Composite Subscriptions in Content-based
Publish/Subscribe Systems

Guoli Li and Hans-Arno Jacobsen

Middleware Systems Research Group, University of Toronto, Toronto, ON, Canada

Abstract. Distributed publish/subscribe systems are naturally suited
for processing events in distributed systems. However, support for ex-
pressing patterns about distributed events and algorithms for detecting
correlations among these events are still largely unexplored. Inspired
from the requirements of decentralized, event-driven workflow process-
ing, we design a subscription language for expressing correlations among
distributed events. We illustrate the potential of our approach with a
workflow management case study. The language is validated and imple-
mented in PADRES. In this paper we present an overview of PADRES,
highlighting some of its novel features, including the composite subscrip-
tion language, the coordination patterns, the composite event detection
algorithms, the rule-based router design, and a detailed case study il-
lustrating the decentralized processing of workflows. Our experimental
evaluation shows that rule-based brokers are a viable and powerful al-
ternative to existing, special-purpose, content-based routing algorithms.
The experiments also show that the use of composite subscriptions in
PADRES significantly reduces the load on the network. Complex work-
flows can be processed in a decentralized fashion with a gain of 40%
in message dissemination cost. All processing is realized entirely in the
publish /subscribe paradigm.

1 Introduction

In distributed applications large numbers of events occur. In isolation these
events are often not too interesting or useful. However, as correlations over
time, for example, these events may represent interesting and useful information.
This information is important for coordinating activities in a distributed system.
Workflow processing and business process execution, where different stages of the
flow or process execute on distributed nodes, are examples of distributed appli-
cations generating potentially huge numbers of events. The efficient correlation
of these events reveals information about the status of the workflow. Events in
a workflow could be the initiation, the termination, or the status of a task.

Distributed publish/subscribe systems are well-suited to handle large num-
bers of events. A publish/subscribe system is comprised of information producers
who publish and information consumers who subscribe to information. The key
benefit of publish/subscribe for distributed event-based processing is the natural
decoupling of publishing and subscribing clients. This decoupling can enable the
design of large, distributed, loosely coupled systems that interoperate through
simple publish and subscribe-style operations.

2 Guoli Li and Hans-Arno Jacobsen

However, current publish/subscribe approaches lack the ability to address
event correlation and enable the coordination of activities associated with dis-
parate clients in the content-based network. In order to allow publish/subscribe
to support such distributed applications, first, an appropriate subscription lan-
guage needs to be designed which offers a suitable view over available events
to enable coordination. Second, event correlation requires the detection of dis-
tributed events. In publish/subscribe this is based on routing subscriptions and
publications throughout the broker network and on efficient composite event
detection algorithms realized on a single publish/subscribe broker.

Some work on detecting composite events in distributed publish/subscribe
systems is starting to appear [21,22,5]. However, these approaches are mainly
focusing on the design of the subscription language and do not address the event
correlation problem central to our approach. We have developed an expressive
content-based subscription language that is derived from the requirements of
event-driven, decentralized workflow management and business process execu-
tion scenarios. To validate our approach we have implemented the language in
PADRES (Publish/subscribe Applied to Distributed REsource Scheduling), a
novel distributed, content-based publish/subscribe messaging system, and have
built all the necessary infrastructure to support the deployment, monitoring,
and execution of workflows and business processes. In essence, we have realized
a decentralized workflow management and execution environment that builds
directly on top of a standard publish/subscribe interface.

PADRES’s subscription language is fully content-based, includes notions to
express time, supports variable bindings, coordination patterns, and composite
subscriptions. Composite subscriptions offer a higher level view for subscribers by
enriching the expressiveness of the subscription language. A composite subscrip-
tion consists of several atomic subscriptions linked by logical or temporal oper-
ators. An atomic subscription refers to the traditional notion of a subscription
in publish/subscribe and is matched by a single publication event; a composite
subscription is matched by a set of independent events potentially occurring at
different locations and times. PADRES is based on a rule-based broker that im-
plements composite event detection and introduces a novel distributed algorithm
for composite subscription routing.

Support for composite subscriptions is essential for applications where it
is impossible to detect a particular condition from isolated atomic events. For
example, in workflow management systems, tasks can only be executed if cer-
tain conditions are met. A given task may require that two other tasks have
successfully completed and a certain timing constraint is met. We will show
experimentally that supporting composite subscriptions in content-based pub-
lish /subscribe systems has two key advantages. First, subscribers receive fewer
messages and network traffic is reduced. Without composite subscriptions, the
subscriber must subscribe to all the corresponding atomic events in order to
receive the necessary information. The subscriber would be overwhelmed by an
excessive amount of atomic events, most of which may be irrelevant and could
be filtered out before reaching the subscriber. Second, the overall performance

Lecture Notes in Computer Science 3

of the publish/subscribe system is improved by detecting composite events in
the network, rather than at the edge of the network. Moreover, composite sub-
scriptions reduce the complexity of subscriber components.

The rest of this paper is organized as follows. Section 2 presents background
material and related work. An overview of PADRES is given in Section 3. Sec-
tion 4 presents the PADRES subscription language, composite subscription rout-
ing and composite event detection in detail. A workflow management system case
study built on PADRES is discussed Section 5. An experimental evaluation of
PADRES and its potential for workflow management is presented in Section 6.

2 Background and Related Work

Content-based Routing — Content-based publish/subscribe systems typically
utilize content-based routing in lieu of the standard address-based routing. Since
publishers and subscribers are decoupled, a publication is routed towards the
interested subscribers without knowing specifically where subscribers are and
how many subscribers exist. The content-based address of a subscriber is the set
of subscriptions issued by the subscriber. There are several interesting projects
dealing with content-based routing, such as SIENA [3], REBECA [18], JEDI [6],
Hermes [20] and Gryphon [19]. Covering and merging-based routing, which are
optimizations for content-based routing, are discussed in SIENA [3], JEDI 6],
REBECA [18], and PADRES [15]. In addition to publications and subscriptions,
content-based routing can use advertisements [18,3], which are indications of
the data that publishers will publish in the future. Advertisements are used
to form routing paths along which subscriptions are propagated. Without ad-
vertisements, subscriptions must be flooded throughout the network. PADRES
adopts the publication-subscription-advertisement model for content-based rout-
ing and suggests several novel features not realized in existing approaches. The
novel features of PADRES discussed in this paper include a rule-based router
design, algorithms to support composite subscription routing, composite event
detection, coordination patterns for expressing workflows and business processes,
and support for the decentralized deployment and execution of workflows and
business processes.

