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Abstract. Cooperative peer-to-peer (p2p) applications are designed to sleare th
resources of participating computers for the common good of all udevgever,
users do not necessarily have an incentive to donate resources tgstam sf
they can use the system’s services for free. In this paper, we deSxiivener,
a fully decentralized system that ensures fair sharing of bandwidth ipecae
tive content distribution networks. We show how participating nodes, itigck
only first-hand observed behavior of their peers, can detect whempters are
behaving selfishly and refuse to provide them service. Simulation re$wite s
that our mechanisms effectively limit the quality of service received bge to
a level that is proportional to the amount of resources contributed hyuties,
while incurring modest overhead.

1 Introduction

This paper concerns itself with the fair sharing of resosiricecooperative peer-to-
peer (p2p) systems. In such a system, participating nodesxgected to contribute a
fraction of their resources in exchange for access to acepriovided by the system.
Clearly, if participants fail to contribute enough res@s¢o offset the load imposed by
all users, then the system’s stability and usability maynb@singer.

Experience with file-sharing systems like Gnutella and K&azaows that many
users may choose to consume the system’s services withmuitljprg any of their own
resources for the use of others [2]. The problem is that@péints have no naturai-
centiveto provide services to their peers if it is not somehow rezpliiof them. Users
more closely resemble economically “rational” agents whe willing to follow the
protocol only if that behavior maximizes the node’s “ugitifrom the p2p network. If
there is no immediate penalty for selfish behavior, then a@dk behave selfishly, and
the p2p system will fail. Economic theory calls these usémse*riders” or “freeload-
ers,” and the resulting scenario “the tragedy of the comrhj@1g.

Ideally, we would like to design a system where nodes, adtirijeir own best in-
terest, behave collectively to maximize the common welfBesigning such a system
without a centralized authority that has complete knowéedfjthe system becomes
a distributed algorithmic mechanism design (DAMD) problgt#]. DAMD is a cur-
rent area of study that combines computational tractgbilitheoretical computer sci-
ence with incentive-compatible mechanism design in theeeucs literature. It pro-
vides a useful framework for considering p2p systems [232B This paper considers
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incentives-based mechanisms that ensure fair sharingsifog on cooperative systems
where network bandwidth is the contented resource.

One way to enforce fairness is to have, for each node in thiersys set of other
nodes account for that node’s actions and approve requesisding to the system’s
policy. KARMA [36] is an example of such a system. Howevepminating the actions
of this auditor set requires both cryptographic operatamtsadditional communication
everytime a peer issues or responds to a request. This can addstigistverhead and
latency to the system. Moreover, this approach introducesatiditional problem of
how to incentivize the auditor set to perform its functiomregtly [36].

Instead, we hypothesize that a normal p2p node, monitan@gé&havior of its over-
lay neighbors, will have sufficient information to locallyeintify and discourage selfish
behavior. When nodes give preferential service to peers wimnf the rules, rational
agents will choose to follow the rules to receive better isess An early example of
a p2p system built in this fashion is BitTorrent [7], wheredas employ a “tit-for-tat”
policy, preferring to transmit content to other nodes whe ailling to return the fa-
vor. BitTorrent focuses on the case where all peers aregisiied in the same content,
e.g., different blocks of a large software distributionu$hit is common that two peers
simultaneously have a block that is of interest to the otabling a “clean swap.”

In this paper, we are attempting to solve the more general@moof a content dis-
tribution system where peers are interested in obtainifgctdfrom a large collection,
consisting of both popular and unpopular objects. In thirgg a simultaneous swap
of content is rarely possible. Instead, it is necessary tmtaia a history of interac-
tions (in terms of credit and debt) with a peer to make dengsmoncerning the peer in
the future. Moreover, the good will accumulated by a Bit€otrnode is lost when that
node completes downloading the object and leaves the syBi€horrent nodes have
no incentive to stay around and help their peers. In our Bystee wish to encourage
such behavior by allowing peers to accumulate credit thatbearedeemed at a later
time, for possibly unrelated content.

The remainder of this paper is structured as follows. Se@idescribes the model
and the goals of our system. In Section 3, we present therdesi§crivener, a sys-
tem that enforces fair bandwidth sharing in a cooperativeerd distribution system.
Section 4 describes the implementation of Scrivener in dmext of an existing con-
tent distribution system. We present simulation resultSeation 5. Finally, Section 6
discusses related work and Section 7 concludes.

2 System model and goals

We consider cooperative content distribution systems participants wish to obtain
content stored on other participants’ computers. Congeassumed to be published by
its owner and disseminated into the system for distributide assume that, at least for
popular objects, the owner has insufficient bandwidth teiserevery possible request
and wishes to leverage the bandwidth available among otiteain the system.

The set of participating nodes is assumed to form an overdwark. Scrivener
is based on mechanisms that in principle can be applied to lnmttructured [17, 23]
and structured overlay networks [30, 34], as long as theyt theefollowing minimal
requirements: (1) Each node in the overlay communicatestjrwith only a bounded
(i.e., constant or logarithmic in the size of the overlay)ner of overlayneighbors
(2) the overlay has a mechanism to discover new overlay beighand, (3) the overlay
supports a search primitive that discovers, when givenid eahtent identifier, one or
more overlay paths to a node that stores content associétethat identifier.



We further assume that node identifiers cannot be creatediscarded freely. The
mechanisms we will describe are all based on observing whicles have behaved
properly and which have not. If nodes could misbehave underidentity, only to
discard it and assume another identity, then there wouldbkiaagntive for proper be-
havior. Such “Sybil attacks” [11] are a fundamental issu®verlay networks and a
host of different attacks become possible unless nodeds@nehow controlled. For
the purposes of our research, we require an external soltdi®ybil attacks. For ex-
ample, Castro et al. [6] address this by requiring a trusteaaity to issue certificates
that bind a nodeld to a public key; they also describe a wedkeentralized approach
to issuing such certificates. Since we are primarily inteasn supporting systems
for the distribution of legal content, maintaining user aymity is not a design goal
of Scrivener. If, however, an anonymity-preserving degeagainst Sybil attacks was
available, Scrivener might still be applicable.

