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Abstract. A problem with many distributed applications is their behavior in 
lieu of unpredictable variations in user request volumes or in available 
resources. This paper explores a performance isolation-based approach to 
creating robust distributed applications. For each application, the approach is to 
(1) understand the performance dependencies that pervade it and then (2) 
provide mechanisms for imposing constraints on the possible ‘spread’ of such 
dependencies through the application. Concrete results are attained for J2EE 
middleware, for which we identify sample performance dependencies: in the 
application layer during request execution and in the middleware layer during 
request de-fragmentation and during return parameter marshalling. Isolation 
points are the novel software abstraction used to capture performance 
dependencies and represent solutions for dealing with them, and they are used 
to create (2) I(solation)-RMI, which is a version of RMI-IIOP implemented in 
the WebSphere service infrastructure enhanced with isolation points. Initial 
results show the approach’s ability to detect and filter ill-behaving messages 
that can cause an up to a 85% drop in performance for the Trade3 benchmark, 
and to eliminate up to a 56% drop in performance due to misbehaving clients. 

1   Introduction 

Modern middleware and programming technologies are making it ever easier to 
rapidly develop complex distributed applications for heterogeneous computing and 
communication systems. Typical software platforms are Microsoft’s .NET, Sun 
Microsystems’ Java 2 Enterprise Edition (J2EE) specification, and vendor 
implementations of these specifications like IBM’s WebSphere, BEA’s WebLogic, 
and open source efforts like JBoss. Businesses use these platforms to link different 
enterprise components across the wide spectrum of hardware and applications that are 
part of their daily operation. Science and engineering applications benefit from their 
rich functionality to capture data from remote sensors and instruments, access shared 
information repositories, and create remote data and collaboration services.  

The software platforms identified above are mapped to hardware infrastructures in 
which end clients are concerned with data capture or presentation (Tier 1), supported 
by two server-level tiers that implement application and storage services, respectively. 
The J2EE architecture follows this 3-tier model by defining three container types  
to host each of the tiers, where containers offer sets of standard services to cover  
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non-functional requirements like transactions, messaging, and security. The goal is for 
developers to be able to focus on business logic and processes rather than having to 
deal with dependencies on client or server hardware and software systems. 

A barrier to creating the system-independent services envisioned by application 
development platforms is the level of performance robustness of the distributed 
applications created with them, in lieu of unpredictable variations in user behavior or 
in the resources available for satisfying user requests. Recognition of this fact has 
resulted in a multiplicity of techniques for dealing with behaviors like bursty request 
volumes, including dynamic load balancing and migration, server replication, and 
similar runtime methods [2, 6, 26]. For media-rich or data-intensive applications, 
bursty loads can be combated by reducing the fidelity of media content, skipping 
media frames, or using application-specific techniques for reducing computation and 
communication loads [36].  

Our interest is to use application- or environment-specific techniques like those 
listed above to create more performance-robust distributed applications. The goal is to 
better isolate applications from each other with respect to their performance 
behaviors. The consequent technical contributions of this paper are the following. 
First, experimental evidence demonstrates the importance of performance isolation 
toward creating well-behaved distributed applications. Specifically, we show that the 
unusual behavior of even a single client can substantially diminish a data-intensive 
J2EE server’s ability to provide suitable levels of service to its other clients. Second, 
we propose an approach to achieving performance isolation that (1) exposes system 
resource information to the middleware layer, (2) enriches the middleware layer with 
methods for analyzing and adapting application behavior, isolation points and 
adaptation modules, (3) permits the middleware layer to execute these solutions when 
or if necessary, the latter based on (4) user-defined SLAs (Service Level 
Agreements). A final contribution is the description of a general architecture for 
performance-isolated messaging both for J2EE applications and for the popular 
publish/subscribe programming model.  