Composite Events — An event is defined as a state transition. In the pub-
lish/subscribe literature, events describe state transitions of interest to sub-
scribers. Events are often synonymously referred to as publications '. A sub-
scription captures the interest of a subscriber to be informed about possible
events. We generically refer to subscriptions, publications, and advertisement as
messages, if no distinction is required.

A composite event refers to a pattern of event occurrences of interest to a
subscriber. These patterns may express temporal or causal relationships between
different events. A pattern is matched, if the specified events have occurred,
subject to optional timing constraints. Since several events are involved in the

1 One could further distinguish between the state transition (i.e., event) and the pub-
lished information that reports on the transition (i.e., the publication).

4 Guoli Li and Hans-Arno Jacobsen

matching of a single subscription pattern the matching engine has to store partial
matching states. In the literature, the term composite event has been used to
refer to a subscription that expresses the pattern defining a composite event.
To make the difference between the state transitions (i.e., the events) and the
actual interest specification clearer, when discussing our work, we use the term
composite subscription to refer to the pattern and use composite event to mean
the distributed state transitions of relevance for the subscriber of the composite
subscription. Also to distinguish composite subscriptions from traditional, non-
composite subscriptions, we refer to the latter as atomic subscriptions.

The earliest approaches for enabling the processing of composite events were
rule-based production systems established in artificial intelligence. One of the
most widely used matching algorithms, the Rete algorithm is used in many
expert systems today [9]. Rete compiles rules into a network. The design of
Rete trades off space for processing efficiency. The Java Expert System Shell
(Jess) [10] is a rule-based matching engine based on the Rete algorithm. Our
PADRES broker is based on Jess. The Publication Routing Table (PRT) and
Subscription Routing Table (SRT) are two Jess engines. We show how content-
based publish/subscribe messages (i.e., subscriptions, composite subscriptions,
publications, and advertisements) can be mapped to rules and facts processed
by Rete-type rule engines.

Many early approaches for composite event processing relate to active databa-
ses and are based on centralized evaluation schemes [12,11,16,13,17,4]. These
projects differ primarily in the mechanism used for event detection. Ode [12]
uses a finite automaton and SAMOS [11] uses a Petri Net. Other approaches use
trees as the data structure for representing and detecting composite events. The
main reason for adopting trees is that they are simple and intuitive for represent-
ing composition. The traversal and manipulation of trees have been thoroughly
studied in the past, and a large number of efficient algorithms have been de-
veloped [16,13,1,17]. GEM [16] and READY [13] are projects using tree-based
approaches to process incoming events. Atomic events are leaf nodes and oper-
ators are inner nodes in the tree structure. The composite event is represented
by the root of the tree. The main limitation of GEM is each composite event
has its own tree, and identical subtrees cannot be shared among composite event
trees. Similar to GEM and READY, EPS (Event Processing Service) [17] pro-
vides a tree-based event specification language. EPS alleviates the limitation of
GEM by using a shared subscription tree to process incoming events. Snoop [4],
also a tree-based approach, provides an expressive composite event specification
language with temporal support. Snoop introduces the notion of consumption
policies called contexts. They are used to capture application semantics by re-
solving which events are consumed from the event history for composite event
detection in case of ambiguity. Composite subscriptions in PADRES are also
represented by trees. Unique to PADRES is the mapping of atomic and com-
posite subscriptions to rules and the support of full content-based, composite
subscriptions. The rule-based processing has been thoroughly studied, leading
to a large number of efficient algorithms for rule/fact matching. The rule-based

Lecture Notes in Computer Science 5

approach employed in PADRES takes advantage of the existing research for the
PADRES broker design. PADRES also supports a tree decomposition algorithm
for composite subscription routing.

The specification and detection of composite events in the context of pub-
lish/subscribe systems has recently become an important research area [21,22,
5]. Hermes [20] and Gryphon [19] provide parameterized atomic events to enrich
the expressiveness of subscriptions. Courtenage [5] specifies composite events
based on the A-calculus. The approach lacks support for temporal constraints.
CEA [21] proposes a Core Composite Event Language to express event patterns
that occur concurrently. CEA constitutes a composite event detection framework
built as an extension of an existing publish/subscribe middleware platform. The
CEA language is compiled into automata for distributed event detection sup-
porting regular expression-type patterns. CEA employs policies to ensure that
mobile event detectors perform distributed event detection at favorable loca-
tions, such as close to event sources. REBECA [22] describes composite events
using composite event filter expressions, which can be mapped to expressions of
the Core Composite Event Language [21]. The subscription language design of
PADRES has been inspired from requirements set forth by workflow and busi-
ness process description languages and the requirements of distributed execution
of these processes. Unique to PADRES is the use of variables in subscriptions
to join atomic events. PADRES also supports language elements to express de-
pendencies and condition-based repetition relationships of activities (i.e., while
loops). Architecturally different from existing approaches, PADRES builds the
composite subscription processing and composite event detection capability into
the publish/subscribe layer.

3 PADRES System Description

The PADRES system consists of a set of brokers connected by a peer-to-peer
overlay network. Clients connect to brokers using various binding interfaces such
as Java Remote Method Invocation (RMI) and Java Messaging Service (JMS).
Each PADRES broker employs a rule-based engine to route and match pub-
lish/subscribe messages, and is used for composite event detection. An overview
of PADRES is provided in [8]. This paper focuses on the specification, detec-
tion, and use of composite events. PADRES provides four other novel features
as well: monitoring support, historic query capability, fault detection and re-
pair, and load balancing. A monitor module, which is an administrative client in
PADRES, could display the broker network topology, trace messages, and mea-
sure the performance of the broker network. The historic data access module
allows clients to subscribe to both future and historic publications. The fault
tolerance module detects failures in the publish/subscribe layer and initiates
failure recovery. The load balancing module handles the scenarios in which a
broker is overloaded by a large number of publishers or subscribers. The detail
of these features goes beyond the scope of this paper. Fig. 10 shows the protocol
stack of PADRES. This section discusses the architecture of PADRES for pro-
cessing of atomic subscriptions. The extension of PADRES to process composite

6 Guoli Li and Hans-Arno Jacobsen

SRT-B3
(1) adv ([class,=fool.[attr.>,17]) If sub overlapping [Send to
(3) pub ([class.foo]. [attr,28]) ([elass= fool [attr>17)) [B Pub/sub Messages

PRT-B3 OutputQueues

Advertiser/
Publisher If pub overlapping [Send to
O [(elass=fool [atr>20) | B
ORT-Bs
B1 G
@ e—a

InputQueue

Matching
Engine/JESS

., (B

B PRT

B

(2) sub ([class,= foo].[attr.>,20])

Fig. 1. Broker Network Fig. 2. Broker Architecture

subscription and the case study applying composite subscription processing to
workflow management are discussed later.

