WReX: A Scalable Middleware Architecture to
Enable XML Caching for Web-Services

Junichi Tatemura', Oliver Po', Arsany Sawires? *

Divyakant Agrawal®, and K. Selcuk Candan'!

! NEC Laboratories America
10080 North Wolfe Road, Suite SW3-350, Cupertino, CA 95014

{tatemura,oliver,agrawal,candan}@sv.nec—labs.com

2 Department of Computer Science
University of California Santa Barbara
Santa Barbara, CA 93106
arsany@cs.ucsb.edu

Abstract. Web service caching, i.e., caching the responses of XML web
service requests, is needed for designing scalable web service architec-
tures. Such caching of dynamic content requires maintaining the caches
appropriately to reflect dynamic updates to the back-end data source.
In the database, especially relational, context, extensive research has ad-
dressed the problem of incremental view maintenance. However, only a
few attempts have been made to address the cache maintenance problem
for XML web service messages. We propose a middleware solution that
bridges the gap between the cached web service responses and the back-
end dynamic data source. We assume, for generality, that the back-end
source has a general XML logical data model. Since the RDBMS technol-
ogy is widely used for storing and querying XML data, we show how our
solution can be implemented when the XML data source is implemented
on top of an RDBMS. Such implementation exploits the well-known ma-
turity of the RDBMS technology. The middleware solution described in
this paper has the following features that distinguish it from the existing
technology in this area: (1) It provides declarative description of Web
Services based on rich and standards-based view specification language
(XQuery/XPath); (2) No knowledge of the source XML schema is as-
sumed, instead the source can be any general well-formed XML data;
(3) The solution can be easily deployed on RDBMS, and (4) The size
of the auxiliary data needed for the cache maintenance does not depend
on the source data size, therefore, the solution is highly scalable. Experi-
mental evaluation is conducted to assess the performance benefits of the
proposed approach.

Keywords: web services, caching, XML views, path expressions, XML-relational
mapping

* This work has been done during the author’s summer internship at NEC

II

1 Introduction

Performance degradation of a Web Service can significantly impact the response
times of front-end applications that use it. Especially for Web Services that
provide dynamic content to many users (such as product information services),
latency observed by the users is caused not only by the network transmission,
but mainly by server overload at the back-end application. Offloading processing
from the back-end applications is thus essential in providing Web Services scal-
ability. Therefore, caching is a key enabling technology for scalable Web Service
delivery.

A Web Service cache must handle request and response messages (typically
formatted using XML); thus the cache must process (e.g., parse XML content of)
a request message to identify the response message to be returned. Therefore, a
standard HTTP cache cannot be directly employed when caching Web Services.
Furthermore, in order to achieve loose coupling of remote services, Web Services
usually handle messages with coarser granularities than traditional distributed
object messaging such as CORBA. This fact makes it more difficult to map
data source updates to the cached messages. Caching messages for data-driven
Web Services thus requires middleware support for appropriate propagation of
updates from the source to the cache.

It is commonly understood that an XML data/query model can be imple-
mented on a relational model to leverage from the proven and highly-optimized
storage and query capabilities already provided by existing relational database
systems [15]. Thus, one approach to caching Web Service could be to apply ex-
isting technologies that manage data dependency between web content and data
in relational databases, such as Data Update Propagation (DUP)[3], view inval-
idation [2], invalidation based on query templates [4], and many other works on
view maintenance. However, these relational approaches will be very inefficient
because an XML query can involve too many join operations when translated
into SQL.

In this paper, we propose a middleware architecture, WReX, that bridges
the semantic gaps among Web Service messages, a relational data model, and
an XML data model, for caching Web Services. To make the proposed mid-
dleware solution applicable to various data sources, the WReX represents the
source data in the caches as XML views and provides a declarative way to de-
fine Web Services to access the data. The WReX architecture (Sections 3 and
4) aims at resolving the impedance mismatch between the cached data content
and the underlying database technology by applying recent XML-specific view
maintenance techniques transparently in a relational setting.

Consequently, the WReX introduced in this paper consists of two complemen-
tary components: (1) Web Service Content Description (WSCD) mechanism fills
the gap between Web Service messages and XML views of the source data and (2)
XML view maintenance mapped to relational storage fills the gap between XML
views and updates to the source data. This novel middleware architecture has
the following features that distinguish it from the previous works: (1) It provides
declarative description of Web Services based on rich and standards-based view

111

specification language (XQuery/XPath); (2) No knowledge of the source XML
schema is assumed, instead the source can be any general well-formed XML data;
(3) The solution can be easily deployed on RDBMS, and (4) The size of the aux-
iliary data needed for the cache maintenance does not depend on the source
data size, therefore, the solution is highly scalable. Experimental evaluation is
conducted to assess the performance benefits of the proposed approach. Exper-
imental evaluations presented in Section 5 establish the performance benefits of
the WReX middleware approach.

