
G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 377 – 391, 2005.
© IFIP International Federation for Information Processing 2005

I-RMI: Performance Isolation in Information
Flow Applications

Mohamed Mansour and Karsten Schwan

College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332-0280

{mansour, schwan}@cc.gatech.edu

Abstract. A problem with many distributed applications is their behavior in
lieu of unpredictable variations in user request volumes or in available
resources. This paper explores a performance isolation-based approach to
creating robust distributed applications. For each application, the approach is to
(1) understand the performance dependencies that pervade it and then (2)
provide mechanisms for imposing constraints on the possible ‘spread’ of such
dependencies through the application. Concrete results are attained for J2EE
middleware, for which we identify sample performance dependencies: in the
application layer during request execution and in the middleware layer during
request de-fragmentation and during return parameter marshalling. Isolation
points are the novel software abstraction used to capture performance
dependencies and represent solutions for dealing with them, and they are used
to create (2) I(solation)-RMI, which is a version of RMI-IIOP implemented in
the WebSphere service infrastructure enhanced with isolation points. Initial
results show the approach’s ability to detect and filter ill-behaving messages
that can cause an up to a 85% drop in performance for the Trade3 benchmark,
and to eliminate up to a 56% drop in performance due to misbehaving clients.

1 Introduction

Modern middleware and programming technologies are making it ever easier to
rapidly develop complex distributed applications for heterogeneous computing and
communication systems. Typical software platforms are Microsoft’s .NET, Sun
Microsystems’ Java 2 Enterprise Edition (J2EE) specification, and vendor
implementations of these specifications like IBM’s WebSphere, BEA’s WebLogic,
and open source efforts like JBoss. Businesses use these platforms to link different
enterprise components across the wide spectrum of hardware and applications that are
part of their daily operation. Science and engineering applications benefit from their
rich functionality to capture data from remote sensors and instruments, access shared
information repositories, and create remote data and collaboration services.

The software platforms identified above are mapped to hardware infrastructures in
which end clients are concerned with data capture or presentation (Tier 1), supported
by two server-level tiers that implement application and storage services, respectively.
The J2EE architecture follows this 3-tier model by defining three container types
to host each of the tiers, where containers offer sets of standard services to cover

378 M. Mansour and K. Schwan

non-functional requirements like transactions, messaging, and security. The goal is for
developers to be able to focus on business logic and processes rather than having to
deal with dependencies on client or server hardware and software systems.

A barrier to creating the system-independent services envisioned by application
development platforms is the level of performance robustness of the distributed
applications created with them, in lieu of unpredictable variations in user behavior or
in the resources available for satisfying user requests. Recognition of this fact has
resulted in a multiplicity of techniques for dealing with behaviors like bursty request
volumes, including dynamic load balancing and migration, server replication, and
similar runtime methods [2, 6, 26]. For media-rich or data-intensive applications,
bursty loads can be combated by reducing the fidelity of media content, skipping
media frames, or using application-specific techniques for reducing computation and
communication loads [36].

Our interest is to use application- or environment-specific techniques like those
listed above to create more performance-robust distributed applications. The goal is to
better isolate applications from each other with respect to their performance
behaviors. The consequent technical contributions of this paper are the following.
First, experimental evidence demonstrates the importance of performance isolation
toward creating well-behaved distributed applications. Specifically, we show that the
unusual behavior of even a single client can substantially diminish a data-intensive
J2EE server’s ability to provide suitable levels of service to its other clients. Second,
we propose an approach to achieving performance isolation that (1) exposes system
resource information to the middleware layer, (2) enriches the middleware layer with
methods for analyzing and adapting application behavior, isolation points and
adaptation modules, (3) permits the middleware layer to execute these solutions when
or if necessary, the latter based on (4) user-defined SLAs (Service Level
Agreements). A final contribution is the description of a general architecture for
performance-isolated messaging both for J2EE applications and for the popular
publish/subscribe programming model.

The concrete artifact produced by and evaluated in this research is I(solation)-RMI,
a version of RMI-IIOP enhanced with functionality that enables applications to detect
and react in meaningful ways to violations of performance isolation SLAs. Our initial
results attained with I-RMI are encouraging. For the well-known Trade benchmark,
for example, we are able to sustain high throughput in the presence of resource-
intensive requests (a 85% improvement over traditional RMI-IIOP). We also report
the complete elimination of side-effects (an up to 56% drop in throughput) resulting
from slow clients. These results are achieved by using a sliding window algorithm at
two different isolation points.