The concrete artifact produced by and evaluated in this research is I(solation)-RMI, 
a version of RMI-IIOP enhanced with functionality that enables applications to detect 
and react in meaningful ways to violations of performance isolation SLAs. Our initial 
results attained with I-RMI are encouraging. For the well-known Trade benchmark, 
for example, we are able to sustain high throughput in the presence of resource-
intensive requests (a 85% improvement over traditional RMI-IIOP). We also report 
the complete elimination of side-effects (an up to 56% drop in throughput) resulting 
from slow clients. These results are achieved by using a sliding window algorithm at 
two different isolation points. 

In summary, the idea of performance isolation is to understand the causes of 
performance dependencies in distributed applications and then provide middleware-
based solutions that prevent their ‘spread’ through the distributed client/server system. 
In the remainder of this paper, the next section elaborates on the motivation behind 
our work as well as gives a detailed overview of I-RMI design and implementation. In 
Section 3 we list the software platforms and applications we experimented with. 
Experimental results are presented in Section 4. Conclusions and future work are 
given in Section 5. 
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2   I-RMI - Motivation, Design, and Implementation 

2.1   Motivation 

There is a plethora of work addressing runtime performance management in 
distributed server systems, ranging from system-level solutions like process/load 
migration or request throttling [26, 27, 32], to application-level tradeoffs in the quality 
of server responses produced for clients vs. server response time [10, 18], to the 
creation of new middleware or system abstractions that support the runtime adaptation 
of applications and systems in response to changes in user requirements or platform 
resources [7, 13, 15, 20, 24, 25]. 

The premise of our research is that modern distributed applications created with 
development platforms like those based on the J2EE standard are sufficiently complex 
to make it difficult, if not impossible, to design application-wide methods for 
optimizing their runtime behavior. Instead, we address the simpler problem of 
curtailing or limiting the spread of performance problems across distributed 
client/server subsystems. Examples of this problem occur in the enterprise system run 
by one of our industrial partners: (1) a backup job run by an administrator during 
system operation can generate a sufficient level of I/O to slow down file system 
operations for another subsystem running on the same machine, or (2) the logging of 
operational data contained in files to a backend database slows down other 
subsystems that use or produce this file data. One result of such slowdowns is that 
they cause other subsystems’ request queues to build up, including those from the 
front ends used by clients, potentially leading to operational failures (e.g., 
inappropriately long response times) or revenue loss (e.g., clients going to alternate 
sites). The problem, of course, is that performance degradation in one part of the 
system (i.e., the storage subsystem) leads to performance degradation elsewhere. In 
other words, the system does not adequately deal with or isolate the performance 
dependencies inherent to this distributed application.  

Our approach to limiting performance dependencies in distributed enterprise 
applications like those described in [5, 35] is to enhance middleware with 
functionality that offers improved levels of performance isolation, thereby creating 
a performance analogue of the firewalls used in computer security: (1) by 
examining middleware to identify points along the code path that are vulnerable to 
performance dependencies, termed isolation points, and (2) by re-coding these 
points and enhancing them with a generic and extensible API that permit developers 
to define runtime reactions to violations of application-specified measures of 
performance exhibited by applications, represented as adaptation modules. The 
outcome is the creation of performance ‘firewalls’ that prevent the spread of 
performance problems across different components of distributed applications. Our 
implementation approach addresses the broad class of web service-based 
applications, by associating instrumentation and support for performance firewalls 
with the RMI/IIOP implementations used in interactions between web, application, 
and backend servers. 
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2.2   Architecture and Implementation 

Isolation Points 
Isolation points (IP) are associated with identified performance vulnerabilities, 
enhancing them with a monitoring and control architecture [23] [34]. An isolation 
point uses resource monitoring to detect performance issues and reacts through its 
enforcement mechanism to prevent their further spread. The specific actions taken are 
determined by user- or developer- defined policies.  