2.1 Attack model

The adversarial model assumed by Scrivener is limited tplgifreeloadingbehavior,
whose only objective is to obtain service without contribgtan equivalent fair share
of bandwidth to the system. This is in contrast to more gdnmaiciousbehavior,
where the objective of the attacker may include obtainingutimorized access to con-
tent, corrupting or censoring content, or denying or deigiadervice to other users.
Mechanisms to prevent or mitigate such behavior (e.g.edemhd self-certifying con-
tent [15], content entanglement [37], Castro et al. [6]'suse routing primitive) may
be employed to complement Scrivener. Most p2p systems i@adyl engineered to be
robust against traffic loss due to network failures. In theesre case of a node re-
fusing to properly forward low-level traffic, that nodes’igiebors could flag the node
as unresponsive and would likely remove the node from thear&t As such, we are
primarily concerned witlapplication layerfreeloading, where the application’s goal is
the sharing and distribution of content of varying size aoparity.

Itis useful to consider freeloading separately from moirgegal malicious behavior,
particularly when in many systems it is much easier to fraglthan to mount a mali-
cious attack. In KaZaA [23], for example, a client configutedhave minimum upload
bandwidth and turning off the super-peer flag suffices todaak A malicious attack,
on the other hand, would require considerable technicadrtige. Thus, the fraction of
users who have the motivation and ability to freeload isljike far exceed the fraction
of users that are intent and able to mount a malicious attack.

Accordingly, the two threats call for different mechanisiAglefense against free-
loading must be effective and efficient even when a largdifraof participants attempt
to freeload. A defense against malicious behavior can, #ed must, assume that ma-
licious behavior is limited to a small minority of users. Wepect that a production
content distribution system would include both types of hagisms. For the remain-
der of this paper, we will focus exclusively on detecting @nelventing freeloading.

2.2 Goals

Scrivener’s goal is to achieve fair sharing of bandwidthantent distribution systems.
The key aspects of this goal are summarized below.

— Fairness The system must ensure that participants receive a qudl#grvice that
is proportional to the amount of bandwidth they are actuetiptributing to the
system. Furthermore, no participant should be permittegetpetually consume



resources in excess of their contributions at the expenaeather participant. This
provides an incentive for nodes not to freeload.

— Low overhead The overhead imposed by the mechanisms used should be mod-
est. Moreover, the marginal cost related to ensuring fagmehen downloading an
object should be low, to ensure efficiency despite smallailsizes.

— RobustnessThe system should retain the above properties even in gsepce of
large numbers of freeloaders and in the presence of modest.ch

3 Design

Fundamentally, Scrivener is based on the idea of a pairwisbamge of content be-
tween overlay participants. This is similar in spirit to Bitrent, where participants ex-
change content fragments “tit-for-tat.” However, unlikéT®rrent, Scrivener considers
the general case of a content distribution system wherejmamts with different inter-
ests choose from a large set of content objects. In such ensyatis unlikely that two
overlay neighbors are simultaneously interested in eahrstcontent, which would
enable a “clean swap.” Making pairwise exchange work in a&gartontent distribution
network presents several challenges. The basic conceBtyigéner include:

RelationshipsA Scrivener node maintains a relationship with each ofvertay neigh-
bors. Each of the two nodes involved in a relationship maista credit and a confi-
dence value for the other node, defined below. These valaesantained in persistent
storage and are remembered even as a node departs and sulllye®joins the over-
lay. The values are maintained and used only locally to agnaale.

Credit Credit is the difference between the amount of data sentdotlae amount of
data received from the pekNegative values of credit are calldebt

ConfidenceThe positive confidence value for the neighbor is calcdlaecording to
an additive increase, multiplicative decrease policygldasn the success or failure of
content requests that were forwarded to the neighbor. Thédemce value is used in
deciding how to forward requests during content search fisduised to compute the
credit limit (defined below) granted to the neighbor node.

Building on these core ideas, easily applicable to any p2ypert distribution sys-
tem, we can invent a number of mechanisms:

Maintaining credit/ debtTo enable non-simultaneous pairwise swapping, each e&iive
node maintains a record of credit / debt with each of its @yenleighbors. We wish to
enable a nod@ to obtain content from another noBeeven wherA may not currently
have any content of interest B A can repay the resulting debt Boat a future time,
whenB happens to be interested in some content held.b& node honors requests
from a peer if and only if that peer is in good standing, ilee peer’s debt is below a
certain limit.

Limiting generosityTo bootstrap the system, one node must be willing to extendra |

to another node with which it has had no prior relationshipwielver, such loans must
not enable freeloading. A Scrivener noflgrants a small initial credit to each noBe
thatA has chosen to initiate a relationship with. However, nBaoes not necessarily
grantA any credit in return. A#\ andB interact and respond to each other’s requests,
the confidence among the peers, and thus the amount of cradied, can increase
over time.

1 We assume here that the cost of transferring an object is equal to ¢hef siwe object in bytes.
Itis equally possible to define certain objects as more valuable than others.



Limiting relationships:Each node initiates relationships with only a limited numabie
peers, typically the neighbors chosen by the overlay nétwidris limits the amount of
state maintained by each node and it limits the total creddde grants its peers.

Transitive trading:What if a node wishes to obtain a content object not held by any
of its overlay neighbors? We need a mechanism that allowsla twuse the credit it
has with its neighbors to obtain content from a more distaderthat has the desired
content, but with which it does not have a pre-existing refeghip. Transitive trading

is such a mechanism. Performing a transitive trade involvesng a path from the
requester to a content holder such that each node along thaspa good standing
with the subsequent node. Then, the content holder senawofttient to the requester,
and each node along the path credits the subsequent node.