2 Cache-enabled Service Middleware Architecture

Figure 1 illustrates WReX, a Web Service middleware architecture enhanced
with web service caching. WReX consists of a Web Service Application Server,
an XML Data Source, and an Update Manager, which are implemented on top
of a common Web computing platform (e.g., a J2EE application server and a
relational database server). WReX lets users describe and deploy Web Services
that deliver content generated from their own data sources. Given the description
of a Web Service, the middleware manages request/response message caches.

WS Application (Data Service)

i Application i Application
{ Management | | Content Logic:
i WSDL+WSCD

] [

i Management |Content|,_| Content .XPath
i Components { | Cache | |Processor |Cache

WS Applicati[m.SauLa;'
Update Manager

Application Data:
Any XML

[
deploy

WS
Client

update Data

Source

aux
RDBMS

SQL

Fig. 1. WReX: Web Service Caching Architecture

A Web Service application is deployed on top of the WS Application Server
and the XML Data Source as can be seen Figure 1. The application has three
major parts: (1) data (data source to be published), (2) content logic (descrip-
tion of message content to be generated from the data source) , and (3) man-
agement logic (user authentication, logging, and metering). The cache-enabled
Web Service application server consists of the following components: (1) Various
management components, (2) a message content cache component, (3) a con-
tent processor, and (4) an XPath cache. Management components manipulate
messages (e.g., insert data in the header) genereted by the content processor.

v

Management components handle management tasks such as user accounting
and monitoring with approprite transformation of message content. Web service
messages that contain management information are much less reusable even if
actual content delivered to the user (e.g., product information) is reusable. By
separating management functions as these components, WReX lets the other
components focus on managing relationships between message content and the
source data and makes cache more applicable.

The content logic specifies how to generate content of a message in response
to a request message from a Web Service client. A shortcoming of the existing
technologies is that, the Web Service definition language (WSDL) only defines
interfaces (such as data types) of request/response messages, but does not pro-
vide content relationship between request and response messages [18]. To bridge
this gap, we introduce a description platform, Web Service Content Description
(WSCD), which provides a template of a response message that can contain ref-
erences to data in a request message and queries to the source data. When the
application server receives a request message, it generates a response message by
integrating a message template and content fragments retrieved from the data
source. Caching is applied to both generated response messages (Content Cache)
and retrieved content from the source (XPath Cache).

This approach is similar to JSP (Java Server Pages) or ESI (Edge Side In-
cludes). JSP provides a template of dynamic web pages and lets the application
server construct a page from the template and content fragments generated by
applications. Several application servers provide caching functionality for such
content fragments in order to reduce application overload. ESI is a markup
language used to define web content components for dynamic assembly and
delivery of web pages at edge servers. The edge server dynamically integrates
fragments into a web page and needs to retrieve only non-cacheable or expired
fragments from the original servers. Datta et al. [5] has extended this approach
to enable more flexible content composition on the edge server resulting in en-
hanced cacheability and reusability of content. In this sense, our approach can be
seen as an extension of the JSP/ESI concept from HTML to XML context with
XML cache update management. Another related example is the Weave manage-
ment system [19] that enables the user to create Web content using declarative
specification and caches various intermediary data such as views of relational
data, XML page fragments, and HTML pages. Although it supports XML con-
tent generation from relational databases, update maintenance between cached
XML content and data source is based on time stamps and specified with event-
condition-action rules.

To enable caching of XPath queries to the data source as well as the message
responses from the Web Service itself, the Update Manager needs to monitor
updates in the data source and identify changes in the cached results. Here, note
that an XML-aware data source is commonly implemented on an XML-aware
RDBMS, which can leverage from the maturity of RDBMS implementations,
extensive tuning, proven scalability, sophisticated query processing and query
optimizers. However, even though the underlying DBMS is relational, tradi-

\Y%

tional view/cache management solutions for relational data can not be directly
applied to an XML data/query model. For example, CachePortal [2] automates
cache update management based on a view invalidation technique in a relational
model. However, when a query involves many join operations, which is the case of
XML queries in a relational model, it is very inefficient due to costs from an ex-
tra database snapshot and over invalidation. Therefore, we introduce an update
management middleware component which benefits from the relational nature
of the back-end database, while deploying XML-specific view management tech-
niques (i.e., the Update Manager that accesses the data source through SQL
queries (Figure 1)).

2.1 Web Service Content Description (WSCD)

Given a service request, the Web Service generates response messages based
on the service logic. The interface between the request and response is usually
defined using WSDL (Web Service Definition Language). WSDL, on the other
hand, does not describe content relationships between request and response mes-
sages, which are needed for managing updates. We propose Web Service Content
Description (WSCD) language that describes how a response message is gener-
ated for a given operation specified in WSDL. Formally, the WSCD for a service
operation o consists of three parts: (V,T,S), where V is the variable assignment
definition, T is the template definition, and S is the source references.

— The variable assignment definition V' defines how to extract data from a
request message. Mapping from a request message to variables is given by
pairs of name and XPaths: V' = {(name;, zpath;)}. Given a request message,
which can be seen as an XML document, V' generates a specific variable as-
signment v = {name; = value;}. In addition to the generation of a response
message, v is used as the identity of the message cache: the identity consists
of an operation name and a variable assignment (o0, v).