I(solation)-RMI 
I(solation)-RMI (I-RMI) is a version of RMI-IIOP enhanced with several isolation 
points. Our current implementation uses the three isolation points listed below to 
cover intra- and inter- process interaction. The monitoring and adaptation methods 
used at these points utilize well-established techniques. The goal is to create an 
implementation of I-RMI suitable for the information-flow architectures prevalent in 
today’s enterprise computing systems rather than developing new techniques. I-RMI 
currently defines three isolation points as shown in Fig. 1, an interesting aspect being 
that they are backed by occurrences in enterprise software observed by our industrial 
partners. We note here that as with related abstractions developed in earlier work [14, 
20, 28], the changes made by isolation points occur at the middleware level and can 
be realized and carried out without requiring modifications to application code. 

 

Fig. 1. Overview of I-RMI 

Slow Client 
The idea of isolation points applies both to client-server- and event-based distributed 
applications. Consider the structure of typical enterprise information systems 
described in [21]. Events generated at the edge of a system trigger chains of message 
passing and processing inside the system, where each processing step augments, 
personalizes, or otherwise transforms the original event. An example of such a system 
is deployed at one of our industrial partners, a major airline company, which feeds 
ticket reservation events into a revenue estimation system. Each event results in 20-30 
subsequent calls to other modules inside this system. The application uses 
asynchronous messaging to decouple senders from receivers.  



 I-RMI: Performance Isolation in Information Flow Applications 381 

Message-based distributed applications have to be constructed and administered so 
that the rates of delivering messages into queues do not exceed the rates of extracting 
messages from queues and processing them. Jitter in rates [9] can both lead to queue 
buildup and put pressure on servers’ available memory resources. This in turn can 
deteriorate server performance and its ability to meet target performance levels. A 
concrete set of examples studied in this paper addresses data-intensive applications, 
our intent being to explore the uses of J2EE infrastructures for manipulating the large 
data items implied by future applications in tele-medicine or -presence, remote 
collaboration, remote access to rich data sources [3], and data mining. For example, 
for the multimedia or document management applications described in Liferay Portal 
[1], we expect message sizes to be quite large, and any additional delays in processing 
queued messages by remote clients can result in substantial server-level performance 
degradation. 

The ‘slow client’ isolation point added to RMI-IIOP is intended as a generic 
mechanism for handling the case described above. This point is inserted in the call 
path before call argument marshalling. The logic we inject into the path monitors 
queue behavior (system or application-level queues) indirectly, by monitoring the 
respective incoming and outgoing request rates1. By combining estimates of queue 
lengths with resource utilization on the local and remote nodes, the injected code can 
detect situations where a slow node is causing serious queue buildup that might lead 
to performance degradation on the server. A sliding window is used to measure these 
rates, one window per causally connected incoming and outgoing APIs, one window 
for local resource information, and a third window for resource information on each 
remote machine. The specific action taken to reduce queue buildup is decided at 
runtime by user-supplied logic. Possible actions include: decreasing the sizes of call 
parameters to reduce the processing required on the target server, rerouting the call to 
another host, rejecting the call and having the sender deal with this exception, etc.  

Poison Messages 
Our next scenario is derived from an airline enterprise information system (EIS). 
System administrators strive to provide consistent performance levels for the 
operation of their system. An occasional surge in resource usage, traced back to a 
particular uncommon request type, can cause other subsystems’ requests to build up, 
including those from the front ends used by clients, ultimately threatening operational 
failure (e.g., inappropriately long response times) or revenue loss (e.g., clients going 
to alternate sites). Such uncommon request/message types are termed Poison 
Messages. 

The poison message isolation point addresses this class of isolation problems. We 
monitor a server’s steady state throughput (see Fig. 2) using request counting methods 
similar to [13]. When a sudden drop in throughput (L1) and at the same time, a sharp 
increase in resource utilization is detected, we identify a  potential ‘poison’ state. A 
snapshot (S1) of every request currently executing in the J2EE is taken and stored. 

                                                           
1 Understanding the causal relations between incoming and outgoing requests is necessary in 

order to translate request rates into meaningful queue behaviors. The detection of such causal 
relations is beyond the scope of this work. Aguilera et al [2] articulate possible ways to 
automatically detect such relations. 
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When the server later recovers and throughput rises (L2) again, we take another 
snapshot (S2) of all requests currently executing in the server. The set difference (S1 – 
S2) represents a list of requests that are potential suspects. This procedure is repeated 
every time we encounter such abnormal behavior and eventually, the suspect list 
narrows down to a few request types. The specific action against the potential 
suspects is left to the user to define, possible actions are reject or re-route to another 
server.  