3.1 Relationships

Each Scrivener node maintains relationships with a smatlber of other nodes, typi-
cally its overlay neighbors, as selected by the overlayguat More precisely, any two
nodes in the overlay network form a relationship if and ofigtileast one of them has
the other in its overlay neighbor table. A Scrivener nédgrants a small initial confi-
dence value (and thus a small credit limit) to any node hlaés chosen as a neighbor,
but it assigns an initial confidence of zero (and thus no trédiany node that has
invited A to be a neighbor. This prevents freeloaders from obtainilagge credit limit
by initiating many relationships with many nodes, perhamgggnding that its normal
neighbors have faile8.

The small initial credit limit allows neighbors chosen Ayo request content from
A, and it allowsA to request content from legitimate nodes who have chésas a
neighbor. As content is exchanged, the parties gain morkdemte in each other and
gradually grant each other larger credit limits. Our schemuis newcomers at a dis-
advantage; they need to initiate relationships, forcirgrthtto grant credit and offer
service while receiving little in return initially. This ke price for defending against
freeloaders in any reputation-based system. However, agilvehow, the initial sac-
rifice is rewarded quickly as the node establishes confidandegains credit with its
neighbors.

When a Scrivener nodé finds that one of its neighboBhas accumulated debt in
excess of its credit limit, it ceases to accept requests BoRegardlessA continues
to make requests 1 in order to giveB the opportunity to pay back its debt. Likewise,
A may find that the confidence value of one of its neightidigoes to zero, perhaps
becauseB has repeatedly failed to fulfill requests frafneven thoughA is in good
standing withB. In this caseA ceases to make requests Biar to accept requests from
B. FromA’s perspectiveB might as well not be a part of the overlay netwafkthen
uses existing mechanisms provided by the overlay netwargtiaceB with a different,
and hopefully more cooperative, neighbor.

In principle, a Scrivener node must maintain a record of déstpverlay neighbors
indefinitely. Erasing a negative record would amount toifong debt, and would en-
able freeloading. In practice, it is acceptable to deletends of nodes that have been
offline for long periods, perhaps a year, thus seriouslynmeaiencing freeloaders who

2 Overlay network systems are generally engineered to assume a higif raee failure and
include elaborate mechanisms to locate previously unknown nodesramdéw relationships
in order to preserve important invariants, including the degree of tmdede connectivity
and of file replication. As a result, we need to limit the benefits automaticallyteglato a
node solely because it happens to be a peer.



wish to exploit the resulting loophole. Storing a year’s thoof records is reasonable
as these records are very compact: only a nodeld and tweeintedues, the credit and
confidence values, are required. Such concise records easity scale to track the
millions of neighbors that a node might see in a year’s time.

Note also that due to the pairwise relationships, freelpaedenot benefit from col-
lusion. While colluding freeloaders may be able to convireggtimate nodes to shift
credit from one freeloader to another, the total credit délunchanged.

3.2 Confidence

Scrivener nodes keep a confidence estimate for each of theilag neighbors. The
confidence value serves two purposes: (1) it determines dgnitude of the credit
limit granted to a neighbor and (2) it can be used to bias ayemuting decisions
towards cooperative neighbors.

The confidence assigned by a node to its neighbor is base& tistiory of their re-
lationship. The confidence estimate has the following priggee (1) As nodes exchange
content, the confidence increases slowly; (2) The confidérages rapidly once a neigh-
bor starts to misbehave; (3) The confidence is bounded totlmidamage caused by a
node that plays by the rules for an extended period and tlaets $b freeload. An addi-
tive increase, multiplicative decrease (AIMD) strategfets§ a simple implementation
of these properties.

3.3 Transitive trade

In p2p content distribution systems with a large contenttbet odds are small that a
desired object can be found on an immediate overlay neigbbitre node wishing to
fetch that object. We need a way for nodes to trade their tsredfid debts with one
another, and we would like to avoid the overhead of digitahcar other cryptographic
schemes. Instead, we designed an incremental tradinggtrate calltransitive trade
which works by identifying ecredit pathfrom a source node to a node that has the
desired object. In a credit path, each node in the path €litagrcredit with the next
node, or its debt is below the next node’s credit limit. Weade a scheme to locate
such paths in Section 4.3.

Conceivably, once we have identified a credit path, we caddrange all the credits
in the path such that the destination node now owes sometioint its predecessor in
the route, but instead to the source of the route. This istified in Figure 1. A series
of debts, wherd® owesA, C owesB, and so forth untiZ owes its predecessor could all
be replaced with a direct debt frothto A. Z can now cancel this debt by provididg
with the desired content.

To make debt swapping work, we need a protocol that is rolgshat any node in
the trading chain cheating. For example, a node could attéongancel a debt that it
owes without giving up the debt owed to it by the successdrarttading chain. Rather
than resorting to a complex cryptographic commitment grottove take a straightfor-
ward, incremental approach. The protocol is depicted infei@.

1: Credit path discovery: Afirst routes a “path discovery” message (PD) towatdas
a side effectA “pays” B for this messageB paysC, and so forth untiZ is paid. At the
same time, each node reduces its confidence in its succesi$tinerequest had failed
(even though it may be working perfectly well). This designids the need to maintain
timeouts to detect and react to failures. The credit paitodisry might fail for a number
of reasons, ranging from a freeloader dropping the messagetwork failures (see
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tocol.

Section 4.3). The effect is that every node that forwardedduest will have reduced
confidence in its successor. Furthermore, the last nodeichin effectively keeps the
credit originally transfered fror.

