The cost of getpid in-
creased by about 840 machine cycles when a transfer point was introduced. We
used a 2.4 GHz Pentium 4 Xeon, so this overhead translates to about 0.35 mi-
croseconds. This result shows the cost of having the Causeway framework but
not using it to propagate any metadata. The overhead increased by about 1500

machine cycles or about 0.6 microseconds when transferring 1 byte of metadata.
To transfer 32 bytes of metadata, the further increase in overhead was small:
about 40 machine cycles or 0.02 microseconds. In relative terms, the overhead
with respect to the base case ranged from about 12% to less than 35% to transfer
metadata in the above test.

|Description |Cost (machine cycles)|Cost (microseconds)lOverhead (%)|
Base case 35782 14.9 -
0 byte metadata 36807 15.3 2.9
1 byte metadata 49858 20.8 39.3
32 bytes metadata 54383 22.66 52.0

Table 4. Causeway Overhead (pipe test)

The results of the above experiment show that the overhead of using Cause-
way is small. The overhead of inserting a transfer point is less than half of a
microsecond. The overhead of transferring 32 bytes of metadata is about 1 mi-
crosecond, and the overhead scales well with increasing metadata size.

The second microbenchmark measures the cost of transferring 1 byte of data
between two processes across a pipe. As before, we perform this experiment
under the four scenarios used in the previous microbenchmark. Table 4 shows
the result for the pipe test. The overhead of inserting a transfer point but passing
no metadata is similar to that of the getpid test. The overhead of passing
metadata is higher because the metadata is propagated across address spaces.
Nevertheless, the overhead of propagating up to 32 bytes of metadata is less than
8 microseconds, a small amount. Finally, the overhead scales well with increasing
metadata size. In this test Causeway’s overhead ranged from less than 3% to
about 52% over the base case.

Note that for the above measurements we could not use a microbenchmark
consisting of a network server and client as the cost of sending messages over the
network is several orders of magnitude higher than the overhead of Causeway in
terms of absolute cost and we would not have been able to detect the overhead
of Causeway with such a microbenchmark.

4 Evaluating Causeway

In this section we quantify the complexity involved in Causeway to insert transfer
points for system-visible channels, and transfer points in an implementation of
the TPC-W [12] benchmark. We also measure Causeway’s overhead on TPC-W.

4.1 Transfer Points for System-visible Channels

Sockets, pipes, and user-level thread /kernel-level thread boundary are the system-
visible channels supported by Causeway. Six transfer points in the FreeBSD 5.2

kernel support metadata propagation across these channels as shown in Ta-
ble 5. The user thread to kernel thread and kernel thread to user thread transfer
points are required if the application is multithreaded. The socket and pipe trans-
fer points are required if the application performs interprocess communication.
Transfer points within system-visible channels do not require reimplementation
for each new application.

|Location[Description |File name Function name
Kernel |User thread to kernel thread kern/kern kse.c thread_user_enter
Kernel |Kernel thread to user thread kern/kern kse.c thread_userret
Kernel |Kernel thread to socket message|kern/uipc_socket.c sosend
Kernel [Socket message to kernel thread kern/uipc_socket.c soreceive
Kernel [Kernel thread to pipe message |kern/sys_pipe.c pipe-write
Kernel |Pipe message to kernel thread |kern/sys_pipe.c pipe_read

Table 5. Transfer Points for System-visible Channels in the FreeBSD Kernel

4.2 Transfer Points for Apache and MySQL

We used Causeway to propagate metadata in an implementation of the TPC-
W [12] benchmark. Our implementation of the TPC-W benchmark used the
Apache web server (version 1.3.31) built with the PHP module (version 4.3.6)
and the MySQL database server (version 4.0.16). The TPC-W interactions are
implemented as PHP scripts.

Apache is a multi-process web server and does not use shared memory com-
munication among the different processes. Thus, no transfer points are required
in Apache.

MySQL is a multi-threaded program and it uses the libpthread library on
FreeBSD. Inspection of the MySQL source code revealed that though individual
MySQL pthreads access some shared data structure in a synchronized manner,
there is no communication between threads to exchange data corresponding to
a single request. In other words, a request in MySQL is executed in its entirety
by a single pthread. An incoming database connection is accepted by a listener
thread and handed over to a worker thread. The worker thread reads the request,
executes it and sends back the response. Hence, no transfer points are required
in MySQL as well.

In TPC-W, Apache and MySQL exchange messages across sockets. MySQL
uses user-level thread on top of kernel-level threads. Thus Causeway’s support
for metadata propagation across system-visible channels, viz., sockets, and user-
level thread and kernel-level thread boundary, suffices for our implementation of
TPC-W using Apache and MySQL. This support is provided in an augmented
FreeBSD kernel.