In summary, the idea of performance isolation is to understand the causes of
performance dependencies in distributed applications and then provide middleware-
based solutions that prevent their ‘spread’ through the distributed client/server system.
In the remainder of this paper, the next section elaborates on the motivation behind
our work as well as gives a detailed overview of I-RMI design and implementation. In
Section 3 we list the software platforms and applications we experimented with.
Experimental results are presented in Section 4. Conclusions and future work are
given in Section 5.

 I-RMI: Performance Isolation in Information Flow Applications 379

2 I-RMI - Motivation, Design, and Implementation

2.1 Motivation

There is a plethora of work addressing runtime performance management in
distributed server systems, ranging from system-level solutions like process/load
migration or request throttling [26, 27, 32], to application-level tradeoffs in the quality
of server responses produced for clients vs. server response time [10, 18], to the
creation of new middleware or system abstractions that support the runtime adaptation
of applications and systems in response to changes in user requirements or platform
resources [7, 13, 15, 20, 24, 25].

The premise of our research is that modern distributed applications created with
development platforms like those based on the J2EE standard are sufficiently complex
to make it difficult, if not impossible, to design application-wide methods for
optimizing their runtime behavior. Instead, we address the simpler problem of
curtailing or limiting the spread of performance problems across distributed
client/server subsystems. Examples of this problem occur in the enterprise system run
by one of our industrial partners: (1) a backup job run by an administrator during
system operation can generate a sufficient level of I/O to slow down file system
operations for another subsystem running on the same machine, or (2) the logging of
operational data contained in files to a backend database slows down other
subsystems that use or produce this file data. One result of such slowdowns is that
they cause other subsystems’ request queues to build up, including those from the
front ends used by clients, potentially leading to operational failures (e.g.,
inappropriately long response times) or revenue loss (e.g., clients going to alternate
sites). The problem, of course, is that performance degradation in one part of the
system (i.e., the storage subsystem) leads to performance degradation elsewhere. In
other words, the system does not adequately deal with or isolate the performance
dependencies inherent to this distributed application.

Our approach to limiting performance dependencies in distributed enterprise
applications like those described in [5, 35] is to enhance middleware with
functionality that offers improved levels of performance isolation, thereby creating
a performance analogue of the firewalls used in computer security: (1) by
examining middleware to identify points along the code path that are vulnerable to
performance dependencies, termed isolation points, and (2) by re-coding these
points and enhancing them with a generic and extensible API that permit developers
to define runtime reactions to violations of application-specified measures of
performance exhibited by applications, represented as adaptation modules. The
outcome is the creation of performance ‘firewalls’ that prevent the spread of
performance problems across different components of distributed applications. Our
implementation approach addresses the broad class of web service-based
applications, by associating instrumentation and support for performance firewalls
with the RMI/IIOP implementations used in interactions between web, application,
and backend servers.

380 M. Mansour and K. Schwan

2.2 Architecture and Implementation

Isolation Points
Isolation points (IP) are associated with identified performance vulnerabilities,
enhancing them with a monitoring and control architecture [23] [34]. An isolation
point uses resource monitoring to detect performance issues and reacts through its
enforcement mechanism to prevent their further spread. The specific actions taken are
determined by user- or developer- defined policies.

I(solation)-RMI
I(solation)-RMI (I-RMI) is a version of RMI-IIOP enhanced with several isolation
points. Our current implementation uses the three isolation points listed below to
cover intra- and inter- process interaction. The monitoring and adaptation methods
used at these points utilize well-established techniques. The goal is to create an
implementation of I-RMI suitable for the information-flow architectures prevalent in
today’s enterprise computing systems rather than developing new techniques. I-RMI
currently defines three isolation points as shown in Fig. 1, an interesting aspect being
that they are backed by occurrences in enterprise software observed by our industrial
partners. We note here that as with related abstractions developed in earlier work [14,
20, 28], the changes made by isolation points occur at the middleware level and can
be realized and carried out without requiring modifications to application code.

Fig. 1. Overview of I-RMI

Slow Client
The idea of isolation points applies both to client-server- and event-based distributed
applications. Consider the structure of typical enterprise information systems
described in [21]. Events generated at the edge of a system trigger chains of message
passing and processing inside the system, where each processing step augments,
personalizes, or otherwise transforms the original event. An example of such a system
is deployed at one of our industrial partners, a major airline company, which feeds
ticket reservation events into a revenue estimation system. Each event results in 20-30
subsequent calls to other modules inside this system. The application uses
asynchronous messaging to decouple senders from receivers.