— The template T' defines the content of a response message with references to
the variables V. The template can contain XQuery expressions to dynami-
cally insert data derived from the data source.

— The source reference S maps URIs of data source service endpoints to doc-
ument URIs referred to by XQuery expressions in T'.

Figure 2 shows an example of a WSCD description. Elements <cd:Variables>,
<cd:Template>, <cd:ServiceEPR> correspond to (V,T,S), respectively.

A variable is defined with a part of the request message (i.e. input) of a
WSDL operation and an XPath expression that indicates data within the part.
Combined with WSDL binding information, it is translated to a full XPath
expression applied to a request message, for example:

“/Envelope/Body/GetBookRequest/Category/text ()"

in case of the SOAP literal binding. A template specifies an XML content of a
part of the response message (i.e., output) of a WSDL operation. It can contain

VI

<cd:WSCD xmlns:cd=... operation="GetBook">
<cd:Variables>
<cd:Let name="category" part="body"
path="/GetBookRequest/Category/text()"/>
<cd:Let name="maxprice" part="body"
path="/GetBookRequest/Max/text ()" />
<cd:Let name="minprice" part="body"
path="/GetBookRequest/Min/text ()" />
</cd:Variables>
<cd:Template part="body">
<GetBookResponse>
<cd:Query>FOR ... LET... WHERE... RETURN...</cd:Query>
</GetBookResponse>
</cd:Template>
<cd:ServiceEPR .../>
</cd:WSCD>

Fig. 2. Example of Web Service Content Description

an XQuery specified in <cd:Query>. The query may refer to variables defined in
the variables part.

Note that WSCD is meant to provide a simple specification of message con-
tent in a request-response Web Service operation. If the user wants a full set
of programming functionality to create Web Service (such as event handling), a
special programming language for Web Services, such as XL [8], could be used
instead of WSCD. In fact, since XL uses XQuery expressions to access data,
a possible extension of WReX is to support the XL language, in addition to
WSCD, for services with complicated interactions.

Our WSCD approach is also related to “declarative web services” [1], used
for composing dynamic XML documents by importing fragments. For optimized
data management, a declarative web service that provides fragments is defined
as an XQuery on data sources. Although they focus on data replication issues in
a distributed environment, they also state possibility of querying cost reduction
through an update propagation mechanism, on which we focus in this paper.

2.2 Cache Management using WSCD

The WSCD description of Web Service messages provides a framework to manage
Web Service caching. First, the system needs to identify the matching incoming
requests and cached response messages. This task is done by extracting values
from an incoming message with XPath expressions in the variable definition V'
since the cache identity is given as a variable assignment (o, v). Efficient filtering
[7] can be applied to process multiple XPath matching results in a scalable
manner. Then we focus on the second task: to manage update dependencies
between cached messages and the data at the source.

VII

As described above, the WSCD template contains a set of XQuery expressions
XQ = {zq;} to insert dynamic data from the source into response messages.
Since an XQuery expression zq contains references to the variables V' and the
source S, what the system needs to manage is an XQuery instance (zq,v,S):
when the result of an XQuery instance is updated, the message cache items that
contain this result must be updated or invalidated.

An XQuery statement accesses documents (i.e., the source data) through
XPath expressions. Thus, a set of XPath expressions X P = {zp;} is extracted
from XQueries X and is given to the XPath cache component, which caches
an XPath instance: (zp,v,S). The XPath Cache receives an XPath query from
XQuery Processor and returns the query result from the cache. If it is not cached,
the XPath Cache issues an XPath query to the data source. The data source
returns the query result and makes available auziliary data required to maintain
XPath cache (Section 3).

When the Update Manager observes updates in the data source, it determines
the impact of the source update to cached XPath results. During this process, the
Update Manager uses the auxiliary data and update data to identify the cache
updates. It may also access the source data if needed. Then it maintains cached
results in the XPath Cache affected by the update. Consequently, message cache
items that refer to the affected XPath instances are also either invalidated or
maintained. In order to effectively manage update dependency between message
cache and the data source, the WReX uses our XML-specific view maintenance
techniques described next.

3 XPath Cache Maintenance

In this section we describe the data model and the incremental XPath mainte-
nance technique WReX relies on. Further details of both are presented in [13].

3.1 Data Model

As described earlier, the underlying logical model of the data source is XML.
Each XML data source is represented as an ordered tree in which every node n
is a pair (n.id,n.label) where n.id is a node identifier that uniquely identifies the
node and n.label is a string that describes the node type and/or value. We use
upper-case letters to represent the node labels. For example, A, B, and C are
node labels. We use numeric subscripts to distinguish different nodes that have
the same label. Thus, A; and A; refer to two distinct nodes with the same label
A. Figure 3 shows an example document tree and path expression that will be
used as a running example to illustrate the incremental maintenance technique.