2a: Object exists Upon receiving the request, transmits a confirmation message
(Ack) directly toA. A now routes a request message@rfor a chunk of the content
object along the existing credit path, paying for the chuslaaide-effect of the mes-
sage transmissioZ transmits the requested object chunk directhAtd\ repeats this
step until it has obtained the last chunk of the object. A fimaksage, announcirgs
success, causes each node to adjust the confidence valsiswééessor to compensate
for the reduction in step (1), plus an additional confideraieed as a result of the trade.
2b: Object does not exist Upon receiving the request, routes a “does not exist”
message (DNE) along the reverse credit path. The messagérotine addresses of the
complete set of nodes that would store replicas of the coiftéexisted. Intermediate
nodes can contact a member of this set to verify that the bbses not exist. If they
are convinced that the object really does not exist, thetpreghe confidence of the
successor node to compensate for the reduction taken ifigtep

Each participating node has an incentive to follow each efitotocol steps: Node
A wants to receive all the chunks, nodevants to be credited for transmitting all the
chunks, and all nodes wish to maintain the confidence of firedecessors along the
credit path. When a noddefectsfrom the protocol at some stage, it can collect credit
without providing the corresponding service. However, jihiee is a drop in the con-
fidence of the node’s predecessor. Also, the damage is finhitehe size of a single
chunk, which can be made appropriately small.

In general, for any failure, the clie is charged for at most a single chunk — a
modest loss. The charge can be interpreted as the price fjoising load on the overlay
by issuing a request that could not be satisfied. Such a chigeliscourages flooding
requests into the system; the client must pay for each amy esguest it makes. The
client can minimize the loss associated with a failure whéegins with a small chunk
and gradually increases the request size as its confiderice path increases.

Over the long term, transitive trading tends to balanceitmatl debt among a
node’s overlay neighbors, maximizing the chances that tiake nvill be able to obtain
content in the future. Moreover, participation in a tramsitrade is beneficial because
it increases the confidence of each node along the path indtgssor.

At the same time, nodes have a disincentive to refuse gaation in a transitive
trade. Such a refusal leads the predecessor along the gaditlito reduce its confidence



in the node. While the failure of a neighbor adversely affectsode, if it happens
repeatedly, the node quickly reduces its confidence in thighivor, and avoids routing
messages through that neighbor in the future. As a resilihgaodes are avoided by
the neighbors and become isolated.

It is important that nodes are not penalized for being afé&liwhen a node is off-
line, other nodes merely suspend their relationship withrtbde until it returns. A
related question is whether a node has an incentive to sveglit from an established
neighbor to a newcomer as part of a transitive trade. In jpgcdhaving credit with a
large and diverse set of neighbors maximizes the chances thade will be able to
successfully locate a credit path for a future request.

3.4 Caching

In general, objects in a content distribution system havéghly skewed popularity
distribution [20f. To avoid load imbalances as a result of such skew, cachinged
in these systems to dynamically adjust the number of nodegngea content object
according to its popularity. Typically, once a node has ioletéh some content for itself,
it serves the content to other interested clients from @alloache. Thus, popular objects
tend to be replicated widely.

In Scrivener, dynamic caching is required to address antiaddl form of im-
balance caused by skewed popularity. Without caching, :\edeving popular objects
would tend to accumulate a huge amount of credit. Nodes ¢ne¢ $ess popular objects
would tend to accumulate debt and lack the “earning poténtieever repay the debt.
Our simulations (see Section 5) will demonstrate this éffieaction and show how
caching addresses the problem. Moreover, nodes have antiirecéo cache objects,
because it increases their earning potential. Cachinglpopbjects allows a node to
earn the credit needed to satisfy its own future needs.

4 Implementation

In this section, we describe an implementation of our Soeveorototype. We chose
to implement our prototype using FreePastry, a structuvediay network with a dis-
tributed hash table service called PAST [13, 30, 31]. Soeveises only the key-based
routing (KBR) API [9] exported by FreePastry [13]. Thus, auplementation will also
work with any structured overlay that supports this integfee.g., Chord [34].

4.1 Background

Pastry is a structured p2p overlay network that provides a KBR servin such over-
lays, every node and every object is assigned a unique fidegméindomly chosen from a
large id space, referred to asadeldandkey, respectively. Given a message and a key,
Pastry can route the message to the live node whose nodelthiritally closest to the
key in less than log N hops, whereN is the number of nodes in the network amds

the routing base, usually set to 4. Castro et al. [6] des¢eibleniques that make Pastry
robust to collusions of a minority of malicious nodes in thertety who attempt to com-
promise the overlay. These techniques are complementahe tiechniques described

3 This is not a problem for BitTorrent, since every user attempts to get the shject, and the
popularity of each block is identical.



in this paper and can be used in conjunction with Scrivenerdficious participants
(rather than mere freeloaders) are a threat.

PAST provides a distributed hash table (DHT) abstraction on topastry. Each
stored item in PAST is given a key (hereafter referred to ash#ndlg, and replicas
of an object are stored at tldive nodes whose nodelds are the numerically closest to
the object’s handle (these nodes are callegjpdica sej. PAST maintains the invariant
that the object is replicated dnodes, regardless of node addition or failure. If a node
in the replica set is out of space, the object will be divetted node close in nodeld
space but not in the replica set, and stored there temporahié handle is built from a
cryptographically secure hash (e.g., SHA-1) applied toddua being stored. As such,
the handle has sufficient information for the holder of thaedia to verify that the
content obtained from PAST is authentic.

4.2 Node bootstrapping

Recall that when a new node joins the system, it has no credilat. To earn credit, it
needs to obtain some initial content that it can then sergthier nodes. In our prototype
implementation, PAST’s normal content placement and capin policy provides a
node with its initial set of content objects.

When a PAST node joins the system, irégjuiredto store a set of objects based
on its position in the identifier space. The node obtainsetheiial objects from its
neighbors in the id space for free; they form the new nodé®irtontent offering and
allow it to acquire credit with its overlay neighbors, whifdrward requests for these
objects to the node as part of PAST’s normal lookup operatn simulation results
show that this simple mechanism suffices for a node to quiokbtstrap itself.

4.3 Finding credit paths

A key implementation issue is how to efficiently discoverdit@aths. The Pastry rout-
ing primitive finds an overlay path to a node that stores tlggiested content object,
given the object’s identifier. Finding a credit path introda the additional constraint
that each node along the path must be in good standing wishu@tsessor.