3.1 Message Format

The PADRES subscription language is based on the traditional [attribute,
operator, value] predicates used in several existing content-based publish/
subscribe systems [3, 18,19, 7]. An atomic subscription is a conjunction of pred-
icates. For example, an atomic subscription in workflow management may be
([class, =, job-status], [appl, =, payroll], [job-name, isPresent, *]).
The comma between predicates indicates the conjunction relation. This subscrip-
tion is matched by publications of all jobs involved in application payroll. We
support operators, such as =, >, <, >, <, and isPresent. The special operator
1sPresent means an attribute could be any value in a given range. Each sub-
scription message has a mandatory tuple describing the class of the message.
The class attribute provides a guaranteed selective predicate for matching, sim-
ilar to the topic in topic-based publish/subscribe systems?. Other predicates
are constraints on particular attributes. Advertisements have the same format
as atomic subscriptions. Publications are sets of [attribute, value] pairs.
There is a match between a subscription and a publication if each predicate in
the subscription is satisfied by a corresponding [attribute, value] pair in the
publication. A match between a subscription and a advertisement means the sets
of publications matching the advertisement and the subscription are overlap.

3.2 Network Architecture

The overlay network connecting the brokers is a set of connections that form
the basis for message routing. The overlay routing data is stored in Overlay
Routing Tables (ORT) at each broker. Specifically, each broker knows its neigh-
bors from the ORT. Message routing in PADRES is based on the publication-
subscription-advertisement model established by the SIENA project [3]. We as-
sume that publications are the most common messages, and advertisements are

2 The PADRES language is fully content-based based on a rich predicate language.

Lecture Notes in Computer Science 7

the least common ones. A publisher issues an advertisement before it publishes.
An advertisement allows the publisher to publish a set of publications matching
this advertisement. Advertisements are effectively flooded to all brokers along
the overlay network. A subscriber may subscribe at any time. The subscrip-
tions are routed according to the Subscription Routing Table (SRT), which is
built based on the knowledge of advertisements. The SRT is essentially a list
of [advertisement,last hop] tuples. If a subscription overlaps an advertise-
ment in the SRT, it will be forwarded to the last hop broker the advertisement
came from. Subscriptions are routed hop by hop to the publisher, who adver-
tises information of interest to the subscriber. Meanwhile, the subscription will
be used to construct the Publication Routing Table (PRT). Like the SRT, the
PRT is logically a list of [subscription,last hop] tuples, which is used to
route publications. If a publication matches a subscription in the PRT, it will
be forwarded to the last hop broker of that subscription until it reaches the sub-
scriber. A diagram showing the overlay network, SRT and PRT is provided in
Fig. 1. In this figure, step 1) an advertisement is propagated from B;. Step 2)
a matching subscription enters from Bs. Since the subscription overlaps the ad-
vertisement at broker Bs, it is sent to B;. Step 3) a publication is routed along
the path established by the subscription to Bs. A subscription/advertisement
covering and merging scheme [15] is used to optimize content-based routing by
reducing network traffic and routing table size, especially for applications with
highly clustered data.

3.3 Broker Architecture

The PADRES brokers are modular software components built on a set of queues:
one input queue and multiple output queues. Each output queue represents a
unique message destination. A diagram of the broker architecture is provided
in Fig. 2. The matching engine between the input queue and output queues is
built using Jess. It maintains the SRT and PRT, which are Rete trees [9]. For
example, in the PRT, subscriptions are mapped to rules, and publications are
mapped to facts, as shown in Fig. 3. An atomic subscription message is mapped
to the antecedent of a rule; the actions to be taken if the subscription is matched
are mapped to the consequent of the rule. The antecedent encodes the message
filter condition and the consequent encodes the notification semantic.

The matching between subscriptions and publications is transformed to the
matching between rules and facts, which is performed by the rule-based broker.
When a new message is received by the broker, it is placed in the input queue.
The matching engine takes the message from the input queue. If the message is a
publication, it is inserted into the PRT as a fact. When a publication matches a
subscription in the PRT, its next hop destination is set to the last hop of the sub-
scription, and it is placed into the corresponding output queue(s). If the message
is a subscription, the matching engine first routes it according to the SRT, and,
if there is an advertisement overlapping the subscription, the subscription will
be inserted into the PRT as a rule. Essentially, the rule-based broker performs
matching and decides the next hop destinations of the messages as a router.

8 Guoli Li and Hans-Arno Jacobsen

S1=([class,=job-status], | Atomic Subscription: {R“l_e S1
[appl,=,payroll], 1.Message ID is mapped to RuleID (job-status (appl = payroll)
[job-name = A] 2.The class is mapped to the type of the rule (job-name = A)
[price,<,100]) 3.Predicate are mapped to Boolean expressions in a rull (price < 100))
4.The LHS of the rule is the conjunctions of the => (forward to destinations)
Boolean expressions)
- b Publication: {Fact P1
P1=(class job-status], 1. Message ID is mappaed to FactID (job-status (appl yroll)
[appl,payroll] . PPl Pay
Nl ’ 2. The class is mappped to the type of the fact (job-name BY))
[job-name BY) 3. The (attr, val) pairs are mapped the content of 3
the fact

Fig. 3. Mapping Subscriptions/Publications to Rules/Facts

This novel rule-based approach allows for powerful subscription language and
notification semantics and naturally enables composites subscriptions.

4 Composite Subscription Processing
4.1 Composite Subscription Language

The composite subscription language is inspired by the requirements of workflow
management and business process execution. The language should be powerful
enough to eventually describe workflows defined using the Business Process Ex-
ecution Langauge (BPEL4WS) [14], which is a standard language for business
processes. PADRES supports parallelization, alternation, sequence and repetition
compositions. PADRES also supports variable bindings that serve to correlate
and aggregate publications by specifying constraints on attribute values between
different atomic subscriptions. A composite subscription is represented by a sub-
scription tree, where the internal nodes are operators and leaf nodes are atomic
subscriptions, as shown in Figure 4 (b).