L1

L2

time

throughput

t1 t2 t3 t4
 

Fig. 2. Dynamically detecting poison messages at runtime 

Our current implementation identifies requests only by their API names. To deal 
with server overload caused by changes in request parameters, the implementation has 
to be extended to also scan and analyze request parameters [37]. Additional detection 
logic is necessary if poison state is caused by a sequence of messages. 

‘QoS Crosstalk’ due to Parallel Concurrent Streams 
Tennenhouse describes `QoS crosstalk` as the effect of multiple concurrent streams 
on server performance  [31]. We include an isolation point in I-RMI to manage and 
minimize such crosstalk effects. This section describes its implementation and 
demonstrates the potential of poor performance isolation in the presence of multiple 
concurrent request streams with varying request sizes. Such request streams are 
common in information flow applications between front-end Web/UI servers and 
backend business process servers. 

The RMI-IIOP implementation we use dedicates a separate reader thread per client 
connection. When a server is subjected to invocations from multiple clients, all of the 
corresponding reader threads are activated, as they all receive notifications of data 
being available on their underlying sockets. It is up to the underlying kernel thread 
scheduler to decide which thread to run next. Assuming a round-robin scheduler and 
equal buffer sizes on all connections, it is common for streams with very small 
request sizes to receive better treatment compared to streams with large request sizes. 
Note that this analysis also applies to writer threads.  

Behaviors like those explained in the previous paragraph can be unacceptable for 
certain application deployments or client connections. Known control methods 
addressing them include changing the socket buffer sizes for certain connections, 
altering threads priorities, or both. Setting the right buffer size for each connection 
requires that such a value be calculated uniformly for all connections. Toward these 
ends, we insert an isolation point at the IIOP reader thread level, and we re-implement 
parts of RMI-IIOP to use a single reader thread and non-blocking I/O. The single 
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reader thread provides a single point of control where the ‘right’ buffer sizes can be 
calculated and applied. The resource monitor is responsible for tracking how many 
parallel streams are active. The enforcement logic dynamically adjusts the buffer sizes 
for each connection to achieve the desired relative weights. This modified 
implementation is backwards compatible and also scales better than the original 
implementation. 

3   Representative Applications and Experimental Results 

To demonstrate the importance of performance isolation in the J2EE environment, we 
select WebSphere as a representative software platform. We use the Trade3 
application [16] developed by IBM as our test bed. The Trade3 benchmark models an 
online stock brokerage application and is built to cover most of J2EE’s programming 
model, including JSPs, EJBs, transactional aspects and database access. We deployed 
the Trade3 benchmark with the UI web component on a separate machine from the 
backend EJB components, WebSphere dynamic caching was not enabled in our 
experiments. 

Experimental Setup 
Experiments are run in Georgia Tech’s enterprise computing laboratory, using 
Version 5.1 of IBM WebSphere J2EE server running on an x345 IBM server 
(hostname: dagobah), a dual 2.8GHz Xeon machine with 4GB memory and 1GB/s 
NIC, running RedHat Linux 9.0. The server runs against Version 8.1 of DB2 which 
runs on a separate machine with an identical configuration. Clients, secondary servers 
and load generators run on an IBM BladeCenter with 14 HS20 blade servers installed 
(hostnames awing1-awing14). Each blade has dual 2.8GHz Xeon processors with 
1GB RAM and 1 Gb/s NIC card running RH Linux 9.0. We use the Tomcat 5.0.25 
servlet container for hosting the front end of the Trade3 benchmark. Httperf [22] is 
used to generate the workload for the trade benchmark. 