Our prototype uses a randomized, greedy algorithm to descoredit paths. To
determine the next hop, a Scrivener node first selects tloé setghbors that satisfy the
Pastry routing constraint. These nodes either have idergtifhat match the requested
object handle in a longer prefix than the present node’s itheir id matches as long a
prefix as the present node’s id but is numerically closeréamthject handle. Forwarding
the request to a node in this set guarantees that the rowtepsiiee and will end at a
node that has the desired content, assuming the contetd exthe overlay.

Next, we subtract from the candidate set any neighborings@chere the present
node is not in good standing. These neighbors would refusgests from the present
node because it had exceeded its credit limit. Because #fleoinformation used by
nodes to rate their neighbors is available equally to bottigga nodes can easily track
their standing with their neighbors.

Among the set of remaining candidate nodes, we make a biasetbm choice,
based on the following criteria:

— Length of the neighbor’s prefix match with the object han@leoosing a neighbor
with higher prefix match than the present node reduces tbedgtand path length,
and therefore also increases the chance to find a working path



— Confidence in the neighboNeighbors with higher confidence values have been
more helpful in the past, and are thus more likely to be hélbfa time.

— Amount of credit with the neighbo€hoosing neighbors with higher credit helps
the present node to balance credit and debt and therefareases flexibility in
handling future requests.

Scrivener strongly biases the forwarding choice towardjmsors with a prefix
match (minimizing the number of overlay routing hops), wtdllso trying to balance
credit and debt, and gives preference to neighbors with bagifidence values. More
precisely, letZ denote the remaining set of candidate nodes. Scrivengrasascore
to each node in set#, which is calculated as scdp = €™ -t(x) - [c(X) — Cmin + 1],
where/(x) > 0 is the number of additional digits that the neighlishares with the
object handle relative to the present node) andt(x) are the credit and confidence
value of neighbok, andcmin = minjc4 c(i). Then the probability that peeris chosen
is its score divided by the total score of all candidate peéexs scoréx)/ ¥ ic Scoréi).
The quality of a node’s prefix match figures exponentiallyténsicore to give a signif-
icantly greater weight to shorter routes. Note also thah lsonhfidence and credit/debt
are measured in the same units, i.e., the number of objebiges transferred.

Our randomized, greedy algorithm is not guaranteed to désca credit path even
if one exists. A request could end up at a node that has no In@ighat satisfies the
Pastry routing constraints and with which the node is in gstatiding. In such cases,
the request cannot be forwarded on and the client will neeeltity the request through
a different neighbor.

Our simulations shows that the success rate is very highfedumber of retries
typically necessary to discover a credit path is very low iactice. There are sev-
eral reasons for this. First, the Pastry overlay is richlgrexted and many redundant
paths exist between a client and a node holding the requirettist. Second, dynamic
caching effectively balances the “earning power” of no@desjding strong imbalances
in the credit available to different nodes. Third, the brathie forwarding policy against
nodes with low confidence tends to isolate freeloadersjrmgusquests to be effectively
routed around such nodes. Lastly, the bias in the forwangliigy based on credit tends
to balance the available credit a node has with its differeighbors. These various
self-stabilizing forces reduce the probability that a drpdth search might fail, either
due to lack of credit or because a freeloader refuses to hbnor

4.4 Bounding lengths of credit paths

Unlike the native Pastry routing policy, Scrivener does alatays choose a neighbor
with a longer prefix match, even if such a neighbor exists. Aesalt, Pastry’s logarith-
mic bound on the expected path lengths does not strictly. iNdde that shorter path
lengths are desirable for two important reasons: (1) shpéth lengths ensure low de-
lay and network utilization, and (2) shorter paths are mobeist against node failures.
Since the routing policy of Scrivener may occasionally leatbng paths, we resort to
another mechanism to bound the path length.

In the prototype implementation, Scrivener artificiallyunals the credit path length
to be logarithmic in the overlay size. When the search for ditpath has reached this
bound, the request is dropped. A rough estimate of the sitleeobverlayN suffices
to determine the bound. Since nodelds are assigned at ranidemverlay size can be
extrapolated from the local density of nodelds with suffitiaccuracy. When a search
exceeds this boundary, the request is dropped. Our sionlegsults, presented in Sec-
tion 5, show that the impact of this restriction on the apitid locate credit paths is
minimal, while it ensures deterministic bounds on the sy&eesource consumption.
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of retries to find a debt-based path.

5 Experimental results

In this section, we present simulation results to evaluatgoototype implementation.
We simulate a system where network messages are deliveseahianeously. Objects
are replicated using PAST's replication strategy, stoengbject on thé nodes with
nodelds closest to the identifier for that object. When retjugsn object, client nodes
perform at most 10 queries, each time attempting to discawaedit path using the
randomized greedy algorithm. The initial credit limit is $@ 1 object, and increases
linearly with the confidence the node has in its peer. Theicpaths are limited to
[3logN] hops. Each node also has a fixed sized, 1024-object soft tack&in ob-
jects it has previously obtained to satisfy future requésesimplement an LRU cache
replacement policy to replace entries from the cache whierfutl.

A node’s peers maintain their credit and confidence values frode that is tem-
porarily off-line. Also, the Pastry routing tables are petent, i.e., a node remembers its
table while it is off-line. Inappropriate entries are simptplaced by the existing over-
lay maintenance mechanisms, but biased towards peers With the node already has
arelationship. As a last resort, the node initiates a neatiogiship. Also, for each entry
in the routing table, a node maintains at most three neightaatruses only the one with
the highest confidence value. (Confidence estimation igitbescin Section 3.2.)