4.3 Overhead of Causeway on TPC-W

We conducted an experiment to evaluate the overhead imposed by Causeway on
our implementation of TPC-W under a realistic workload. We subjected TPC-
W to a workload consisting of emulated clients exercising the shopping miz [12]
workload. Apache, MySQL and the load generator ran on separate machines.
All the machines were 2.4 GHz Pentium Xeon with 2 Gigabytes of memory, and
were connected by switched Gigabit ethernet. We varied the number of concur-
rent emulated clients and measured the throughput (interactions per minute)
obtained from TPC-W. We compare the throughput obtained with the Cause-
way framework with that obtained without the Causeway framework (base case).
Under Causeway we transferred 4 bytes of metadata across each transfer point
for TPC-W. Table 6 shows the results of this experiment; Causeway’s overhead
on TPC-W’s throughput remains less than 5%, further it does not increase with
increasing load on the system and remains fairly constant. This result shows
that Causeway may be used in a production environment without any substan-
tial performance degradation.

No. of concurrent|Throughput| Throughput Causeway
emulated clients | (base case) |using Causeway|Overhead (%)
10 89.4 89 4.91
50 424.8 411 3.25
100 844.2 826.4 2.11

Table 6. TPC-W Throughput (interactions/minute) for Shopping Mix

5 Example Use of Causeway: Multi-tier Priority
Propagation

Meta-applications to control and analyze the execution of applications can be
built easily using Causeway. We illustrate one such meta-application here.

Using Causeway we could rapidly implement a priority propagation system,
enabling a multi-tier application to prioritize the execution of requests. Under
this system, upon receiving a request the application injects a priority as meta-
data, Causeway propagates this priority metadata with the execution of the
request to each of the tiers, and the meta-application uses the priority metadata
to enforce priority scheduling on each tier. The meta-application is automatically
invoked on each tier by Causeway’s transfer point callback mechanism.

The implementation of the multi-tier priority propagation system on top of
Causeway required writing about 150 lines of code. We tested the multi-tier pri-
ority propagation system with an implementation of the TPC-W benchmark [12].
No modifications were required in the TPC-W application code, other than the
injection of priority metadata.

5.1 Metadata Access

The priorities are injected into the system when a request arrives, using the
metadata access API of Causeway. We register transfer point callback meth-
ods at the transfer points from a kernel thread to a user thread, and from a
socket to a kernel thread. These callback methods change the priorities of the
user thread and the kernel thread respectively. The first callback method affects
the scheduling of MySQL pthreads while the second one achieves the same for
Apache processes.

5.2 Application

We use the TPC-W [12] benchmark as our application. TPC-W simulates an
online bookstore. Its implementation consists of a front-end web server, providing
an HTTP front-end and serving static content, a middle-tier application that
implements the business logic, and a back-end database server that stores the
dynamic content of the site. The benchmark defines 14 interactions with the web
site, 13 of which access the database. 6 interactions write to the database, while
the others are read-only. Our hardware and software platforms are the same as
described earlier in Section 4.

5.3 Experiment

The goal of the experiment is to demonstrate that multi-tier priority propagation
using Causeway, without application modification, has considerable benefits. Our
performance metric is the response time of the high-priority requests. We show
that the response time of high priority requests is relatively independent of the
load imposed on the system. We also demonstrate that enforcing priority at both
tiers (web server and database server) is superior to only enforcing it at the first
tier.

We define a foreground load as a sequence of 100 instances of each TPC-W
interaction, spaced out in time by one second. We define a background load
that directs a steady stream of read-only requests at the site. The background
load simulates visitors browsing the web site, while the foreground load simulates
customers performing the actions that may lead to purchases at the site, thereby
deserving higher priority. We use two different levels of background load: one
which overloads the system and one which imposes a moderate load without,
however, saturating the system.

We have two levels of priority in the system: a default priority and a high
priority. Requests originating from the background load are always tagged with
metadata indicating the default priority. To demonstrate the effect of priorities,
we perform two experiments, with requests from the foreground load tagged
with metadata either indicating the high priority or the default priority. In ad-
dition, to demonstrate the difference between single-tier and multi-tier priority
enforcement, we run an experiment in which on the web server the priorities are
enforced by the transfer point callback methods as described above, but on the
database server they are ignored.

5.4 Results

Table 7 shows the average response times (along with the 95% confidence inter-
vals) in milliseconds for each of the interactions under the following conditions:

1. No background load: This case shows the baseline response time for each
interaction.

2. No priority: The background load is present, but neither of the tiers enforce
priority scheduling based on the metadata.