3.1   ‘Slow Client’ Isolation Point 

Consider the distributed application shown in Fig. 3. The external source injects 
events into the system, by sending messages to a primary server where they are 
queued for processing. A worker thread selects messages from the queue and sends 
them to the secondary server. The primary server also provides auxiliary services to 
an external client. The external event source generates a 512KB message every 10ms. 
A client makes repeated requests to the server; each request carries a return parameter 
of 1MB, the server caches the 1MB object and uses it to serve all client requests.  

The average round trip time for the client is listed in Table 1. In the first case, 
“Unloaded”, the secondary client runs with a very light load. Under these conditions, 
the average queue length is under 3 units, and the client average RTT is 35 ms/call. 
The second scenario, “Stress Load”, imposes a heavy workload on the secondary 
server. We use the stress utility to run 8 CPU intensive threads. This results in a 
significant drop in the ability of the secondary server to process its requests and 
subsequently, creates queue buildup on the primary server. As a result of this buildup,  
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Fig. 3. Abstract view of nodes in an operational information system (OIS) 

Table 1. Average round trip time for client calls 

Scenario Average RTT  
[from client side] 

Unloaded secondary server 35 ms/call 
Secondary server stress loaded 80 ms/call 
Secondary server stress loaded 
+ Primary server uses I-RMI 

35 ms/call 

available free memory drops on the primary server and garbage collection is triggered 
more often (JVM memory was set to max. to 120MB). This results in an increase in 
client average RTT to 80ms/call and a 56% drop in throughput. These can be 
attributed to increased garbage collection on the primary server (see Error! Not a 
valid bookmark self-reference.) due to memory pressure resulting from queue 
buildup.  

To demonstrate I-RMI effectiveness in controlling such effects, we repeat the 
above experiment using I-RMI on the primary server. Fig. 5 shows the rate of calls 
coming in and going out of the primary server. Rates are measured by dividing the 
number of calls that occurred during the last N seconds, where N is the width of the 
sliding window we use. At T=10000 the secondary server is subjected to CPU stress 
load, and queue buildup is evident from the difference between the rates of incoming 
and outgoing calls. The increased garbage collection (GC) activity (as shown in  
Fig. 4) leads to a drop in the server’s ability to service events from the external event 
source. As the CPU utilization crosses a predefined threshold (1.0 in this experiment), 
the isolation logic decides to cancel calls outgoing to the secondary server (occurring 
at about T=14,000). This results in the apparent increase in the rate of outgoing calls. 
The application is unaware of the short circuit applied by the isolation logic, still 
thinking that its calls are being completed. Note that this example uses the simplistic 
approach of call elimination, to focus on the performance isolation properties of our 
approach. Realistic systems will use any number of techniques, including request 
rerouting, queuing for later submission, application-specific reductions in request 
volume [12] and others. 

Table 2. Number of times primary server garbage collects per 100 client calls 

Scenario GC 
Unloaded secondary server 6 
Secondary server stress loaded 102 
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Fig. 4. Garbage collection at Primary Server 
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Fig. 5. Call rates measured at the primary server 

3.2   ‘Poison Message’ Isolation Point 

To demonstrate the effect of a poison message, we run a steady state workload against 
the Trade3 benchmark. The workload generator (httperf) simulates 4 concurrent 
sessions with 0.1 seconds think time. The resulting server average request execution 
times are shown in Fig. 6, respectively (from T=0 to T=50). The small spikes at T=(3, 
10, 24, …) are due to garbage collection on the server. At T=59, we manually call a 
special API added to the benchmark application. This API allocates 10KB byte arrays 
in a tight loop for 4 seconds. The effects of this API are evident in the graphs as a 
sudden sharp increase in the average execution times for requests, a drop in server 
throughput, and a dramatic increase in garbage collection activity on the server  
(Fig. 7). The rising edge at T=59 triggers our detection algorithm, and it takes a 
snapshot of all requests currently in the server. As the poison API finishes and server 
load levels return to normal, the falling edge at T=63 triggers the detection algorithm 
and it takes another snapshot of all API currently executing on the server. The 
difference between these two snapshots correctly reveals the poison API in this 
simple example. Subsequent calls to this API are filtered by the isolation point. 
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Fig. 6. Average call execution time (ms/call) 