The operator to represent the parallelization pattern is AND, denoted by the
symbol (&). The composite subscription (s1 & s2) is matched when both s; and
so are matched, irrespective of their matching order. The operator & is to con-
nect two or more subscriptions, and it is different from the conjunction operator
between predicates in an atomic subscription that requires to be matched by
one publication. The alternation pattern represents the matching of any of two
specified subscriptions using operator OR, denoted as (||). The composite sub-
scription (s || s2) is satisfied when either s; or sy is matched by a publication.
Furthermore, composite subscriptions in PADRES can have variables bound to
values in the publications. Variables are represented by $ in subscription predi-
cates. Parenthesis are used to specify the priority of operators. In the example
below, the composite subscription consists of three atomic subscriptions, linked
using & and ||, and requires the values of the attribute appl in the matching
publications to be equal. This is expressed using the variable symbol $X.

{Rule (((job-status (appl = $X) (job-name = A)(state = succ)) &
(job-status (appl $X) (job-name = B) (state succ))) ||
(job-status (appl = $X) (job-name = C)(state = succ)))

=> (forward a notification to proper destinations)}

Events in applications may have sequential relations, that is, one event hap-
pens before the occurrence of another event. The sequence pattern describes this

Lecture Notes in Computer Science 9

kind of event relation. The composite subscription (s1;(timespan:ts] 52)[within:wi]
is matched when a publication ps matching s occurs provided publication p;
matching s; has already occurred. The timespan parameter specifies the mini-
mum time step of the two publications; the within parameter limits the maximum
time span between them. In the sequence pattern, a time predicate is added to
standard subscriptions. Suppose s; and ss subscribe to job A and job B respec-
tively, as in the previous example. The composite subscription is mapped to a
rule as described below. This pattern requires that the time ps is published is
greater than that of p;.
{Rule ((job-status ...(job-name = A) (time = $Y)...) &
(job-status ...(job-name = B)(time > $Y+ts) (time < $Y+wi)))
=> (forward a notification to proper destinations)}

The repetition pattern describes an aperiodic or periodic event. PADRES
can describe the repetition events as Repetition(S, n, attr, v). It means
publications matching S happen n times and attribute attr increases by step v,
or decreases if v is negative. The iteration is controlled the value of attr with
step v. A repetition pattern can be mapped to a rule as below.

{Rule ((job-status ...(job-name = A)(attr = $Z)...) &

(job-status ...(job-name = A)(attr = $Z+v)...)&
Ce &
(job-status ... (job-name = A)(attr = $Z+(n-1)v)...))
=> (forward a notification to proper destinations)}

Composite subscriptions can be composed in a nested fashion using the above
operators to create more complex composite subscriptions. Mapping composite
subscriptions to rules consists of three steps: first, each atomic subscription is
mapped to part of the antecedent. Second, connect each part of the antecedent
using logical operators and variables. Third, activites to be taken after matching
are mapped to the consequent of the rule. In the PADRES broker, both atomic
and composite subscriptions are mapped to rules. That is, extending this sub-
scription language does not require significant changes in the matching engine.

4.2 Composite Subscription Routing

In a large-scale publish/subscribe system, publications are issued at geographi-
cally dispersed sites. A centralized composite event detection scheme constitutes
a potential bottleneck and consists of a single point of failure. All atomic pub-
lications have to be centrally collected in order to detect an occurrence of a
composite event. Our distributed solution consists in detecting parts of an event
pattern and aggregating the parts. A notification message signifying the occur-
rence of the composite event is sent to the subscriber only after all the parts
are detected. The main difficulties of distributed event detection are routing
composite subscriptions, including where and how to decompose a composite
subscription, and routing the individual parts of the subscription. The loca-
tion of detection should be as close to publishers as possible to ensure that the
publications contributing to a given composite subscription are not unnecessar-
ily disseminated throughout the broker network. In other words, the composite

10 Guoli Li and Hans-Arno Jacobsen

Broker 2: (S1&$2)||S3 Broker 4: S1&S2
(S1&S)S3 (S1&S2))[S3 1
OL (&) m

4 @ @ 3
& (&
Psz @ @ 5 6

(@ ®

Fig. 4. Composite Subscription Routing

subscription should be forwarded to the publishers within the broker network as
far as possible before it is decomposed. As a result, bandwidth usage is reduced.
Following the example in Fig. 4 (a), suppose a composite subscription ((s; &
s2) || s3) arrives from broker 1, and its matching publications arrive from bro-
ker 3, 5, and 6. The composite subscription is split into parts along the routing
path, since the matching publications may arrive from different brokers. Atomic
subscriptions s; and so are detected at broker 5 and 6 respectively and the de-
tection results are combined at broker 4 for (s; & s2). Moreover, the detection
results could be shared among subscribers that have common subexpressions of
composite subscriptions in order to save bandwidth and computational effort.

Each atomic subscription in a composite subscription could find its destina-
tion(s) from SRT. If all atomic subscriptions have the same next hop destination,
a broker should forward the composite subscription as a whole to the destina-
tion; otherwise the composite subscription should be split into parts according to
different destinations, and each part should be forwarded to its own destination.
In Fig. 4 (b), since all matching publications are coming from broker 2, broker 1
routes the composite subscription as a whole. At broker 2 publications matching
s1 and sg arrive from broker 4 according to the SRT, while s3’s publications will
arrive from broker 3. As a result, the composite subscription is split into two
parts: (s; & s2) and s3. The first part is sent to broker 4, where it is split into
s1 and sg, and sent to broker 5 and 6 respectively. The second part s3 is routed
to broker 3. The routing scheme is to detect the event pattern matching a com-
posite subscription at a location which is as close as possible to the data sources.
A composite subscription is mapped to a rule, and a publication is mapped to
a fact at a single broker. The rule-based broker matches facts against rules and
decides where to route the notification if there is a match. Therefore, the broker
acts as both a message router and a composite event detector. The advantage
of using a rule-based matching engine is that it enables composite subscriptions
naturally without significant changes to the broker.