3. Priority in first tier: The background load is present, and the first tier (the
web server) enforces priority scheduling based on the metadata.

4. Priority in both tiers: The background load is present, and both tiers enforce
priority scheduling based on the metadata.

As further illustration of the results, we show in Figure 1 the response times,
sorted in descending order, for the execution of the 100 requests of the search-
request interaction under the four cases as described above.

Inter- No back- No Priority Priority
action ground load| priority in 1Ist. tier | in all tiers
admin-confirm|| 60 (£0.2) |1936 (£3.8)| 1993 (£38) | 342 (£71)
admin-request || 59 (£0.01) {1617 (£120)| 868 (£85) | 68 (£13)
best-sellers || 918 (£49) |3173 (£986)|3016 (£234)| 940 (£33)
buy-confirm || 85 (£1.3) | 1951 (£36) | 1992 (£67) |1457 (£131)
buy-request 60 (£1) [1930 (£4.5)| 1915 (£59) | 81 (£36)
customer-reg || 55 (£1.2) | 931 (£88) | 61 (£1.5) | 60 (£1.6)
home 61 (£1.7) | 1737 (£93) [1095 (£102)| 63 (£2.2)
new-product || 81 (£1.7) | 1933 (£3) | 1969 (£28) | 85 (£4)
order-display || 60 (£0.8) | 1930 (£3) | 1970 (+4) | 64 (£+4)
order-inquiry || 40 (£0.01) | 42 (£2.2) | 40 (£1) | 40 (+0.3)
product-detail|| 60 (£0.6) |1516 (£127)| 966 (£100) | 68 (£14)
search-request || 60 (£0.03) {1533 (£127)| 987 (£102) | 61 (£0.7)
search-result || 670 (£0.6) {2628 (+£314)|2528 (£5.3)| 671 (£1.5)
shopping-cart || 70 (£0.9) | 1931 (£4) | 1984 (£6) |217 (£40.5)

Table 7. Average Response Time and 95% Confidence Interval (in milliseconds) for
the TPC-W Interactions under High Background Load

Table 7 and Figure 1 reflect the behavior under a background load that
pushes the system into overload. The same results for a moderate background
load are shown in Table 8 and Figure 2.

5.5 Discussion

The results overall confirm the benefits of multi-tier priority enforcement. With
priorities enforced at both tiers the response times approximate those under no

Interaction: search-request

Fig. 1. Response Time Distribution (Sorted in Descending Order) for Search-Request

2000 T T T
No background load —+—
20000t No priority ----
1800 060600 Priority in 1st. tier ---%--
X)‘XX Priority in all tiers &

1600 f 2 i

1400 —% ‘1 |
- "’% i
M B |
E 1200 | : | J

: X
g ; b
é 1000 - : % J
g % ,
2 80| % | ,
€ !
*

600 [ok i

400 E

200 |-

[p.
0 ‘ L - L 1 1
0 10 20 30 70 80

Interaction (High Background Load)

Table 8.

Run identifier

Inter- No back- No Priority Priority
action ground load| priority in 1st. tier |in all tiers
admin-confirm 60 (£0.2) 95 (£6) 90 (£6) |65 (£1.3)
admin-request (£0.2) | 92 (£6) 65 (£2.7) |60 (£0.15)
best-sellers 918 (£49) |1092 (£165)|1137 (£158)[912 (£0.9)
buy-confirm 5 (£1.3) | 136 (£6) 123 (£6) |94 (£1.8)
buy-request 60 (£1) 103 (£7) 99 (£6) |63 (£1.7)
customer-reg 5 (£1.3) | 78 (£4.4) | 62 (£2.6) |59 (£1.1)

home 1(£1.9) | 98 (£6.2) | 82 (£5.5) | 62 (£2)
new-product 1 (£1.7) | 125 (£9.6) | 101 (£7) |84 (£3.4)
order-display || 60 (£0.8) | 102 (£6.9) | 101 (£6.5) | 62 (£1.5)
order-inquiry || 40 (£0.01) | 40 (£0.15) | 40 (£0.01) |40 (£0.01)
product-detail | 60 (£0.6) | 94 (£6) | 64 (£2.4) |60 (£0.2)
search-request || 60 (£0.04) | 97 (£6.3) | 65 (£2.8) |60 (£0.14)
search-result {670 (£0.62)|715 (£19.7)|728 (£11.8)|667 (£3.2)
shopping-cart || 70 (£0.86) | 110 (£6.2) | 83 (£4.1) |73 (£1.1)