 I-RMI: Performance Isolation in Information Flow Applications 381

Message-based distributed applications have to be constructed and administered so
that the rates of delivering messages into queues do not exceed the rates of extracting
messages from queues and processing them. Jitter in rates [9] can both lead to queue
buildup and put pressure on servers’ available memory resources. This in turn can
deteriorate server performance and its ability to meet target performance levels. A
concrete set of examples studied in this paper addresses data-intensive applications,
our intent being to explore the uses of J2EE infrastructures for manipulating the large
data items implied by future applications in tele-medicine or -presence, remote
collaboration, remote access to rich data sources [3], and data mining. For example,
for the multimedia or document management applications described in Liferay Portal
[1], we expect message sizes to be quite large, and any additional delays in processing
queued messages by remote clients can result in substantial server-level performance
degradation.

The ‘slow client’ isolation point added to RMI-IIOP is intended as a generic
mechanism for handling the case described above. This point is inserted in the call
path before call argument marshalling. The logic we inject into the path monitors
queue behavior (system or application-level queues) indirectly, by monitoring the
respective incoming and outgoing request rates1. By combining estimates of queue
lengths with resource utilization on the local and remote nodes, the injected code can
detect situations where a slow node is causing serious queue buildup that might lead
to performance degradation on the server. A sliding window is used to measure these
rates, one window per causally connected incoming and outgoing APIs, one window
for local resource information, and a third window for resource information on each
remote machine. The specific action taken to reduce queue buildup is decided at
runtime by user-supplied logic. Possible actions include: decreasing the sizes of call
parameters to reduce the processing required on the target server, rerouting the call to
another host, rejecting the call and having the sender deal with this exception, etc.

Poison Messages
Our next scenario is derived from an airline enterprise information system (EIS).
System administrators strive to provide consistent performance levels for the
operation of their system. An occasional surge in resource usage, traced back to a
particular uncommon request type, can cause other subsystems’ requests to build up,
including those from the front ends used by clients, ultimately threatening operational
failure (e.g., inappropriately long response times) or revenue loss (e.g., clients going
to alternate sites). Such uncommon request/message types are termed Poison
Messages.

The poison message isolation point addresses this class of isolation problems. We
monitor a server’s steady state throughput (see Fig. 2) using request counting methods
similar to [13]. When a sudden drop in throughput (L1) and at the same time, a sharp
increase in resource utilization is detected, we identify a potential ‘poison’ state. A
snapshot (S1) of every request currently executing in the J2EE is taken and stored.

1 Understanding the causal relations between incoming and outgoing requests is necessary in

order to translate request rates into meaningful queue behaviors. The detection of such causal
relations is beyond the scope of this work. Aguilera et al [2] articulate possible ways to
automatically detect such relations.

382 M. Mansour and K. Schwan

When the server later recovers and throughput rises (L2) again, we take another
snapshot (S2) of all requests currently executing in the server. The set difference (S1 –
S2) represents a list of requests that are potential suspects. This procedure is repeated
every time we encounter such abnormal behavior and eventually, the suspect list
narrows down to a few request types. The specific action against the potential
suspects is left to the user to define, possible actions are reject or re-route to another
server.

L1

L2

time

throughput

t1 t2 t3 t4

Fig. 2. Dynamically detecting poison messages at runtime

Our current implementation identifies requests only by their API names. To deal
with server overload caused by changes in request parameters, the implementation has
to be extended to also scan and analyze request parameters [37]. Additional detection
logic is necessary if poison state is caused by a sequence of messages.

‘QoS Crosstalk’ due to Parallel Concurrent Streams
Tennenhouse describes `QoS crosstalk` as the effect of multiple concurrent streams
on server performance [31]. We include an isolation point in I-RMI to manage and
minimize such crosstalk effects. This section describes its implementation and
demonstrates the potential of poor performance isolation in the presence of multiple
concurrent request streams with varying request sizes. Such request streams are
common in information flow applications between front-end Web/UI servers and
backend business process servers.

The RMI-IIOP implementation we use dedicates a separate reader thread per client
connection. When a server is subjected to invocations from multiple clients, all of the
corresponding reader threads are activated, as they all receive notifications of data
being available on their underlying sockets. It is up to the underlying kernel thread
scheduler to decide which thread to run next. Assuming a round-robin scheduler and
equal buffer sizes on all connections, it is common for streams with very small
request sizes to receive better treatment compared to streams with large request sizes.
Note that this analysis also applies to writer threads.