3.2 Update Model

A source update is a transformation of the source XML document. Any source
transformation can be expressed in terms of the two primitive operations of

VIII

(a) XML Data

/A//B[Count(//E) > 1V Count(/D) > 1]//C[Count(//E) = 0]//D
(b) XPath Query

Fig. 3. (a) An Example XML Tree and (b) a path-expression &€

addition and deletion of leaf nodes. Thus, for simplicity, in this section, we
focus on the maintenance operations needed to handle these two types of source
updates. Formally, we model a source update U as a pair (U.type,U.path) where
U.type is the type of the update: Add (add a leaf node) or Delete (delete a
leaf node). U.path is the path of all the ancestors of the added or deleted node
starting with the document root and ending with the added or deleted node
itself. The added or deleted node itself is referred to as i/.node. For example,
U = (Add, (R, X, A1, B1, 7)) represents the addition of node Z as a child node
of node B; in the XML document shown in Figure 3(a).

3.3 Query Model

Path expressions are the basic building blocks of XML queries and therefore are
fundamental to implementing Web Services in our framework. The cache content
is the result of applying path expression-based queries to the source document.
A path expression £ of size N is a sequence of N steps: (s1,82, --sn). A step
s; is a triple (s;.azis, s;.label, s;.pred) where (i) s;.axis is an axis test (child ’/’
or descendent ’//’); (ii) s;.label is a label test; and (iii) s;.pred is an optional
predicate test which can be any complex condition examining the labels and
the structure of the nodes in the subtree of the node being tested. Pred;(n) is
said to be true if and only if (1) Node n belongs to the source tree, and (2)
s;.pred evaluates to true at node n or step s; does not have a predicate test. For
example, Preds(C7) in the example is true because C; satisfies the condition
sz.pred since C; has no descendants labeled E.

IX

Given an expression £, a document tree D, and a sequence of context nodes
C (the set of staring nodes from D), a query, Q = ¢(&,C, D) returns a sequence
of nodes R as a result. For example, consider the query Q = ¢(&,C, D) where:
D is the document tree shown in Figure 3(a), C = (X1, X2, X3) are the shaded
nodes the same figure, and £ is the path expression specified in Figure 3(b).

Given this query,

1. the first step s; (/A) starts at every node in C and selects all the children
with label A; this results in the first intermediate result Ry = (A;, Aa, A3).

2. s9 (//B[Count(//E) > 1V Count(/D) > 1]) starts at every node in R, and
selects all the descendants with label B that have at least one descendant
labeled FE or at least one child labeled D; this results in the second inter-
mediate result Ro = (Ba, Bs, By, B4, B, Bs). Note that By - and also Bj -
occurs twice in Ry because it can be derived in two ways from nodes of R,
one from A, and another one from As.

3. starting at Ra, step sz (/C[Count(//E) = 0]) selects all the descendants la-
beled C that have no descendants labeled E; this results in R3 = (C3, Cs,C5,C5,Cs).

4. finally, s4 (//D) starts at R3 and selects all the descendants labeled D.
Hence, the final result of Q is R = R4 = (D3, D3, D4, D4, Dy).

We differentiate between the multiple occurrences of the same node in a result
by using a numeric superscript. For example, we denote the result R as R =
(D, D3, DY, D3, D).

For a node n € R, the sub-sequence of the ancestors of a node n that matched
the steps of &£, and thus caused n to appear in R is referred to as the result
path of n and denoted as ResultPath(n). ResultPath;(n), where i > 0, is the
ith element in ResultPath(n). In the example query above, ResultPath(D3}) =
(Xl, Al, Bz, 03, Dg) and ResultPath(Dé)g = (Xl, Al, BQ, 03, Dg) is BQ.

3.4 Incremental Maintenance of Path Expression Results

A source update U can affect the cached result R by adding or deleting nodes
to any of the intermediate results R;. The primary reason of such additions and
deletions is changing the truth values of the expression predicates at the steps
of the expression:

If an update changes a predicate Pred;(n) from false(true) to true(false)
we say that the update directly adds (deletes) node n at step i.

3

A direct addition (deletion) at step i can induce other indirect additions (dele-
tions) in steps j > i. The final result R is affected if and only if the effect propa-
gates all the way to step N. For example, if Y = (Add, (R, X1, A1, By, E5)), then
Predy(B;) changes from false to true. The direct effect of this is to add B to
Rs. The resulting indirect effects are the addition of C; and Cs to R3 and then
the addition of D; and D3 to R4. For each step, the incremental maintenance
process first discovers all the direct effects and then uses these effects to discover
the indirect, ones.

X

Discovering the Direct Effects of the Updates. We identify the direct
effects of the updates in two phases: Axis&Label test and the predicate
test.

Phase I - Azis€label test: Let us define §; and §; as the sequences of all nodes
that U directly adds/deletes at R; respectively. Let also d; = &;" U ;. The job
of this phase is to identify a sequence A; such that we can guarantee, without
any source queries, that §; C A;.