Average Response Time and 95% Confidence Interval (in milliseconds) for

the TPC-W Interactions under Moderate Background Load

Interaction: search-request

160 T T T T T T
No background load —+—
No priority -->--
150 \ Priority in 1st. tier ---%---
| Priority in all tiers -8
140 fros e]
130 + x Roe00000000005¢ |
’g. 120 |)\sse\e)leeeoeeoog 4
_E 110 | ;eeeeeeeeeoog 4
5 100 - ¥ 0000 4
[=} N 1
3 : |
X 90F b %0666066(E
80 | W 360000¢ i
70 ¥ looooceos i
60
50 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Run identifier

Fig. 2. Response Time Distribution (Sorted in Descending Order) for Search Request
(Moderate Background Load)

load, and they are substantially better than those in the absence of priorities or in
the presence of priorities only at the first tier. The results for single-tier priority
enforcement are better than with no priorities, but inferior to using priorities at
both tiers. The differences are more outspoken in the case of overload, but remain
present even under more moderate loads. Given that Causeway allows multi-
tier priority propagation without modification of the application and without
noticeable overhead, we argue that this serves as a convincing demonstration of
its merits.

More detailed inspection of the results on a per-interaction basis leads to
some additional observations. First, in looking at Table 7 we see that for a large
number of the interactions the response time under load with multi-tier priorities
is almost identical to the response time under no load. For a few interactions,
however, the response under load is higher, even with the priorities. This ob-
servation is explained by the fact that the background load acquires read locks
on a certain table in the database, and the fact that the interactions that show
a slowdown under load acquire an exclusive lock on that table. As a result, in-
dependent of priorities, the foreground interactions need to wait for all current
readers to finish before they can proceed at the database. Under overload, there
can be a large number of such reads in progress, explaining the marked increases
in response time for the admin-confirm, buy-confirm, buy-request and shopping-
cart interactions. For the moderate load where only a very few such readers are
present, the differences almost vanish (see Table 8). For foreground interactions

that have no conflicts with the background load, there is almost no difference
between the the no-load case and the case of load and with multi-tier priorities.

Second, in a few cases, namely the customer-registration and the order-
inquire interactions, there is no difference between single-tier and multi-tier
priorities. This is the result of the fact that for these interactions there is no
access to the database or the cost is mainly governed by application execution
and not by database access. Conversely, for the interactions whose cost is pri-
marily governed by database access or for the interactions that acquire exclusive
locks on the database, there is a more pronounced difference between single-tier
and multi-tier priorities. In these cases, the benefit of enforcing priority at the
first tier is also limited relative to the case of not having priorities at all.

6 Related Work

Several meta-applications to control or analyze multi-tier applications exist in
the literature. The use of request tagging has been utilized to determine faults
in Internet services [5]. The resulting Pinpoint system uses instrumentation of
the J2EE platform to pass on request identifiers among the different compo-
nents of the system. Each component registers information in a log about the
request identifier, the component identifier and whether a particular operation
results in success or failure. Failure is defined as throwing a Java exception, a
runtime exception, an infinite loop, etc. The log is statistically analyzed using
data clustering techniques to find faulty components. Pinpoint does not sup-
port applications spanning multiple machines, but the authors state that the
Java RMI libraries can be extended to pass request identifiers across machines.
Unlike Causeway, Pinpoint does not track execution events in the kernel as its
instrumentation does not extend beyond the J2EE platform.

Aguilera et al. [1] infer causal paths from message traces to locate nodes
causing performance bottlenecks; their implementation is based on the Pinpoint
system [5]. They collect traces of messages between nodes, process them offline
to find causal relationships among them, and study the delay patterns of the
messages to infer which node is causing the bottleneck. Their system is intended
to operate in a ”black-box” environment, and therefore tries to be minimally
invasive. Causeway is more invasive, requiring kernel and library changes, but
in turn provides more functionality. In particular, it’s deterministic rather than
being heuristic, and much more fine-grained.

Magpie [4, 9] logs events, and extracts events belonging to a particular request
execution by performing temporal joins over the log of events. These joins are
based on application-specific schemas, which may require considerable expertise
and knowledge about the application. Magpie and request identification using
Causeway present an interesting set of tradeoffs. Magpie does not require kernel
or library modifications, and leverages event logging facilities already present in
Windows. In contrast, Causeway accepts the premise of such modifications, and
as a result avoids the need for detailed knowledge about the application.

TraceBack [2] provides a debugging facility in production systems. It can
identify what first went wrong in the event of a program crash, hang or exception.
It instruments the program to record control flow information at runtime, which
is later analyzed to locate the occurrence of the first fault.