Behaviors like those explained in the previous paragraph can be unacceptable for
certain application deployments or client connections. Known control methods
addressing them include changing the socket buffer sizes for certain connections,
altering threads priorities, or both. Setting the right buffer size for each connection
requires that such a value be calculated uniformly for all connections. Toward these
ends, we insert an isolation point at the IIOP reader thread level, and we re-implement
parts of RMI-IIOP to use a single reader thread and non-blocking I/O. The single

 I-RMI: Performance Isolation in Information Flow Applications 383

reader thread provides a single point of control where the ‘right’ buffer sizes can be
calculated and applied. The resource monitor is responsible for tracking how many
parallel streams are active. The enforcement logic dynamically adjusts the buffer sizes
for each connection to achieve the desired relative weights. This modified
implementation is backwards compatible and also scales better than the original
implementation.

3 Representative Applications and Experimental Results

To demonstrate the importance of performance isolation in the J2EE environment, we
select WebSphere as a representative software platform. We use the Trade3
application [16] developed by IBM as our test bed. The Trade3 benchmark models an
online stock brokerage application and is built to cover most of J2EE’s programming
model, including JSPs, EJBs, transactional aspects and database access. We deployed
the Trade3 benchmark with the UI web component on a separate machine from the
backend EJB components, WebSphere dynamic caching was not enabled in our
experiments.

Experimental Setup
Experiments are run in Georgia Tech’s enterprise computing laboratory, using
Version 5.1 of IBM WebSphere J2EE server running on an x345 IBM server
(hostname: dagobah), a dual 2.8GHz Xeon machine with 4GB memory and 1GB/s
NIC, running RedHat Linux 9.0. The server runs against Version 8.1 of DB2 which
runs on a separate machine with an identical configuration. Clients, secondary servers
and load generators run on an IBM BladeCenter with 14 HS20 blade servers installed
(hostnames awing1-awing14). Each blade has dual 2.8GHz Xeon processors with
1GB RAM and 1 Gb/s NIC card running RH Linux 9.0. We use the Tomcat 5.0.25
servlet container for hosting the front end of the Trade3 benchmark. Httperf [22] is
used to generate the workload for the trade benchmark.

3.1 ‘Slow Client’ Isolation Point

Consider the distributed application shown in Fig. 3. The external source injects
events into the system, by sending messages to a primary server where they are
queued for processing. A worker thread selects messages from the queue and sends
them to the secondary server. The primary server also provides auxiliary services to
an external client. The external event source generates a 512KB message every 10ms.
A client makes repeated requests to the server; each request carries a return parameter
of 1MB, the server caches the 1MB object and uses it to serve all client requests.

The average round trip time for the client is listed in Table 1. In the first case,
“Unloaded”, the secondary client runs with a very light load. Under these conditions,
the average queue length is under 3 units, and the client average RTT is 35 ms/call.
The second scenario, “Stress Load”, imposes a heavy workload on the secondary
server. We use the stress utility to run 8 CPU intensive threads. This results in a
significant drop in the ability of the secondary server to process its requests and
subsequently, creates queue buildup on the primary server. As a result of this buildup,

384 M. Mansour and K. Schwan

Fig. 3. Abstract view of nodes in an operational information system (OIS)

Table 1. Average round trip time for client calls

Scenario Average RTT
[from client side]

Unloaded secondary server 35 ms/call
Secondary server stress loaded 80 ms/call
Secondary server stress loaded
+ Primary server uses I-RMI

35 ms/call

available free memory drops on the primary server and garbage collection is triggered
more often (JVM memory was set to max. to 120MB). This results in an increase in
client average RTT to 80ms/call and a 56% drop in throughput. These can be
attributed to increased garbage collection on the primary server (see Error! Not a
valid bookmark self-reference.) due to memory pressure resulting from queue
buildup.