5.1 Workload model

We use the model described by Gummadi et al. [20] to genematd@ads. This model,
derived from KaZaA traffic observations, captures the fettmost-once behavior and
the importance of new object arrivals in typical p2p file shgrapplications. Based
on this model, we chose the following parameters: numberdea onlineC = 800,
number of object® = 40,000, request rate per nodg = 50, object arrival ratdo =
12, and node arrival ratdc = 5 (the units are nodes or objects per simulation time
unit). The node departure rate is the same as the arrival keéping the number of
active nodes constant. Each object is initially replicatekl= 3 nodes. We assume that
there is a fixed pool of 1,000 distinct nodes, out of which 8@0amline at any time. As
a result, during the first 40 time units all arriving nodes faesh, but after time 40 all
arriving nodes are those that were online once before. Nib@de¢gjo offline are chosen
randomly from the currently live nodes.
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5.2 System performance

First, we study how our mechanisms affect the performantiesofinderlying coopera-
tive content distribution system in the absence of freedosdn particular, we want to
see how much overhead has been added to the system.

Success rate Figure 3 shows the fraction of successful requests, both avitl with-
out caching. Without caching, the success rate stabilizmsna 80%. This is because
object popularity is so uneven that nodes around the reptifgopular objects be-
come indebted to the replica holders, making it sometimesogsible for a node to
find a credit path to the replicas. Many requests to populgctbfail despite retries.
However, allowing nodes to serve cached objects elimirthisproblem and the suc-
cess rate approaches 100%. The stability of the successugggsts that the system
balances out nicely and obedient nodes do not build up detttione'.

Figure 4 shows the number of retries required to succegdfinlli a credit path.
When caching is enabled, over 73% of queries succeed on thatfempt, and three
attempts are sufficient to achieve over 95% success rate oWWdude that the policy
enforcement in Scrivener with bounded paths does not sdyi@iffect object fetch
reliability in the absence of freeloaders.

Path efficiency Scrivener’s randomized greedy routing strategy attentptssé Pas-
try’s routing mechanism to achieve logarithmic-lengthhgatvhen possible, and falls
back to less efficient mechanisms, when necessary, thattéfeially capped to pre-
serve arO(logN) expected path length (see Section 4.4). A cumulative Higaon of
path lengths at different overlay sizes is shown in FigurByp.observing horizontal
slices through this graph, we see that the growth in pathttefalows roughly the
log of the number of nodes. Our simulations show that comnase coutes are quite
efficient and the worst case routes are only twice as long msnmm-case routes.

Due to limitations of our simulation environment, we werable to run simulations
for overlay sizes larger than 2000. In order to emulate tfexedf larger overlay sizes,
we ran simulations with 1000 nodes, but with Pastry’s rqubase set tb = 2 instead
of 4. The results show that the median Scrivener path lengtlasound 5, close to
the expected Pastry path lengibg,. 1000~ 4.98). Note that 5 is the expected path
length for a Pastry overlay with one million nodes wien 4. This result suggests that

4 We have also implementespeculative cachingvhere nodes observe the requests they have
forwarded and actively fetch objects that they consider popular. Menvthe improvements
we observed in terms of success rate were insignificant.
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Scrivener’s greedy routing strategy easily scales to maael overlay sizes than we
were able to simulate.

Still, these longer paths, which would also occur as the ramalb nodes in the
overlay increases, raise concerns about path usabilitiicpirly if the system is ex-
periencing high node churn. More nodes in a path increasedtls that one of those
nodes will fail while a transitive trade is in progress. Heeg the system provides
incentives for nodes to stay online until a transitive tradevhich they are involved
completes (see Section 3.3). If a path fails, the originqliesting node can restart the
trading protocol, find a new path to the source of the data (@p#ca), and resume
downloading the missing data.

The total overhead for Scrivener to fetch an object is thelpco of the average
number of attempts to discover a credit path2) and the average credit path length
(< [3logNT]). Among competing systems that use auditor sets, KARMA [8Ghe
most efficient system we are aware of. KARMA's asymptotic sage overhead is com-
parable to Scrivener’s, but requires expensive publicétgptographic operations and
additional means of incentivizing auditors [36].

5.3 Introducing freeloaders

Next, we introduce freeloaders into our simulation. Fradkrs issue requests like obe-
dient nodes, but they may refuse to serve objects. In a deg@lgystem, freeloaders can
be expected to attempt a variety of strategies. In the fafiguexperiments, we consider
a number of freeloading strategies, and show that in allscHsse are no sustainable
benefits to freeloading. We simulate 800 nodes, but now withfieeloaders. We as-
sume that freeloaders forward requests and participatansitive trades, as this allows
them to earn confidence with minimal traffic overhead. Whiledient nodes undergo
churn as specified in the model, freeloaders are alwaysetiinoughout the entire sim-
ulation period. Recall that routing tables are persisemguring that freeloaders cannot
neither escape a bad reputation by periodically departioigp the system nor by re-
peatedly exploiting the limited credit granted by obediratles looking to establish
relationships.

Freeloaders that never serveFirst we consider freeloaders that never serve any object.
Figure 6 shows that their success rate drops to below 5%mwéttiew time units, yet
that of obedient nodes is unaffected. Note that the sucedsdor freeloaders never
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goes to zero. This is because freeloaders can still get fleetskihat they themselves
are storing “for free.”

To determine Scrivener’s sensitivity to the size of the safthe, we vary the cache
size. The success rate remains virtually constant down thecsize of 320 objects,
and gradually decreases to 91% at 128 objects. This showsStnener does not
require a large soft cache to work efficiently.

We increased the fraction of freeloaders to 50%, with resshiown in Figure 7.
The success rate of freeloaders again drops quickly to meay while that for obedient
nodes starts below 60% and plateaus at 80%. Note that with fE@8loaders and a
replication factork = 3, it is expected that 12.5% of the objects are only stored by
freeloaders and will thus never be served. This suggeststhmore expensive search
may increase the success rate somewhat, but with dimigisbtarns.

To test the system under extreme conditions, we increadedtttéon of freeloaders
to 80%. At this point, more than half of the objects are stamsly by freeloaders and,
unsurprisingly, the success rate for obedient nodes is 8d¥%. Also, as a result of
more transitive trading failures, it takes longer for thecass rate of obedient nodes
to stabilize. Scrivener does continue to function remaskalell, despite the extreme
freeloading rate. Given that these freeloaders receiveenefii from being present in
the network, one would expect them to depart, allowing timeaiaing obedient nodes
to operate more efficiently.