DTE [3] propagates domain and type information among communicating
processes providing security and access control for interprocess communication.
While DTE provides security mechanisms, Causeway may be used to implement
arbitrary meta-applications.

Perhaps the work closest to Causeway is Stateful Distributed Interposition
(SDI) [11] which propagates contextual information along request execution
paths in a multi-tier application. Resource constraints and security classifica-
tion are examples of contextual information. Contextual information in SDI and
metadata in Causeway are analogous. SDI assumes all communication chan-
nels in a multi-tier program to be system-visible, and thus it does not propa-
gate contextual information across system-opaque channels. Causeway supports
metadata propagation across shared memory, a system-opaque channel.

7 Conclusions

We have designed Causeway, operating system support for facilitating develop-
ment of meta-applications to control and analyze multi-tier applications. Cause-
way provides interfaces for metadata injection and access which can be used for
propagation of metadata in multi-tier applications. Propagated metadata can
be accessed and used to implement the desired meta-application. We have im-
plemented Causeway in the FreeBSD operating system kernel. The complexity
of adding transfer points in the FreeBSD kernel for system-visible channels was
modest. Causeway’s support for system-visible channels suffices for metadata
propagation in an implementation of the TPC-W [12] benchmark using Apache
and MySQL — no modification to Apache or MySQL was required. We mea-
sured the overhead of Causeway and found it small enough so that it can be used
in a production environment. Further, the overhead scales well with increasing
metadata size and load on the application. We have demonstrated the use of
Causeway by implementing a multi-tier priority enforcing system and using it
to achieve global priority enforcement on our implementation of the TPC-W
benchmark. This required adding only about 150 lines of code on top of Cause-
way.

As ongoing and future work we are implementing call path profiling of dis-
tributed programs on top of Causeway. Call path profiling [7,8] associates re-
source consumption of program execution with call paths. At any point in the
program execution, a call path is defined as the sequence of call sites used to
activate each of the procedure frames on the call stack when the given point
of execution is reached. Call path profilers are superior to call-graph profilers
like gprof [6] because they can distinguish resource consumption of a procedure
based on the call paths leading to it.

In a distributed program whose components perform Remote Procedure Calls
(RPCs) among themselves, we can use Causeway to propagate the context infor-
mation (call path) from the caller to the callee, and use this propagated context
information to annotate the callee’s profiles. Profiles of the caller and the callee
may then be stitched together in a single call path tree using these annotations.
The end result is an end-to-end call path profile of a distributed program —
such a profiler does not exist in the literature. This profiling system illustrates
another useful meta-application on top of Causeway.

References

1. M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen.
Performance Debugging for Distributed Systems of Black Boxes. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03), pages
74-89, Oct. 2003.

2. A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and E. Witchel. TraceBack:
First Fault Diagnosis by Reconstruction of Distributed Control Flow. In Conference
on Programming Language Design and Implementation (PLDI) 2005, pages 201
212, June 2005.

3. L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. A
Domain and Type Enforcement UNIX Prototype. In Fifth USENIX UNIX Security
Symposium, June 1995.

4. P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for Request
Extraction and Workload Modelling. In OSDI, pages 259-272, Dec. 2004.

5. M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem
Determination in Large, Dynamic Internet Services. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks (IPDS Track), pages
595-604, June 2002.

6. S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a call graph execution
profiler. In SIGPLAN Symposium on Compiler Construction, pages 120-126, 1982.

7. R. J. Hall. Call path profiling. In Proceedings of the 14th International Conference
on Software Engineering, pages 296-306, 1992.

8. R. J. Hall and A. J. Goldberg. Call path profiling of monotonic program resources
in UNIX. In Proceedings of the USENIX Summer Technical Conference, 1993.

9. R. Isaacs, P. Barham, J. Bulpin, R. Mortier, and D. Narayanan. Request extraction
in Magpie: events, schemas and temporal joins. In SIGOPS EW’04: ACM SIGOPS
European Workshop, Sept. 2004.

10. Jon Currey. Real-Time CORBA Theory and Practice : A Standards-
based Approach to the Development of Distributed Real-Time Systems. At
http://www.uninova.pt/~jmf/aptr/Documentos/CorbaRT.pdf.

11. J. Reumann and K. G. Shin. Stateful Distributed Interposition. ACM Transactions
on Computer Systems, 22(1):1-48, Feb. 2004.

12. T. P. P. C. (TPC). TPC BENCHMARK W (web commerce). At
http://www.tpc.org/tpcw/, Feb. 2002.