To demonstrate I-RMI effectiveness in controlling such effects, we repeat the
above experiment using I-RMI on the primary server. Fig. 5 shows the rate of calls
coming in and going out of the primary server. Rates are measured by dividing the
number of calls that occurred during the last N seconds, where N is the width of the
sliding window we use. At T=10000 the secondary server is subjected to CPU stress
load, and queue buildup is evident from the difference between the rates of incoming
and outgoing calls. The increased garbage collection (GC) activity (as shown in
Fig. 4) leads to a drop in the server’s ability to service events from the external event
source. As the CPU utilization crosses a predefined threshold (1.0 in this experiment),
the isolation logic decides to cancel calls outgoing to the secondary server (occurring
at about T=14,000). This results in the apparent increase in the rate of outgoing calls.
The application is unaware of the short circuit applied by the isolation logic, still
thinking that its calls are being completed. Note that this example uses the simplistic
approach of call elimination, to focus on the performance isolation properties of our
approach. Realistic systems will use any number of techniques, including request
rerouting, queuing for later submission, application-specific reductions in request
volume [12] and others.

Table 2. Number of times primary server garbage collects per 100 client calls

Scenario GC
Unloaded secondary server 6
Secondary server stress loaded 102

 I-RMI: Performance Isolation in Information Flow Applications 385

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25

Time (secs)

G
ar

ba
ge

 C
ol

le
ct

io
n

Fig. 4. Garbage collection at Primary Server

0

10

20

30

40

50

60

70

0 5 10 15 20 25
Time (secs)

R
at

e
of

 c
al

ls

(c
al

ls
/w

in
do

w
)

input rate outgoing rate

Fig. 5. Call rates measured at the primary server

3.2 ‘Poison Message’ Isolation Point

To demonstrate the effect of a poison message, we run a steady state workload against
the Trade3 benchmark. The workload generator (httperf) simulates 4 concurrent
sessions with 0.1 seconds think time. The resulting server average request execution
times are shown in Fig. 6, respectively (from T=0 to T=50). The small spikes at T=(3,
10, 24, …) are due to garbage collection on the server. At T=59, we manually call a
special API added to the benchmark application. This API allocates 10KB byte arrays
in a tight loop for 4 seconds. The effects of this API are evident in the graphs as a
sudden sharp increase in the average execution times for requests, a drop in server
throughput, and a dramatic increase in garbage collection activity on the server
(Fig. 7). The rising edge at T=59 triggers our detection algorithm, and it takes a
snapshot of all requests currently in the server. As the poison API finishes and server
load levels return to normal, the falling edge at T=63 triggers the detection algorithm
and it takes another snapshot of all API currently executing on the server. The
difference between these two snapshots correctly reveals the poison API in this
simple example. Subsequent calls to this API are filtered by the isolation point.

386 M. Mansour and K. Schwan

0

2

4

6

8

10

0 50 100
Time (secs)

G
ar

ba
ge

 C
ol

le
ct

io
n

Fig. 6. Average call execution time (ms/call)

0

50

100

150

200

250

0 50 100
Time (secs)

A
vg

. e
xe

cu
tio

n
tim

e
(m

s/
ca

ll)

Fig. 7. Garbage collection frequency at the Primary Server

3.3 ‘QoS Crosstalk’ Isolation Point

In this experiment, we demonstrate QoS effects in WebSphere and how I-RMI can
provide some control over such behavior. All times reported here represent the time
needed to read data for a request at the IIOP level. Request assembly time increases
proportionally with message size in the case of one client communicating with the
server. In the presence of a second client sending messages of constant 2K size, the
time needed to assemble the large request message more than doubles. In Fig. 8, the
lower curve shows message assembly times for a client, and the top curve shows
message assembly times for the same client in the presence of a secondary request
stream of size 2KB/request. This is attributed to the fact that the server processes both
streams with equal priority. We ameliorate the above behavior by controlling the
socket buffer size for each connection. A larger buffer enables us to read more data
per system call. We note here that this approach works only if there is data available
at the server socket for reading. This observation indicates the need to associate
additional system-level knowledge with isolation points.

In Fig. 9, we plot assembly time against message size for a request stream running
against a 2K/request secondary stream. The different lines represent different socket
buffer size settings. The top curve labeled '1x' represents equal buffer sizes for both

 I-RMI: Performance Isolation in Information Flow Applications 387

0
100
200
300

400
500
600

100 200 300 400 500

Message size (KB)

A
ss

em
bl

y
tim

e
(m

illi
se

co
nd

s)

Single Client Tw o Clients

Fig. 8. Time to assemble a request for one vs. two clients

0

100

200

300

400

500

600

100 200 300 400 500

Message size (KB)

A
ss

em
bl

y
tim

e
(m

illi
se

co
nd

s)

1x 2x 4x 8x 16x 32x

Fig. 9. Time to assemble a request at different buffer sizes

streams. For the next curve, labeled '2x', we set the socket buffer size for the main
stream to be twice that of the secondary stream and so on. A larger buffer size clearly
reduces the time needed to assemble a large request and therefore, reduces the effects
of parallel request streams.