In [13], we showed that every node n in §; must also belong to U.path.
Moreover, for a node n to be directly added to be in §;, it must have an ancestor
in every R;, j < i. Since n itself belongs to U.path, then all its ancestors also
belong to U.path. This suggests that U.path has much of the information needed
to identify the nodes of ;. In fact, applying the axes and labels tests to U.path,
ignoring the predicate tests, provides a sequence A; which is guaranteed to
be a supersequence of §;. This is because this process uses a relaxed selection
condition (it ignores the predicate tests, which evaluation requires querying the
source) over the branch U.path which is guaranteed to include all the nodes of
all the d;’s. Computing the A;’s from U .path proceeds very similar to computing
the R;’s from the source tree D. For example, consider an update U of adding
a node Dg as a child of Dy4. In this case, .path is the tree branch that starts
with the root R and ends with Dg. Computing the different A;’s as described
above results in: Ay = (X2, X3), A1 = (As, A3), Ay = (Bs, Ba,, B4, Bs, Bs),
Ag = (05705705), A4 = (D4,D47D4,D67D6,D6). Note that the Only nodes
that will be directly added are the three occurrences of Dg that appear in Ay;
all the other nodes n in all the computed A;’s will not be added or deleted
because U did not affect Pred;(n). Note that, because Dg did not exist before
U occurred, the value Pred;(Dg), Vi is false before U. Similarly, if an update
deletes a node n from the source tree, the value Pred;(n), Vi is false after U.

Phase II - Predicate test: This phase identifies the exact sequence d; by deter-
mining which nodes in A; had their predicate values changed due to the update.

To detect such changes we need to compare, for every node in §;, the values

of Pred;(n) before and after U occurred. Let us denote the value of the predicate
be fore

i

(n) and the value after the update as
Pred®’"*" (n). The value of Pred®/"*" (n) can be easily calculated by querying the

before the update occurred as Pred

source. The value of Pred?efor“z (n), on the other hand, cannot be computed by a
source query because the update I/ has already been incorporated at the source.
Once again, in [13], we showed that we can deduce the value of Pred.*’*"*(n)
using the information of the result paths. Specifically, we showed that if we define
RP;(n) to be true if and only if n is the i*" element of the result path of some
node in R, then we can take Pred’*’°"*(n) = RP;(n). Therefore, we keep the
result paths’ information as auxiliary data with the cached result R. With that,
we compute Pred,’"(n) without issuing any source queries. To compute the
size of this auxiliary data, recall that each result path is of length N + 1; if M
is the size of the cached result R, then the size of the auxiliary data is clearly

XI

Incremental_Maintenance (Expression £, Update Uf)
1- Ag =CnNU.path
RT =R~ :() //Empty sequences
i =1 // loop variable
2- WHILE (i < N AND A;_; is not empty)

2-1 j=1
WHILE (s; has no predicate test AND j < N) j++
2-2 A; = q((si, Sit1, -, 55).avis&label, Aj_1,U.path)

2-3 Let T; = (n|n € A; A Pred;ft”(n) = true)

2-4 5;’ = (n|n € T; A RPj(n) = false)

2-5 RT =Rt u q((s]+1, Sj42, " ,jN),(Sj,D)

2-6 R~ =R~ U(n|n € R A ResultPathj;(n) € (A4; — T;))
2-7 A; = T; — &}

2-8i=j+1
3- R=RURT
R=R—-R"

Fig. 4. Incremental View Maintenance Algorithm for XML Path Expressions

O(M % N). Thus the auxiliary data size is bounded by the expression size and
the result size and it does not depend on the source data size.

Discovering the Indirect Effects of the Updates To discover the indirect
effects from the direct ones, we need to handle two cases:

1. Indirect additions due to direct additions: when a node n is directly added
to R; then, in order to retrieve the indirect additions at R, the maintenance
algorithm issues a source query with context as n and with the steps sequence
(Sit1,Si+2, -+, sn). This query is denoted as ¢((si+1, Si+2,- -, Sn), (n), D).

2. Indirect deletions due to direct deletions: when a node n is directly deleted
from R;, then all the nodes r € R that came to R due to n belonging to
R; must also be deleted from R. These are the nodes r € R which have
ResultPath;(r) = n. Thus, using the auxiliary data described above, we can

discover the indirect deletions without issuing any source queries.

The Full Algorithm. Figure 4, shows an algorithm based on the ideas pre-
sented above. Step 1 initializes some algorithm variables. Rt and R~ are the
sequences of nodes to be added and deleted, respectively, in R. The loop in step
2 computes the different A’s. Step 2-1 assigns the value of j such that the range
i : 7 spans all the expression steps starting at ¢ that do not have predicate tests.
For this range, no predicate tests are needed because all the predicates are known
to be true, by definition, before and after /. Thus, there are no direct effects
in this range. Therefore, the algorithm combines all the axis&label tests of this
range in one step, namely, step 2-2. Step 2-3 identifies 7; as the sequence of the
nodes of A; that have Pred;ft"(n) = true. Step 2-4 then discovers the direct
additions at R;. These direct additions are then used by step 2-5 to discover
the indirect effects on R. Step 2-6 discovers all the ultimate deletions at R, it

XII

implicitly discovers the direct deletions and uses them to discover the indirect
ones. Step 2-7 excludes from A; the nodes that will not have effects on later
iterations, this is formally proved in [13]. Step 2-8 increments the loop variable
to start after j in the next step. Finally, step 3 updates R using RT and R™.