0

50

100

150

200

250

0 50 100
Time (secs)

A
vg

. e
xe

cu
tio

n 
tim

e 
(m

s/
ca

ll)

 

Fig. 7. Garbage collection frequency at the Primary Server 

3.3   ‘QoS Crosstalk’ Isolation Point 

In this experiment, we demonstrate QoS effects in WebSphere and how I-RMI can 
provide some control over such behavior. All times reported here represent the time 
needed to read data for a request at the IIOP level. Request assembly time increases 
proportionally with message size in the case of one client communicating with the 
server. In the presence of a second client sending messages of constant 2K size, the 
time needed to assemble the large request message more than doubles. In Fig. 8, the 
lower curve shows message assembly times for a client, and the top curve shows 
message assembly times for the same client in the presence of a secondary request 
stream of size 2KB/request. This is attributed to the fact that the server processes both 
streams with equal priority. We ameliorate the above behavior by controlling the 
socket buffer size for each connection. A larger buffer enables us to read more data 
per system call. We note here that this approach works only if there is data available 
at the server socket for reading. This observation indicates the need to associate 
additional system-level knowledge with isolation points. 

In Fig. 9, we plot assembly time against message size for a request stream running 
against a 2K/request secondary stream. The different lines represent different socket 
buffer size settings. The top curve labeled '1x' represents equal buffer sizes for both 
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Fig. 8. Time to assemble a request for one vs. two clients 
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Fig. 9. Time to assemble a request at different buffer sizes 

streams. For the next curve, labeled '2x', we set the socket buffer size for the main 
stream to be twice that of the secondary stream and so on. A larger buffer size clearly 
reduces the time needed to assemble a large request and therefore, reduces the effects 
of parallel request streams.  

Our implementation replaces the one-reader-thread-per-connection IIOP model in 
WebSphere with a single reader thread using non-blocking socket I/O. A single reader 
thread constitutes a single point at which an enforcement mechanism can be realized. 
Its presence also removes dependencies on the underlying thread scheduler. Care is 
taken to prevent blocking of this single reader thread. Processing the socket data and 
handling it to the ORB for assembly is done in a non-blocking manner through 
utilization of intermediate hand-off queues. The experiments shown in Figs. 8 and 9 
are based on a partial implementation, not employing a dynamic resource monitor, 
using pre-defined buffer sizes for each connection, and without a decoupling queue 
between the reader thread and the ORB. 

3.4   Discussion of Experiments 

Beyond the performance results attained with the isolation points used and evaluated in 
this section, note that they are representative of the three different kinds of isolation 
points needed for building performance isolation firewalls for distributed service 
implementations. (1) The poison message IP monitors and controls behaviors that 
involve the APIs exposed by the application components on a single node.  (2) The 
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slow client IP monitors cross-node communications. (3) The QoS crosstalk IP concerns 
interactions with the underlying OS/hardware platform. More generally, 
implementations will use multiple IPs of these kinds, and there will be interactions 
between the policies implemented by multiple IPs, within each node and across nodes. 
The experiments shown in this section, therefore, constitute only a first step toward 
creating performance-robust distributed applications and application components. 

4   Related Work 

Performance isolation is not a new idea [4] and in addition, prior work has developed 
many methods for dealing with performance problems in server applications. The 
latter include request deletion in web servers [27], request prioritization or frame 
dropping in multi-media or real-time applications [30], and the creation of system-
level constructs supporting these application-level actions [25, 33]. Essentially, such 
methods are specific examples of the more general methods for dynamic system 
adaptation developed during the last decade [29, 38]. They share with adaptive 
techniques the use of runtime system monitoring and of dynamically reacting to 
certain monitoring events, but they differ in that the policy-level decisions made in 
response to certain events are focused on limiting performance dependencies rather 
than on exploiting them to optimize the behavior of the distributed system exhibiting 
these dependencies.  