Our implementation replaces the one-reader-thread-per-connection IIOP model in
WebSphere with a single reader thread using non-blocking socket I/O. A single reader
thread constitutes a single point at which an enforcement mechanism can be realized.
Its presence also removes dependencies on the underlying thread scheduler. Care is
taken to prevent blocking of this single reader thread. Processing the socket data and
handling it to the ORB for assembly is done in a non-blocking manner through
utilization of intermediate hand-off queues. The experiments shown in Figs. 8 and 9
are based on a partial implementation, not employing a dynamic resource monitor,
using pre-defined buffer sizes for each connection, and without a decoupling queue
between the reader thread and the ORB.

3.4 Discussion of Experiments

Beyond the performance results attained with the isolation points used and evaluated in
this section, note that they are representative of the three different kinds of isolation
points needed for building performance isolation firewalls for distributed service
implementations. (1) The poison message IP monitors and controls behaviors that
involve the APIs exposed by the application components on a single node. (2) The

388 M. Mansour and K. Schwan

slow client IP monitors cross-node communications. (3) The QoS crosstalk IP concerns
interactions with the underlying OS/hardware platform. More generally,
implementations will use multiple IPs of these kinds, and there will be interactions
between the policies implemented by multiple IPs, within each node and across nodes.
The experiments shown in this section, therefore, constitute only a first step toward
creating performance-robust distributed applications and application components.

4 Related Work

Performance isolation is not a new idea [4] and in addition, prior work has developed
many methods for dealing with performance problems in server applications. The
latter include request deletion in web servers [27], request prioritization or frame
dropping in multi-media or real-time applications [30], and the creation of system-
level constructs supporting these application-level actions [25, 33]. Essentially, such
methods are specific examples of the more general methods for dynamic system
adaptation developed during the last decade [29, 38]. They share with adaptive
techniques the use of runtime system monitoring and of dynamically reacting to
certain monitoring events, but they differ in that the policy-level decisions made in
response to certain events are focused on limiting performance dependencies rather
than on exploiting them to optimize the behavior of the distributed system exhibiting
these dependencies.

This paper advocates an isolation-based approach to performance management, but
differs from prior work in that it also considers performance dependencies that exist
across different layers of abstraction existing in current systems, such as dependencies
across system-level communication protocols and the middleware-level messaging
systems that use them. The specific results attained in this paper for Java RMI-IIOP
and J2EE-level method calls are related to earlier work done by our group on the IQ-
RUDP [15] data transport protocol, which coordinates middleware-level and
transport-level adaptations to better meet application needs. What is new here,
however, is that we consider explicit characteristics of the more complex Java
middleware environments, including Java’s garbage collection techniques.

Hardware, kernel, and application-level protection and isolation have been studied
extensively for single Java virtual machines [8]. [17] applies the concept of a Java
resource accounting interface to isolate applications inside a JVM at the granularity of
isolates to J2EE platforms. In comparison, our work focuses on performance isolation
at single request granularity (even within the same application), and we identify three
kinds of performance dependences embedded in the middleware implementation of
J2EE and WebSphere. Since detection logic is placed into middleware prior to
application execution, resource reservation approaches like those described in [17]
can be used as an enforcement mechanism, where thresholds are set dynamically by a
resource monitor. Note that some of the scenarios present in this paper are not
addressed by the isolate mechanism, such as when the vulnerability point is in the
lower levels of the middleware before the message is parsed and dispatched to its
target application (isolate).

Finally, we point to recent work in performance management for cluster-based web
services [19]. A central router classifies and schedules incoming requests to maximize
a user-defined utility function based on performance measurements collected from the

 I-RMI: Performance Isolation in Information Flow Applications 389

cluster. While traffic classes represent high-level business value, requests in each
class can still have very different operational footprints and can therefore, still
experience the performance vulnerabilities presented in this work.

5 Conclusions and Future Work

This paper builds on previous work in the autonomic and adaptive system domains to
address end-to-end performance issues in service-oriented software architectures. The
specific issue addressed is performance isolation, which refers to the ability to isolate
service components from each other with respect to the performance dependencies
pervading distributed applications and the systems on which they run. Performance
isolation is a necessary element of any solution that seeks to attain end user-desired
Service Level Objectives or Agreements (SLAs), preventing the violation of SLAs
through circumstances beyond the explicit control of individual services.