Since it takes time for obedient nodes to recognize freeisdne concern is that a
high churn rate might enable freeloaders to get a satisfasteccess rate by exploiting
new node arrivals. We simulated a system with 800 nodes, bhtien rateAc of 50
nodes per time unit and with fresh nodes arriving for the 1i68 time units. After time
100, the arriving nodes have all previously been part of #tevark and gone offline.
Figure 8 clearly shows that with this higher churn of freskle® the success rate for
freeloaders stabilizes at around 15%, dropping after ti6tevithen the returning nodes
remember previous freeloaders. Thus, while freeloademsegaloit newcomers, the
benefit is limited. More importantly, the success rate foedibnt nodes is unaffected.
While obedient nodes waste some effort handling requests fireeloaders, they give
clear priority to serving each other.

Recall that a Scrivener node grants an initial credit to itesen neighbors. We
next consider an attack where a freeloader somehow comsvexceobedient node to
choose it as a neighbor, thus granting it an initial credie ¥énsider a worst-case
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participates in transitive trades but do not serve objects only for the first 20 time units.
fetch objects for the first 20 time units.

scenario where freeloaders can always manipulate obeueigs into choosing them
as neighbors. With such an attack, freeloaders could noveiexpe initial credit from
each obedient node. Figure 9 shows that, indeed, freelo@g¢ra better success rate
initially. However, the success rate drops to 30% quicklgt gradually goes down as
obedient nodes refuse to serve freeloaders after theis defid up. Our simulations
show that, even with such a hypothetical attack, freeladeuld have little benefit
and obedient nodes would observe no significant changeiinaiva success rate.

Short-term cooperation Participation in transitive trades, alone, can earn contide
and increase credit limits without actually serving anyeahj An interesting question is
whether it is possible for freeloaders to build up confidesiogply by participating in
transitive trades, and then exploit that confidence. Inf&d0, we simulate freeloaders
that participate in transitive trades for 20 time units beftetching any object. The
success rate for freeloaders drops to beldw@thin ten time units. Thus, participation
in transitive trades does have a benefit, but only a small one.

We also simulated nodes that were obedient for 20 time undgf@en began free-
loading. As shown in Figure 11, the freeloader’s successaiyv takes seven time units
to drop below OL. The freeloader does benefit from its earlier obedienceidder, once
freeloading behavior begins, the success rate remainddriginly two time units, then
falls quickly.

These experiments demonstrate that short-term coopeiatimt an effective strat-
egy for freeloaders to exploit the system; once they stafiteieload, obedient nodes
will quickly refuse to serve them.

Providing partial service Another possible freeloading behavior is to serve objects a
a reduced rate. We first consider freeloaders that arljtiseive half of their requests.
Figure 12 shows that the success rate for freeloaders doogrsck remains at roughly
50% — the same rate at which they are providing service. Netethat the number of
objects received by freeloaders also approaches andiztshilt the same level as the
number they serve.

Another potential strategy is to have a target quality ofiser This freeloading
behavior serves only enough requests to maintain a desicegss ratio. We simulate
freeloaders that target a 50% success rate. Figure 13 shaivthe resulting success
rate oscillates around 50%. As before, the number of obgsatged by the freeloader
quickly dictates the number of objects the freeloader magld to consume.
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We finally consider a strategy that alternates between ehediand freeloading,
changing behaviors every 20 time units. Figure 14 showsthigasuccess ratio quickly
tends toward 1 and O whenever these nodes switch to coapesatd to freeloading,
respectively, with the peak success ratio dropping ovee tiiso, during the cooper-
ation periods, the former freeloaders service more regueffectively making up for
the debts they previously accumulated. On average, tlesnalion strategy performs
worse, from the freeloader’s perspective, than the previdl? service strategy.

Other experiments In our simulation, a node requests 50 objects per time uhit.
each object is 64 Kbytes, this translates into roughly 3MBlatla per time unit —
about the size of a typical MP3 file or digital photograph. & wonsider users that
attempt to download 100MB of data per day, their successwated drop to zero in
about an hour. Increasing the download rate does not helge fis merely accelerates
the decline in success rate.

To test Scrivener’s sensitivity to the size of the downla@hdentent, we ran simu-
lations where we divided large objects into smaller chuhles$ tvere stored and down-
loaded separately. The success rate of obedient nodesvietprelative to our earlier
experiments. When downloading smaller chunks, smalleritsregere necessary, in-
creasing the success rate of transitive trading. Also o nioeeloaders experienced
an even lower success rate. Because a desired object mayensprdad over several
chunks, the odds successfully obtaining all of a file's claudiminished. Of course,
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tween cooperation and freeloading every 20 time units.

breaking a file into chunks will increase the overhead ratesaech chunk will need to
be separately located and fetched.

We have also simulated scenarios with obedient nodes witdrst bandwidth ca-
pacities. The success rate for both types of nodes are vesg &b 100%, although the
success rate for high-end nodes drops slightly. This shbatsScrivener can accom-
modate modest imbalances in the demands and “earning @$&rdf participating
nodes gracefully. Other approaches, including treatinggh-and node as several vir-
tual nodes, may also be applicable.

Discussion We have evaluated mechanisms to make bandwidth-limitedcpBgent
distribution networks robust against freeloaders. Ob#diedes experience modest ad-
ditional overhead, and over a variety of freeloading betrayifreeloaders achieve only
the level of service that they willing to provide to otherdlire network, even for large
numbers of freeloaders in the system. Our simulations dstrete that the obedient
strategy maximizes a node’s utility, i.e., Scrivener appé@abe economically strategy-
proof.

While our simulation environment does not model delay, the@sbincrease in the
path length of content requests, combined with the factniadt p2p content down-
loads are bandwidth-limited, strongly suggests that doaahidelay is not significantly
affected by Scrivener.