Composite subscriptions in PADRES are represented by a tree structure.
When a broker receives a composite subscription, it performs the following steps.
First, a destination tree is built bottom-up for the composite subscription ac-
cording to the SRT, which knows where all the atomic subscriptions came from.
Leaf nodes of the tree are destinations of atomic subscriptions; an internal node
is the destination of its child nodes if the two child nodes have the same desti-
nation, or null otherwise. If a node is null, all its parent nodes are null. Each

Lecture Notes in Computer Science 11

node in the composite subscription tree has a corresponding node in the des-
tination tree. The recursive algorithm for building such a tree is presented in
Fig. 5. The average time complexity of this algorithm is O(/N) and the average
space complexity is O(N+logN), where N is the number of atomic subscrip-
tions in a composite subscription. Second, the composite subscription tree is
split according to its destination tree. The decomposition process of a compos-
ite subscription tree is top-down. If the destination of a node in the composite
subscription tree is null, the subscription represented by the node is split into
two parts, one for each child node. Otherwise the node and its subtree are kept
as a whole unit. The algorithm is given in Fig. 6. The time and space complex-
ity of this algorithm is the same as algorithm buildDestinationTree(cs). Last,
each part resulted from the decomposition is routed to its destination, and the
composite subscription is mapped to a rule and inserted into the PRT for later
event detection. The process happens at each broker on the routing path. As a
result, all the atomic subscriptions are routed to their destinations as specified
by the destination tree and the broker network is ready to detect composite
events in a distributed mode. Moreover, after composite subscriptions are split
into atomic subscriptions, the covering-based and merging-based routing tech-
niques can be applied to create compacted PRTs/SRTs at brokers and further
reduce the network traffic [18,15].

There are several advantages of using distributed composite event detection.
Redundant detection is eliminated by sharing the detection results among sub-
scribers. For the overlapping expressions of composite subscriptions issued by
clients, the detection is executed once, and subscribers close to each other can
reuse the detection results. Distributed detection also reduces network traffic. A
composite subscription is forwarded into the network as far as possible before
it is split. As a result, the number of subscriptions injected into the network
does not increase significantly for composite subscriptions. Furthermore, com-
posite events are detected close to their data sources in the network and are not
widely disseminated. A single notification is sent after a match, instead of a set
of individual notifications for each matching publication, reducing the number
of publications routed in the federation.

buildDestinationTrees(cs):
Input: composite subscription cs
Output: a destination tree T

Initialize T according to cs
If (cs.root is leaf node) { decomposition(cs, T):
T.destination = cs.root.destination Input: composite subscription cs; destination tree T
JElse{ Output: a set of subscriptions S
T.left = buildDestinationTree(cs.root left)
T.right = buildDestinationTree(cs.root.right)
If (T.left. destination == T right destination) {
T.destination = T.left.destination

Initialize S = empty
If (T.destination == null){
S =S U decomposition(cs.root.left, T.left) U

JElse{ decomposition(cs.root.right, T.right)
T.destination = null JElse{
} S=SU cs
} }
Return T Return S

Fig. 5. Algorithm for Building a
Destination Tree

Fig. 6. Algorithm of Decomposing
a Composite Subscription

12 Guoli Li and Hans-Arno Jacobsen

4.3 Distributed Composite Event Detection

Each broker is an atomic/composite event detector. It processes a large number
of publications/subscriptions and maintains them as rules/facts in its matching
engine. The broker matches the rules against the facts. The occurrence of a com-
posite event is marked by the occurrence of the last event that completes the
composite event. When a publication is received, it is inserted as a fact. The fact
may match part of a rule, or several rules. Then the rule(s) are maintained in
the engine in a partial match state. If the fact does not fire a rule, the match-
ing engine updates the partial match state with the new fact. If the fact fires a
rule, that is, the fact makes a partially matched rule a full match then associated
composite subscription is satisfied. A notification message with a set of matching
publications, called a detection set, as its payload is issued as result. The main
problem in composite event detection is consuming the publications received by
the brokers, e.g. among all the matching publications what should go to the
detection set. To be more flexible, our matching engine provides all the possi-
ble combinations of matching publications. Consider the composite subscription
((s1 & s2) & s3), where s; matches publication type e;;, i=1 ~ 3 and j is the
instance number of e;. Subscription is issued after ess. Our composite event de-
tection semantic is based on the constraint that at least one of the events in the
detection set must be issued after the composite subscription. This is to remain
compatible with standard publish/subscribe approaches, where subscriptions re-
fer to information published in the future. The subscription is inserted into the
PRT as a rule. The matching engine filters out the solution set < e, es1, €31,
which is older than the subscription. The rule is partially matched in the match-
ing engine. Four possible composite event patterns matching the subscription
are given in Fig. 7 when esy arrives.

4.4 Unsubscription of Composite Subscriptions

In PADRES, if a client wants to revoke a subscription, it issues an unsubscription
message. To maintain the consistency of routing tables in the broker network,
ack messages are used to ensure the unsubscription process is successful. An
ack message is sent if a broker removes a subscription from its matching engine.
The unsubscription message is sent periodically every t; ms until its ack is
received. > When a broker receives an unsubscription, the following three steps
are performed: first, it checks the SRT to find the list of neighbor brokers to which
it previously routed the subscription (or part of the subscription). Second, if the
list is empty, it removes the subscription from its routing table, and sends back
an ack message. Otherwise, it splits the unsubscription if necessary, forwards
the unsubscription(s) to the brokers in the list, and waits for ack messages from
them. Last, the broker cannot safely delete the subscription until it collects all
the ack messages back from its neighbors. An ack message is sent back to the

3 If the ack does not arrive in #o ms, we assume the neighbor broker has failed. A
fault tolerant module is called to recover SRTs/PRTs. The details are beyond the
scope of this paper.

Lecture Notes in Computer Science 13

CS=(S1852)& S3

e3 €31 e32 Detection Sets of CS:
3 <el1,e21,€32> - .
&2 021 e22 | <ol e22632> ‘Q% 2D nsub(St and 52)
: <e12,621,632> % UrsSub(s2)
et el e12 : <e12,e22,e32>
A
12 3 4 5 6 71 8 tme ©
Fig. 7. Event Consuming Fig. 8. Unsubscription

broker/client who forwards the unsubscription. Fig. 8 shows an example of the
unsubscription process.

5 Case Study: Event-based Workflow Management

A workflow management system performs coordinated execution of workflows.
A workflow, also called an application, is a set of business-related activities that
are invoked in a specific sequence to achieve a business goal. An activity is
a computer job, such as a Unix job, a Windows NT job or a database job,
which is executed by a job execution agent. The agents are distributed in the
network, working in coordination with each other. The workflow manager starts
an execution instance of a workflow by issuing a workflow trigger, a message
starting the execution of a workflow.