To attain performance isolation, our research offers novel middleware abstractions,
termed isolation points, which both capture performance dependencies and provide
functionality that deals with them. The paper first demonstrates the prevalence of
performance dependencies in enterprise applications created with J2EE RMI-IIOP-
based software platforms and that these dependencies can lead to the spread of
performance problems through entire enterprise applications. For example, if a
‘poison message’ causes one server to slow down, this server will act as a slow client
to its callers, causing their performance to degrade and propagating undesirable
performance effects across the entire distributed application. Second, isolation points
(IPs) are created to dynamically capture and react to performance dependencies,
thereby providing middleware mechanisms for managing and preventing them. Third,
a concrete product of this work is I-RMI, which is RMI-IIOP enhanced with isolation
points representative of the three different types of IPs required for performance
isolation in distributed enterprise applications: (1) IPs guarding service APIs, (2) IPs
for inter-node interactions, and (3) IPs for interactions with underlying operating
systems and hardware. I-RMI has been integrated and used with IBM’s WebSphere
J2EE infrastructure. When using standard J2EE benchmarks, we are able to eliminate
performance degradations of up to 56% observed in traditional RMI-IIOP in one case,
and up to 85% in another case.

Future work will consider solutions in which multiple IPs cooperate to address
potentially complex performance dependencies, across sets of distributed services and
service nodes. In addition, we will address the fact that performance dependencies
and the need for performance firewalls implemented with IPs are not specific to Java.
They appear both in the synchronous call-reply model of RMI and in the message-
oriented asynchronous middleware of operational information systems like the one
used by our industrial partners [11].

References

1. Liferay: Open source enterprise portal, 2005.
2. Aweya, J., Ouellette, M., Montuno, D.Y., et al. An adaptive load balancing scheme for

web servers. International Journal Network Management, 12 (1). 3--39.

390 M. Mansour and K. Schwan

3. Barclay, T., Slutz, D.R. and Gray, J. TerraServer: A Spatial Data Warehouse Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data, 2000.

4. Barham, P., Dragovic, B., Fraser, K., et al. Xen and the art of virtualization Proceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP 2003), 2003.

5. Bernadat, P., Lambright, D. and Travostino, F. Towards a Resource-safe Java for service
guarantees in uncooperative environments IEEE Workshop on Programming Languages
for Real-Time Industrial Applications, 1998.

6. Cardellini, V., Casalicchio, E., Colajanni, M., et al. The state of the art in locally
distributed Web-server systems. ACM Computing Surveys, 34 (2). 263--311.

7. Cowan, C., Cen, S., Walpole, J., et al. Adaptive methods for distributed video presentation.
ACM Computing Surveys, 27 (4). 580--583.

8. Czajkowski, G. Application isolation in the Java Virtual Machine Proceedings of the 15th
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications (OOPSLA '00), 2000.

9. Diot, C. Adaptive Applications and QoS Guaranties (Invited Paper) Proceedings of the
International Conference on Multimedia Networking (MmNet '95), 1995.

10. Fox, A., Gribble, S.D., Chawathe, Y., et al. Cluster-Based Scalable Network Services
Symposium on Operating Systems Principles (SOSP 97), 1997.

11. Gavrilovska, A., Oleson, V. and Schwan, K. Adaptable Mirroring in Cluster Servers 10th
International Conference on High-Performance Distributed Computing (HPDC-10), 2001.

12. Gavrilovska, A., Schwan, K. and Oleson, V. A Practical Approach for 'Zero' Downtime in
an Operational Information System The 22nd International Conference on Distributed
Computing Systems (ICDCS-2002), 2002.

13. Gheith, A. and Schwan, K. CHAOSarc: kernel support for multiweight objects,
invocations, and atomicity in real-time multiprocessor applications. ACM Transactions
Computer Systems, 11 (1). 33--72.

14. Hamilton, G., Powell, M.L. and Mitchell, J.G. Subcontract: A Flexible Base for
Distributed Programming Proceedings of the Fourteenth ACM Symposium on Operating
System Principles, 1993.

15. He, Q. and Schwan, K. IQ-RUDP: Coordinating Application Adaptation with Network
Transport Proceedings of the 11 th IEEE International Symposium on High Performance
Distributed Computing (HPDC'11), 2002.