We note that freeloaders still get some benefit during thefés time units after
they join the system. If a freeloader can create new idestitiithout restriction, such
“Sybil attacks” [11] would be able to defeat our mechanisfAssdiscussed in Section 2,
we require that the p2p overlay has security features toeptesuch attacks. Alterna-
tively, Scrivener could adopt a policy where all nodes rezeiegraded service quality
when they join the p2p network, with the quality improvindyafter the new node has
proven its worth.

6 Related work
There has been much work on providing incentives for codjmeran distributed sys-
tems. We roughly categorize the related works as follows.

Bandwidth-sharing networks SLIC [35] considers the query nature of unstructured
p2p systems like Gnutella [17]. It proposes giving nodesiserievels proportional to



their contribution, so as to provide nodes incentives teeshere data and handle more
traffic. BitTorrent [7] facilitates large numbers of noddkteying to acquire exactly
the same file, with an emphasis on very large files (e.g., soéwlistributions, digital
movies, and so forth). Every BitTorrent node will have acgdisome subset of the file
and will trade blocks with other nodes until it has the whale. fin order to bootstrap
new nodes, nodes reservédlof their bandwidth for altruistic service. Nodes thatlfair
trade their bandwidth will experience a higher quality ofvéee. Anagnostakis and
Greenwald [3] suggested that performance can be improv@dtianges are extended
to allow involving multiple parties. Scrivener solves thenmm general problem, where
nodes are interested in content from a large set, of potlntrich smaller size. We
allow nodes to acquire credits from the files they serve ta@iobany other files they
desire in the future. Thus, they have an incentive to seman) ehen they themselves
do not require any content at the moment.

GNunet [19] uses the idea of locally-maintained debit/creelidtions in a similar
fashion to our own work. It also uses debt relationships crmdes, comparable to
our debt-based routing. AsSNunet is more concerned with anonymity than network
efficiency, it does not support transmitting objects diseatross the network. All traffic
goes through the overlay, forcing intermediate nodes toydae bulk traffic of the
object transfer while giving them no particular incentigedb this, save for maintaining
their own anonymity. For a path withnodesGNunet transfers the obje@(n) times.
Scrivener, on the other hand, finds efficient routes andimaadulk data directly over
the Internet, yielding higher performance, but lackisgunet's anonymity features.
Scrivener also provides mechanism to locate and fetch tshjleweraging its existing
credit/debit framework.

Storage networks In a storage network, nodes share spare disk capacity fdicapp
tions such as distributed backup systems. Ngan et al. [®fjgse an auditing mecha-
nism, which allows cheaters to be discovered and evicted the system. Samsara [8]
enforces fairness by requiring an equal exchange of st@@ae between peers and by
challenging peers periodically to prove that they are diststoring the data. Storage
incentivicing systems are solving a fundamentally différproblem than bandwidth
incentivicing systems. Storage is a commitment, over a tang period, to provide a
stable service. If misbehavior is detected, a node can pamsther by simply deleting
its files. Bandwidth, on the other hand, is an ephemeral serits transmitted cannot
be taken back. Retribution can only be taken by refusingéutequests.

Reputation Resource allocation and accountability problems are fonestdal to p2p
systems. Dingledine et al. [10] surveys many schemes fokitrg nodes’ reputations.
In particular, if obtaining a new identity is cheap and pwsireputations have value,
negative reputation could be shed easily by leaving theesystnd rejoining with a
new identity. Friedman and Resnick [14] also study the cdseheap pseudonyms,
and argue that suspicion of strangers is costly. There haee httempts to build a
distributed trust management system [1,22]. Blanc et ggsst a reputation system for
incentivicing routing in peer to peer networks that usesuatéd authority to manage
the reputation values for all peers [4]. Unlike those effpdur design relies solely on
locally observable (and thus more trustworthy) informatio

Trading and payments SHARP [16] is a framework for distributed resource manage-
ment, where users can trade resources like bandwidth wigtetl peers. KARMA [36]
and SeAl [29] rely on auditor sets to keep track of the resmuisage of each partic-
ipant in the network, similar to Ngan et al.’s quota managmraach [27]. MojoNa-
tion [26] similarly allowed peers to exchange certificat@srésources. Golle et al. [18]



considered centralized p2p systems with micro-paymentdyaing how various user
strategies reach equilibrium within a game theoretic model

Trading and payments architectures may be too expensivaday content distri-
bution systems, as each download would incur cryptograpbécations and additional
communication. Moreover, implementing micro-paymentisegirequires a centralized
authority to issue currencies, or uses distributed trugt@nrency, which is still an
active research area.

Mobile ad hoc networks Since nodes in mobile ad hoc networks rely on each other
to forward traffic, incentives are as important in these ek as they are in p2p con-
tent distribution systems. Marti et al. [25] consider moriitg the performance of other
nodes and routing around uncooperative nodes. CONFIDANTS [& distributed rep-
utation system to detect and isolate misbehaving nodeentat al. [32] propose a
micro-payment architecture for multi-hop cellular neti&rCatch [24] is a mechanism

to identify and punish selfish nodes who do not forward packet multi-hop wire-
less setting based on an anonymous challenge-responsegirdh general, mobile ad
hoc networks may require different incentive mechanisraa f§i2p systems due to their
limited computational resources and peer connectivity.

7 Conclusions

This paper presents Scrivener, a decentralized systerpribvties nodes in a cooper-
ative content distribution network with incentives to shéneir bandwidth resources.
Scrivener only requires nodes to track their neighbor'saba. It uses a greedy ran-
domized routing algorithm to find a credit path, allowing aledo leverage credit is
has with its overlay neighbors to obtain content from an lateel node that holds the
desired content. At the same time, Scrivener effectivegu@nts freeloaders from ex-
ploiting obedient nodes. Our results show that Scrivenescaable and effective at
deterring freeloading behavior while incurring modestrbead.
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