The publish/subscribe messaging paradigm efficiently supports the decentral-
ized execution of event-driven, loosely coupled applications, such as workflows
and business processes. Since routing is content-based, the workflow manager
does not need to maintain the address information of each job execution agent
and route the messages to and from agents, as those messages are automatically
delivered using content-based routing. Moreover, no centrical workflow manager
is required, as workflow processing is fully decentralized. Job execution agents are
lightweight components without special logic for workflow management. They
only need the capability to send and receive messages and execute jobs. The
agents are publish/subscribe clients, who subscribe and publish to exchange
information using the publish/subscribe network. PADRES, which introduces
composite subscriptions in addition to the standard publish/subscribe features,
illustrates the successful application of the publish/subscribe paradigm to work-
flow management. The overall architecture for supporting workflow processing
is shown in Fig. 10. The publish/subscribe-based workflow management sys-
tem includes four components: workflow transformation, workflow deployment,
workflow execution and workflow monitoring.

Workflow Transformation — Workflows are specified as XML documents
detailing the job execution information and the various dependencies between
jobs. The XML documents are converted into a set of subscriptions and adver-
tisements. Fig. 9 shows an example of a workflow consisting of four jobs. Job
D depends on job B and job C, respectively, subject to certain constraints, such
as time and resources. Composite subscriptions are used to express all job de-
pendencies and constraints. A job can be run only when its job dependency
subscription is matched. Advertisements enable job execution agents to publish

14 Guoli Li and Hans-Arno Jacobsen

Workflow Envelope i
Managor Wrapper Unwrapper Job Execution
g Message Agent D

el 5 1. Subscribe to wrapper

o PADRES N T publications
e e — - -] [~ | —® 2. Extract the subscription/
» ;
*. Broker Network advertisement from the
wrapper envelope

publication . pra

Publication: ([class,agent_ctl],[agentagent_D], Composne subscription: 3. !ssue tht_e extra_cted
Appl: Payroll [content,subscription_string]) (sub(job B successes) & information as its own
- sub(job C successes)) subscription/advertisement

Fig. 9. Envelope Wrapper Message

job status information after completing a job. In a workflow, the jobs that have
no predecessors are called start jobs, for instance, job A is a start job in payroll.
Start jobs subscribe to a workflow trigger.

Workflow Deployment — The goal of workflow deployment is to send the
subscriptions and advertisements generated from the workflow definition file to
the corresponding job execution agents. For example, the agent for job D should
subscribe to execution status information of job B and job C. To send job de-
pendency subscriptions to job execution agents, the workflow manager uses an
envelope wrapper* message pattern to wrap the subscription inside an envelope
message that is complies with the publish/subscribe messaging paradigm. Each
envelope wrapper is a publication which indicates its destination agent. Agents
receive the wrapper messages by subscribing to the wrapper. For instance, agent
D subscribes to ([class,=,agent_ctl],[agent,=,agent_D]) in Fig. 9. As a result, agent
D receives the wrapper with a composite subscription embedded in the message.
Agents unwrap envelope messages by extracting the subscriptions from the en-
velopes, and issue them as their own subscriptions. The same process applies for
advertisements. As a result, the agents are ready to receive and publish work-
flow execution information. This deployment process is performed entirely using
publish /subscribe interactions.

Workflow Execution — The job execution agents are both subscribers and
publishers. The dual roles enable them to exchange messages within the pub-
lish /subscribe messaging system, enabling a coordinated execution of the work-
flow. A particular instance of a workflow is started by a trigger. It fires all start
jobs. When these start jobs are finished, they trigger their subsequent jobs. Ex-
ecution continues until all the jobs defined in the workflow are finished. The
key to workflow execution is job dependency subscriptions, which determine the
order of execution of jobs. All the message routing is automatic and transparent
to the workflow management layer.

Workflow Monitoring — A workflow management system maintains a trace
of job executions and provides a control and monitoring interface. The monitor
may be a separate publish/subscribe client in Fig. 10. An important function of
a workflow management system is monitoring. Real-time monitoring fits directly
in the content-based publish/subscribe paradigm. The monitor simply subscribes
to job execution status information publications of a particular set of jobs. As a
result, when the job is completed, the monitor knows the execution status infor-

4 The class of the envelope wrapper message is agent_ctl

Lecture Notes in Computer Science 15

£ PADRES System Monitor

=18l

Maini |Federation | Broker FirstBroker
] wmﬁ?ni‘ -

‘Workflow and Business Process Management o
l Disonnect Federation...

f ! || Refresh Federation
Manager Agent Apply Layout

Global Failure Detection..
/ ‘Workflow Definitions o
@ H Translator Job Agent
3] . .
. Monit Monit
\ Trigger [Deployer ontor omitor Agent Interface
[Broker Historic | Fault | Load Broker Historic | Fault ‘ Load
Input [Data Access|Detection|Balance Input [Data Acess|D i y
3 Rule-based Matching (Jess) Rule-based Matching (Jess)
g
= Publish/Subscribe Network Layer (PRT/SRT)
Overlay Network Layer (ORT)
)
Transport Layer (Java RMI) e s

l TCP/IP Network l (Comnected 0 ocahost: 1099

Fig. 10. PADRES Protocol Stack Fig.11. PADRES System Monitor

mation. PADRES also provides a graphical interface which allows the monitor
to visualize the network topology and message routing in order to gain an intu-
itive picture of the workflow execution as shown in Fig. 11. All the monitoring
functions are entirely based on the publish/subscribe layer’s primitives.

There are several advantages to use a publish/subscribe system for workflow
management. First, workflows are by nature event-driven. A workflow is started
by a trigger and is driven by publication messages of finished jobs. Control mes-
sages are automatically and transparently routed to the appropriate agents in
the publish/subscribe layer. Second, workflows are easily scalable to multiple
platforms, as the publish/subscribe architecture supports cross-platform appli-
cations in a distributed environment. Moreover, large-scale applications can be
supported easily. Third, the management of workflow definitions is flexible. It
is easy to add, modify or delete jobs from a workflow. The modification can
be performed dynamically. Furthermore, job monitoring is a natural fit for the
publish/subscribe paradigm, since managers can subscribe to job execution in-
formation. Fourth, multiple workflows can be deployed into the broker federation
at the same time. Concurrent execution of several workflow instances is possi-
ble. Finally, the distributed application deployment provides a robust workflow
management mechanism. Deploying a workflow application into a distributed
network, instead of using a central manager to control the execution of the
workflow, avoids a single point of failure.

6 Evaluation

We implement PADRES in Java with JDK1.4.2 using Jess as a matching engine
and RMI as the native transport protocol. All our experiments are performed
on a computer with an Intel Xeon 3GHz processor and 2GB RAM, of which
1GB is allocated to the JVM. Due to lack of benchmarks or real application
data, we generate the subscriptions and publications using a workload generator
which produces the data by selecting between 3 and 6 attributes from a list of
twenty attributes {a;, ¢ = 1...20} and selecting values from given value ranges,
[1..100] by default. We generate two kinds of data sets. Attributes and values

Routing Time (ms)(log sca€e)

16 Guoli Li and Hans-Arno Jacobsen

I Number of Matched Pubs (Uniformly Distr.)
| E22 Number of Match

IS
&

1000 +

a
8

T —+ Matching Time (Uniforily PBistr.)