Note that the algorithm does not differentiate between source addition and
deletion updates, the only case that needs to make such distinction is when
U .node itself belong to A, this case is implicitly taken care of in the computa-
tion of Pred;(n) before and after U

In addition to the result R, the auxiliary data also need to be maintained.
This is not shown here for simplicity.

In the following section, we show how this algorithm is implemented when
the source XML document is stored in an RDBMS and hence, queried by SQL
queries.

4 Implementation over RDBMS

Although there have been several efforts to build native XML database sys-
tems [10,11], a common consensus is to use RDBMS technology to leverage
from the proven and highly-optimized storage and query capabilities already
provided by existing relational database systems [15].

Therefore, in this section, we show how the incremental XPath maintenance
algorithm described in Section 3 can be implemented when RDBMS technology
is used for the storage of the XML source data, the auxiliary data, and the
cached results. This requires an update management middleware which bridges
the gap between the XML logical data model at one side, and the relational
database implementation at the other side.

First, we will describe the XML-to-RDBMS and XPath-to-SQL mapping
schemes the middleware uses (Section 4.1). Then we will describe how to employ
this relational framework for incremental view maintenance of XPath queries to
support efficient Web Service caching (Section 4.2).

4.1 Storing and Querying XML over RDBMS

XML Data to Relational Data Mapping Given the mismatch between the
XML data model (which has a nested structure) and the relational data model
(which is flat), several techniques have been proposed for storing and query-
ing XML documents using relational database systems [6,9,16,15]. These ap-
proaches typically work as follows. The first step is relational schema generation,
where relational tables are created for the purpose of storing XML documents.
The next step is XML document shredding, where XML documents are stored
by shredding them into rows of the tables that were created in the first step. The
final step is XML query processing (XPath queries in our case), where XPath
queries over the stored XML documents are converted into SQL queries over the
created tables.

XIII

id label type value parent
1 Manuscripts|element |NULL 0

1.1 Category attribute|Fiction 1

1.3 Book element |NULL 1
1.3.1 |ISBN attribute|1-555860-438-3 (1.3
1.3.3 |Title element |NULL 1.3
1.3.3.1|NULL value A Story 1.3.3
1.3.5 |Author element |NULL 1.3
1.3.5.1|Country attribute|USA 1.3.5
1.3.5.3|NULL value John Doe 1.3.5
1.5 Monograph [element |NULL 1
1.5.1 |ISBN attribute|1-888570-843-5(1.5
1.5.3 |Title element |NULL 1.5
1.5.3.1|NULL value Another Story [1.5.3
1.5.5 |Author element |NULL 1.5
1.5.5.1|Country attribute|Canada 1.5.5
1.5.5.3|NULL value Tom Alter 1.5.5

Fig.5. SrcTBL: The XML Document Table

One simple approach of shredding is to store each node in the XML tree as a
tuple in a relational table, which maintains all the necessary information, such as
the node label, and node type. Node identifiers are used to capture and represent
the structure of the XML source in the relational database. In order to efficiently
maintain path-expression views over XML documents, two essential properties
must be provided by node identifiers: First, element(s) updated in the source
XML document should be easily identified. Secondly, structural (parent, child,
descendent, sibling) relationships among the elements of the XML document
should be easily determined using the node identifiers. These are critical for
efficient query processing and also in facilitating effective view maintenance in
the presence of updates.

Several approaches are proposed to assign node identifiers to the nodes in
XML document. We apply one such approach called, the ORDPATH [12] scheme
(also used in the upcoming version of Microsoft SQL Server). ORDPATH iden-
tifiers can be assigned to the nodes of an XML tree without requiring a schema.
ORDPATHSs are conceptually similar to the Dewey Order introduced in [17].
The resulting identifiers have the property that ancestor relationships between
the nodes is captured by the prefix relationship between the corresponding node
identifiers: ancestor(n;,n;) < prefiz(n;.nid,n;.nid).

Counsider the following sample XML document:

<Manuscripts Category="Fiction">
<Book ISBN="1-555860-438-3">
<Title>A Story</Title>
<Author Country="USA">John Doe</Author>
</Book>
<Monograph ISBN="1-888570-843-5">
<Title>Another Story</Title>
<Author Country="Canada">Tom Alter</Author>

</Monograph>
</Manuscripts>

Figure 5 shows the table Sr¢TBL in which an XML document is stored in an
RDBMS

XIV

— id: The ORDPATH identifier originally proposed is implemented as a bit
string, and an RDBMS is supposed to implement primitive functions for
structural relationships and query plans optimized for ORDPATHs. In our
prototype, we have implemented an ORDPATH id as a character string, as
shown in Figure 5, for experimental purpose without implementing primitive
functions in RDBMSs. The primitive ancestor(n;.id, n;.id) is implemented
as a string prefix matching: “n;.id LIKE n;.id || *%’”. Note that the node
id column captures the order of the XML document, thus this XML order
semantics are not lost when the document is stored in an unordered relational
system.