This paper advocates an isolation-based approach to performance management, but 
differs from prior work in that it also considers performance dependencies that exist 
across different layers of abstraction existing in current systems, such as dependencies 
across system-level communication protocols and the middleware-level messaging 
systems that use them. The specific results attained in this paper for Java RMI-IIOP 
and J2EE-level method calls are related to earlier work done by our group on the IQ-
RUDP [15] data transport protocol, which coordinates middleware-level and 
transport-level adaptations to better meet application needs. What is new here, 
however, is that we consider explicit characteristics of the more complex Java 
middleware environments, including Java’s garbage collection techniques. 

Hardware, kernel, and application-level protection and isolation have been studied 
extensively for single Java virtual machines [8]. [17] applies the concept of a Java 
resource accounting interface to isolate applications inside a JVM at the granularity of 
isolates to J2EE platforms. In comparison, our work focuses on performance isolation 
at single request granularity (even within the same application), and we identify three 
kinds of performance dependences embedded in the middleware implementation of 
J2EE and WebSphere. Since detection logic is placed into middleware prior to 
application execution, resource reservation approaches like those described in [17] 
can be used as an enforcement mechanism, where thresholds are set dynamically by a 
resource monitor. Note that some of the scenarios present in this paper are not 
addressed by the isolate mechanism, such as when the vulnerability point is in the 
lower levels of the middleware before the message is parsed and dispatched to its 
target application (isolate). 

Finally, we point to recent work in performance management for cluster-based web 
services [19]. A central router classifies and schedules incoming requests to maximize 
a user-defined utility function based on performance measurements collected from the 
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cluster. While traffic classes represent high-level business value, requests in each 
class can still have very different operational footprints and can therefore, still 
experience the performance vulnerabilities presented in this work.  

5   Conclusions and Future Work 

This paper builds on previous work in the autonomic and adaptive system domains to 
address end-to-end performance issues in service-oriented software architectures. The 
specific issue addressed is performance isolation, which refers to the ability to isolate 
service components from each other with respect to the performance dependencies 
pervading distributed applications and the systems on which they run. Performance 
isolation is a necessary element of any solution that seeks to attain end user-desired 
Service Level Objectives or Agreements (SLAs), preventing the violation of SLAs 
through circumstances beyond the explicit control of individual services.  

To attain performance isolation, our research offers novel middleware abstractions, 
termed isolation points, which both capture performance dependencies and provide 
functionality that deals with them. The paper first demonstrates the prevalence of 
performance dependencies in enterprise applications created with J2EE RMI-IIOP-
based software platforms and that these dependencies can lead to the spread of 
performance problems through entire enterprise applications. For example, if a 
‘poison message’ causes one server to slow down, this server will act as a slow client 
to its callers, causing their performance to degrade and propagating undesirable 
performance effects across the entire distributed application. Second, isolation points 
(IPs) are created to dynamically capture and react to performance dependencies, 
thereby providing middleware mechanisms for managing and preventing them. Third, 
a concrete product of this work is I-RMI, which is RMI-IIOP enhanced with isolation 
points representative of the three different types of IPs required for performance 
isolation in distributed enterprise applications: (1) IPs guarding service APIs, (2) IPs 
for inter-node interactions, and (3) IPs for interactions with underlying operating 
systems and hardware. I-RMI has been integrated and used with IBM’s WebSphere 
J2EE infrastructure. When using standard J2EE benchmarks, we are able to eliminate 
performance degradations of up to 56% observed in traditional RMI-IIOP in one case, 
and up to 85% in another case. 

Future work will consider solutions in which multiple IPs cooperate to address 
potentially complex performance dependencies, across sets of distributed services and 
service nodes. In addition, we will address the fact that performance dependencies 
and the need for performance firewalls implemented with IPs are not specific to Java. 
They appear both in the synchronous call-reply model of RMI and in the message-
oriented asynchronous middleware of operational information systems like the one 
used by our industrial partners [11]. 
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