H
8
g

1S
}
w
8
+

i
N
8

o
i
|
=
3
:

—— Naive Matching Algorithm
—=— Predicate Counting
001+ —&— PADRES Broker with Random Data

Number of Matching Publications
N
8

g

—e— PADRES Broker with Zipf Data ST i
|
0.001 + . . . | 0 4= . = . . .
0 50,000 100,000 150,000 200,000 PP LSS S E LSS
Number of Subscriptions Number of Composite Subscriptions
Fig. 12. Publication Matching Time Fig. 13. Composite Event Detection

in the first data set are selected randomly following a uniform distribution. The
second data set follows a Zipf distribution, in which attributes are chosen from
the attribute set {a;, i = 1...20}, where the probability of selecting a; is %,
and value v; is chosen with the probability of Ui For evaluating the distributed
workflow management system, we deployed a distributed network of 5 overlay
brokers, one with 10 job agents and one with 30 job agents, each representing a
separate workflow. In our experimental evaluation we focus on proving the via-
bility of composite subscriptions to encode workflows and business processes and
the use of publish/subscribe for the decentralized execution of these workflows.
Furthermore, we aim to evaluate the performance and overhead associated with
composite event detection and the effect of composite subscriptions on network
traffic for the execution of workflows. A small network is fully sufficient for this
purpose. The evaluation of large-scale broker networks comprising hundreds of
nodes is deferred to future work.

Publication Matching Time — We generate 200,000 subscriptions and
5,000 publications for both uniform distribution and Zipf distribution to evalu-
ate the publication matching time of PADRES brokers. Fig. 12 shows the average
matching time of publications against atomic subscriptions. The matching time
is given using a logarithmic scale. Each data point is obtained by averaging
the time taken to process 5,000 publications. We compare our broker based on
the Jess rule-based matching engine with two other methods. One is a naive
matching algorithm which linearly scans the routing table to find the matched
subscriptions. The other is a matching algorithm that is similar to the predi-
cate counting algorithm [2]. This algorithm calculates distinct predicates only
once. Our experiments show that the rule-based matching engine using a Rete
network is very efficient. It takes only 4.52ms to route a publication against
200,000 subscriptions for both sets. The well-known Rete algorithm trades space
for time. (Matching a publication against 200,000 subscriptions, the PADRES
broker uses 644MB of memory while the predicate counting algorithm uses about

T 100

T+ 10

- 0.1

Composite Subscription Matching Time(ms)

Lecture Notes in Computer Science 17

Table 1. Composite Subscription Routing Delay

Number of Atomic Subscriptions 2 3 4 5 6
Routing Delay (ms) 3.210 | 5.367 | 9.287 | 11.437 | 12.074

38MB memory space.)® The matching time does not increase significantly with
an increase in the number of subscriptions for both data sets. This indicates
that the Rete-based approach is suitable for large scale publish/subscribe sys-
tems and can process a large number of publication and subscription messages
efficiently.

Composite Subscription Matching Time — The performance of compos-
ite subscription matching is shown in Fig. 13. We first inject 1,000 publications
into the broker, and then insert 2,000 composite subscriptions, each of which
consists of 3 atomic subscriptions. Fig. 13 shows the average detection time per
composite subscription against the publications and the number of matched pub-
lications. Each data point in Fig. 13 represents the average detection time for
50 composite subscriptions. In the uniformly distributed data set, the number of
matched publications per composite subscription® does not change significantly,
as a result, the composite subscription matching time is stable. In the Zipf data
set, more publications are matched and the composite subscription matching
time varies according to the number of matched publications. The results show
that, given the publication set, the detection time does not increase with the
number of composite subscriptions in the matching engine for both data sets.
The matching time is effected by the number of matched publications. That
is, the more publications match a subscription, the longer it takes the match-
ing engine to process the subscription. From the experiment, we notice that if
there is no publication matching a composite subscription, the matching engine
stops the matching in 0.01ms no matter how many composite subscriptions are
resident in the broker. The number of publications resident in the matching en-
gine affects the detection time as well. The larger the number of publications,
the more publications are matched, and the longer matching time it takes per
composite subscription.

Routing Delay — We route a composite subscription according to its desti-
nation tree. The routing delay for a composite subscription at a broker includes
the time to build the destination tree and to split the composite subscription.
Table. 1 shows that the routing delay increases with the number of atomic sub-
scriptions included in a composite subscription. This substantiates the time com-
plexity of the two algorithms we discussed in Section 4.2 are O(N), where N is the
number of atomic subscriptions in a composite subscription. The more complex
a composite subscription is, the longer it takes to route the subscription.

Network Traffic Overhead — Detecting composite events in the broker
network reduces the message traffic received by clients. We compare two sce-

5 We maintain two Jess Retes in the matching engine as SRT and PRT. To support
composite subscription, publications are maintained in PRT as facts which consume
the space.

% The matched publications maybe count multiple times in different detection sets.

18 Guoli Li and Hans-Arno Jacobsen

8,000 +

—+— Without Composite Subscription
7,000 3500-
2 —=— Composite Subscription
S 6,000 + 3000
E 5,000 + 25001
°
% 4,000 + Network Traffic 20007
& 3000 ¢ (KB) 15007
§ 2,000 + 1000+
1,000 + 5001
o4
0 t t t t { Workflow A (8 jobs) Workflow B (24 jobs)
0 10,000 20,000 30,000 40,000 50,000 ‘. W/t Composite Sub. 1582 3264
Number of Publications [composie sub. 1084 2026
Fig. 14. Number of Notifications Fig. 15. Workflow Traffic

narios. In the first scenario, a client issues 200 composite subscriptions, each
consisting of 5 atomic subscriptions. In the second scenario, instead of compos-
ite subscriptions, the client issues the 1000 atomic subscriptions that make up
the original 200 composite subscriptions. After 40,000 publications are injected
into the broker network, we measure the number of notifications received by the
client in the different scenarios, as shown in Fig. 14. The result shows that the
number of notifications sent to the client is greatly reduced by the composite
subscriptions, yielding an overall reduced message traffic. For this scenario, the
reduction is up to 65%.