— parent: To identify a parent-child relationship effectively in our experimental
prototype, we additionally store the parent node id in the table. The primi-
tive parent(n;.id,n;.id) is in fact implemented as “n;.id = n;.parent”.

— label, type, value: A node type is specified in type , which is either an
element, attribute, or value. An element node has its tag name in label.
An attribute node has its name and value in 1abel and value respectively.
A value node has its value in value. Although our view maintenance algo-
rithm is presented on a simplified document model (i.e., (n.id, n.label)), it
can be easily mapped in this node model.

With this table schema in place, XPath queries can be processed by translating
them into SQL queries against a table of this schema, as illustrated next.

4.2 XML Document Update Management

For each cached XPath expression, the system stores the following data required
for incremental maintenance (Section 3): (1) CntxtTBL: a table of the nodes
that comprise the query context, (2) Query Statement: an SQL representation of
the original XPath expression, (3) Individual query step: an SQL representation
of each step in the incremental maintenance algorithm, and (4) AuxTBL: the
auxiliary data (i.e. the result paths), whose schema is AuxTBL(id0, id1, id2, - - -,
idN) (where N is the number of steps in the cached expression, each row in this
table stores a result path of the result, and the nodes in the last column idN
comprise R).

In the maintenance process, the whole auxiliary data (i.e., AuxTBL) needs to
be maintained, not only the final result R which is stored in the last column of
that table. We have implemented that simply by projecting more columns in the
SELECT clauses of the following SQL statements. With that, the rows resulting
from these SQL statements represent partial path expressions. Therefore, we use
join operations to concatenate these partial result paths to form full result paths
to maintain AuxTBL. For simplicity, we do not show the concatenation queries
here.

In addition to these tables, we maintain an update table (UpdtTBL) that
stores the source update being processed. As mentioned before, each update U
is represented by U.path which is a branch of the source tree. Thus, we use the
same schema as for the SrcTBL.

XV

The View Maintenance Process We illustrate the view maintenance process
with the folowing expression as an example:

/site/person[LIK E(Qid,” person%”)]/name

To construct the SQL query representing this expression, the hierarchical rela-
tionships between the nodes can be represented by either nested SQL queries
or as self-join operations on the source table, SrcTBL, shown in Figure 5. We
adopted the second option in our solution because it allows the query optimizer
to generate more efficient query plans. Thus, the expression is transformed into
the following SQL query by the middleware:

SELECT A.id, B.id, C.id, E.id

FROM CntxTBL A, SrcTBL B, SrcTBL C, SrcTBL D, SrcTBL E

WHERE parent(B.id)=A.id AND parent(C.id)=B.id AND parent(D.id)=C.id
AND parent(E.id)=C.id

AND B.type = ’element’ AND A.label = ’site’

AND C.type = ’element’ AND B.label = ’person’

AND D.type = ’attribute’ AND D.label = ’id’ AND LIKE(D.value,’person}’)
AND E.type = ’element’ AND E.label = ’name’

In this query, the final result is the set of nodes in the last projection E.id,
the other projections A.id, B.id and C.id represent the result path information
which is used as auxiliary data for the maintenance process.

The algorithm in Figure 4 starts by initializing Ay in step 1 by an intersection
operation:

CREATE TABLE A (id0) AS
(SELECT id FROM CntxtTBL INTERSECTION SELECT id FROM UpdtTBL)

Then, in the first iteration of the loop, step 2-1 assigns to j the value 2
because s; has no predicate test. Then, step 2-2 computes As by the following
SQL statement:

CREATE TABLE A,(idO, id1l, id2) AS

SELECT A.id, B.id C.id FROM A A, UpdtTBL B, UpdtTBL C
WHERE parent(B.id)=A.id AND parent(C.id)=B.id

AND B.type = ’element’ AND B.label = ’site’

AND C.type = ’element’ AND C.label = ’person’

The projection of A.id and B.id here are to get partial result paths.
In step 2-3, 73 is computed by:

CREATE TABLE 7> AS SELECT A.id FROM A, A, SrcTBL B
WHERE parent(B.id)=A.id

AND B.type = ’attribute’ AND C.label = ’id’

AND LIKE(B.value,’person}’)

Then step 2-4 computes the direct additions at R, as follows:

CREATE TABLE 5; AS
SELECT T.id FROM 7> T
WHERE NOT EXISTS (SELECT * FROM AuxTBL WHERE id2 = T.id)

XVI

Step 2-5 then uses & to discover the ultimate additions at R, the SQL query
used to discover these additions is:

SELECT A.id, B.id FROM 6; A, SrcTBL B
WHERE parent(B.id)=A.id
AND B.type = ’element’ AND B.label = ’name’

(A.id, B.id) in this query result is a partial result path starting at Ro until
Rs.
Then step 2-6 computes the ultimate deletions at R as follows:

SELECT DISTINCT A.id3 FROM AuxTBL A
WHERE A.id2 IN
SELECT id2 FROM A, DIFFERENCE SELECT id FROM 7,

step 2-7 simply reduces Ay by a DIFFERENCE operator.