16. IBM. WebSphere Application Server, Trade3 benchmark.
17. Jordan, M.J., Czajkowski, G., Kouklinski, K., et al. Extending a J2EETM Server with

Dynamic and Flexible Resource Management International Middleware Conference
(Middleware 2004), 2004.

18. Krishnamurthy, B. and Wills, C.E. Improving web performance by client characterization
driven server adaptation Proceedings of the eleventh international conference on World
Wide Web (WWW '02), 2002.

19. Levy, R.M., Nagarajarao, J., Pacifici, G., et al. Performance Management for Cluster
Based Web Services IFIP/IEEE Eighth International Symposium on Integrated Network
Management (IM 2003), 2003.

20. Loyall, J.P., Schantz, R.E., Zinky, J.A., et al. Specifying and measuring quality of service
in distributed object systems 1st International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC), 1998.

21. Mansour, M., Wolf, M. and Schwan, K. StreamGen: A Workload Generation Tool for
Distributed Information Flow Applications Proceedings of the 2004 International
Conference on Parallel Processing (ICPP'04), 2004.

22. Mosberger, D. and Jin, T. httperf - a tool for measuring web server performance.
SIGMETRICS Performance Evaluation Review, 26 (3). 31-37.

23. Oreizy, P., Gorlick, M., Taylor, R., et al. An Architecture-Based Approach to Self-
Adaptive Software IEEE Intelligent Systems, 1999.

 I-RMI: Performance Isolation in Information Flow Applications 391

24. Plale, B. and Schwan, K. dQUOB: Managing Large Data Flows Using Dynamic
Embedded Queries Proceedings of the Ninth IEEE International Symposium on High
Performance Distributed Computing (HPDC'00), 2000.

25. Poellabauer, C., Schwan, K., West, R., et al. Flexible User/Kernel Communication For
Real-Time Applications In Elinux Proceedings of the Workshop on Real Time Operating
Systems and Applications, 2000.

26. Powell, M.L. and Miller, B.P. Process migration in DEMOS/MP Proceedings of the 9th
ACM symposium on Operating Systems Principles (SOSP '83), 1983.

27. Provos, N. and Lever, C. Scalable Network I/O in Linux Proceedings of the USENIX
Technical Conference, FREENIX track, 2000.

28. Pyarali, I., Schmidt, D.C. and Cytron, R. Techniques for enhancing real-time CORBA
quality of service. Proceedings of the IEEE, 91 (7). 1070-1085.

29. Rosu, D., Schwan, K. and Yalamanchili, S. FARA: A Framework for Adaptive Resource
Allocation in Complex Real-Time Systems he 4th IEEE Real-Time Technology and
Applications Symposium (RTAS '98), 1998.

30. Sundaram, V., Chandra, A., Goyal, P., et al. Application performance in the QLinux
multimedia operating system Proceedings of the 8th ACM International Conference on
Multimedia 2000, 2000.

31. Tennenhouse, D.L. Layered Multiplexing Considered Harmful. Rudin, H. and Williamson,
R. ed Protocols for High-Speed Networks, 1989.

32. Welsh, M., Culler, D. and Brewer, E. SEDA: an architecture for well-conditioned, scalable
internet services Proceedings of the eighteenth ACM symposium on Operating systems
principles (SOSP '01), 2001.

33. West, R. and Schwan, K. Dynamic Window-Constrained Scheduling for Multimedia
Applications Proceedings of the IEEE International Conference on Multimedia Computing
and Systems (ICMCS '99), 1999.

34. White, S.R., Hanson, J.E., Whalley, I., et al. An Architectural Approach to Autonomic
Computing 1st International Conference on Autonomic Computing (ICAC 2004), 2004.

35. Wiseman, Y., Schwan, K. and Widener, P. Efficient End to End Data Exchange Using
Configurable Compression 24th International Conference on Distributed Computing
Systems (ICDCS 2004), 2004.

36. Wolf, M., Cai, Z., Huang, W., et al. SmartPointers: personalized scientific data portals in
your hand Proceedings of the 2002 ACM/IEEE conference on Supercomputing
(Supercomputing '02), 2002.

37. Xie, T. and Notkin, D. Checking Inside the Black Box: Regression Testing Based on
Value Spectra Differences IEEE International Conference on Software Maintenance
(ICSM 2004), 2004.

38. Yuan, W. and Nahrstedt, K. Process group management in cross-layer adaptation
Multimedia Computing and Networking 2004, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