Distributed Workflow Deployment and Execution — We measure the
network traffic overhead of a workflow deployment and execution to show the
effect of composite subscriptions for workflow processing. We design two work-
flows: workflow A is a workflow with 8 jobs which includes the payroll example, a
diamond workflow shown in Fig. 9, twice in sequence. Workflow B is a workflow
with 24 jobs, which is workflow A followed by 4 concurrent diamond workflows.
The manager dispatches the workflow to agents”., and the agents submit ad-
vertisements and subscriptions, which represent the job dependencies. Without
composite subscriptions, agents have to subscribe to several atomic subscrip-
tions instead of a single composite one. When a composite subscription issued
by an agent is matched, only one notification message is sent back to the agent,
as opposed to several individual atomic notifications. So more messages are dis-
seminated in the broker network. To simplify the measurements, we assume each
publication and subscription message is 1IKB. We measure the traffic overhead
of the workflow deployment and 10 execution instances in Fig. 15. The results
show that composite subscriptions reduce the network bandwidth by about 40%
for both workflows.

7 Conclusions

In this paper, we introduce the PADRES project. PADRES is a distributed
publish/subscribe system building on and extending existing content-based rout-

" This is done through the publish/subscribe based injection mechanism described in
Section 5

Lecture Notes in Computer Science 19

ing approaches. PADRES offers an expressive subscription language, including
unique features such as composite subscriptions, various coordination patterns,
a notion of time and time-based subscriptions, and variable bindings. PADRES
fully integrates these features in a standard content-based subscription language.
The choice of language features has been derived from the requirements of work-
flow management and business process execution use cases. For example, struc-
tured coordination activities, such as sequence and while loops, today avail-
able in BPEL4AWS, are expressible.

The PADRES brokers build on a rule-based approach to perform content-
based event matching and composite event detection. We present two algorithms
for composite subscription routing and distributed composite event detection.
The experimental evaluation of PADRES shows that the rule-based broker design
is an efficient alternative to existing content-based message routing, matching,
and distributed event detection algorithms. For example, the routing overhead
is on the order of a few milliseconds for hundreds of thousands of subscriptions.

A distributed, decentralized workflow management system based on PADRES
is presented to validate the approach. The case study proves the viability of the
approach and introduces the concepts of decentralized deployment, execution,
and monitoring of workflows entirely in the publish/subscribe layer. Our experi-
ments show that through the use of composite subscriptions, subscribers receive
less notification messages. As a result, the overall network traffic overhead is
reduced. The experiments for workflow management further substantiate this
conclusion by showing that more benefits are gained from composite subscrip-
tions, for both workflow deployment and execution, leading to about 40% fewer
messages overall.

8 Acknowledgements

We would like to thank the PADRES team for their help and feedback in carrying
out this research. The team is currently comprised of Eli Fidler, Vinod Muthusamy,
Pengcheng Wan, Alex Cheung, and Serge Mankovski (Cybermation, Inc.) Between
May 2003 and April 2005, the PADRES project was supported by Cybermation, Inc.,
CITO, and NSERC.

References

1. A. Aho, J. Hopcroft, and J. Ullman. Data structures and algorithms. Reading,
MA: Addison- Wesley; 1983, 1983.

2. G. Ashayer, H. Leung, and H.-A. Jacobsen. Predicate matching and subscrip-
tion matching in publish/subscribe systems. In DEBS’02 Workshop at ICDCS 02,
Vienna, Austria, 2002.

3. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332-383, 2001.

4. S. Chakravarthy and D. Mishra. Snoop: An expressive event specification language
for active databases. Data and Knowledge Engineering, 14(1):1-26, 1994.

20

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Guoli Li and Hans-Arno Jacobsen

S. Courtenage. Specifying and detecting composite events in content-based pub-
lish /subscribe systems. In Proceedings of the 1st International Workshop on Dis-
tributed Event-Based Systems(DEBS’02), 2002.

G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-based infrastructure
and its application to the development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27(9), 2001.

F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe systems.
SIGMOD Rec., 30(2):115-126, 2001.

. E. Fidler, H.-A. Jacobsen, G. Li, , and S. Mankovski. Distributed publish/subscribe

for workflow management. International Conference on Feature Interactions in
Telecommunications and Software Systems (ICFI’05), Leisester, UK, 2005.

C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19(1):17-37, 1982.

E. J. Friedman-Hill. Jess, The Rule Engine for the Java Platform.
http://herzberg.ca.sandia.gov /jess/.

S. Gatziu and K. R. Dittrich. Detecting composite events in active database sys-
tems using petri nets. In Proceedings of the 4th Intl. Workshop on Research Issues
in Data Engineering (RIDE): Active Database Systems, Houston, Tezas, 1994.

N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in
active databases: Model & implementation. In Proceedings of the 18th International
Conference on Very Large Data Bases, pages 327-338, 1992.

R. E. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the ready
event notification service. In 19th IEEE International Conference on Distributed
Computing Systems Middleware Workshop, 1999.

IBM and Microsoft. Business process execution language for web services version
1.0. http://dev2dev.bea.com/techtrack/BPEL4AWS. jsp.

G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to routing, covering and
merging in publish/subscribe systems based on modified binary decision diagrams.
International Conference on Distributed Computing Systems (ICDCS’05), Colum-
bus, Ohio, USA, 2005.

M. Mansouri-Samani and M. Sloman. GEM: A generalized event monitoring lan-
guage for distributed systems. IEE/IOP/BCS Distributed Systems Engineering
Journal, 4(2), June 1997.

D. Moreto and M. Endler. Evaluating composite events using shared trees. IEFE
Proceedings - Software, 148(1):1-10, 2001.

G. Miihl. Large-scale content-based publish/subscribe systems. PhD thesis, Depart-
ment of Computer Science, Darmstadt University of Technology, 2002.

L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman.
Exploiting IP multicast in content-based publish-subscribe systems. In IFIP/ACM
International Conference on Distributed systems platforms, pages 185-207, 2000.
P. R. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware ar-
chitecture. In Proceedings of the 22nd International Conference on Distributed
Computing Systems, pages 611-618. IEEE Computer Society, 2002.

P. R. Pietzuch, B. Shand, and J. Bacon. Composite event detection as a generic
middleware extension. IEEE Network Magazine, Special Issue on Middleware Tech-
nologies for Future Communication Networks, January/February 2004.

A. Ulbrich, G. Miihl, T. Weis, and K. Geihs. Programming abstractions for content-
based publish/subscribe in object-oriented languages. In CoopIS/DOA/ODBASE
(2), pages 1538-1557, 2004.