In the second (also, last) iteration of the loop, we have i = j = 3. In step
2-2, As is computed from the reduced A,. Since this iteration is processing
the last expression step, then if I/.node belongs to Ag then the computation
of Preds(U.node) takes into account U.type. This is computed as follows: If
U.type = Add, then Predy’ " (U.node) = false because U.node did not exist
in the source before U.node. If U.type = Del, then Predgft”(u.node) = false
because U.node does not exist in the source after {/.node. These two cases are
implicitly taken care of in the algorithm without testing U.type in the compu-
tation of Preds(U.node) before and after I/. Finally, all the ultimate additions
and deletions in AuxTBL are determined by joining the partial result paths
discovered by the SQL queries shown above.

5 Experimental Evaluation

In this section, we experimentally show that the proposed scheme provides a large
performance impact, while incurring a small storage and processing overhead.
For this purpose, we used the XMARK benchmark [14] to generate a data set
of 325,236 nodes. Experiments are done using an Oracle 9i database on a PC
with Linux 8.0, Pentium 4 1800 MHz CPU with 1 GB memory. We evaluated
the caching performance by using the following XPath queries:

XP1: /site/people/person[like(Qid,” person%”)]/name/text ()

— XP2: /site/closed_auctions/closed_auction[price>40] /price/text()
— XP$3: /site//item[contains(description,”gold”)/name/text()

XP/: /site/closed_auctions/closed_auction/annotation/description/
parlist /listitem /parlist /listitem /text /emph /ketword /text()

Overhead of Auxiliary Data Table 1 shows the overhead of auxiliary data
(i.e., AuxTBL) in terms of storage requirements and execution time. In addition
to cached XPath results (denoted as columns R-VAL and R-ID), the system

XVII

R-VAL|R-ID [AUX |SOV||FQ FQA |EOV
(byte) |(byte)|(byte) (msec)|(msec)
XP1{36538 |30103 85199 (1.28 ||532 551 1.04
XP2|2366 |8312 (24267 |2.27 ||802 876 1.09
XP3(3080 (2327 |6096 |1.13 (|3933 |4019 |1.02
XP4|964 752 5525 |3.22 ||3520 |3556 |(1.01

Table 1. Overhead in Auxiliary Data Maintenance: R-VAL: Result Set Value Stor-
age, R-ID: Result Set Node ID Storage, AUX: Auxililary Data Storage, SOV: Storage
Overhead (=AUX/(R-VAL+R-ID)), FQ: Full Source Query Execution Time, FQA:
Full Source Query with Aux. Data Execution Time, EOV: Execution Time Overhead
(=FQA/FQ).

needs to store result paths as auxiliary data(AUX). As can be seen in the AUX
column, the storage overhead does not depend on the data size, but depends
on the number of steps in the XPath query and the cached data size. Then,
to observe the query processing in WReX, we compared the original full query
execution time with the execution time of the modified query that also retrieves
result paths to be used as auxiliary data. As shown in the Table 1, the overhead
is less than 10% in each case.

Performance Impact of Cache-enabled Middleware To observe the ben-
efit of WReX in reducing the execution time observed by the users, we have
compared the execution time requirements for incremental cache update and
full recomputation on the following cached queries:

— XP5: [site/people/person|like(Qid,” person2%”)] /name/text ()
— XP6: /site/people[person[like(@id,” person1%”)]]/
person[like(@id,” person2%”)]/name/text()

For each query, 100 source updates were randomly generated. The results of
the time comparison for all the updates are shown in Figures 6(a) and 6(b). In
short, full queries take 10 to 20 times longer to execute on average. The figures
clearly establish the advantage of the proposed incremental view maintenance
middleware.

Finally, consider Figure 7, which shows the caching impact analysis for query
XP4, which has 13 steps, but no predicate. Since there are no predicates in XP4,
no queries to the source need to be issued for predicate checking. Therefore, the
time needed for incremental maintenance is rather constant, whereas the need
for accessing sources for predicate tests had introduced a higher variability to the
incremental maintenance time for queries XP5 and XP6 in Figures 6(a) and 6(b).
Nevertheless, since predicate evaluation is only a part of the overall processing
needed for reevaluation of queries XP5 and XP6, incremental maintenance was
consistently cheaper even when sources are accessed for predicate checking.

XVIII

Process Cycle Time Comparison

(Five steps, one predicate, 325236 nodes in source document, 662 nodes in answer document)

—— View Update Through Incremental Maintenance —x— View Update Through Full Query|

1800

1600

1400 emreasemsemsemsenens e R ons 00K

1200 ﬂ ﬂ A
1000

Cycle Time (msec)

0 10 20 30 40 50 60 70 80 20 100
Source Updates

(a) XP5

Process Cycle Time Comparison

(Five steps, two predicates, 325236 node in source document, 662 nodes in answer documentrc

—— View Update Through Incremental Maintenance —«— View Update Through Full Query‘

5000 -

x % X,
K ok HkHAK

x
4500 1 F bk e K * XXXXXxx)‘XxXXXXXx
4000

3500

3000 -
2500
2000

1500

Cycle Time (msec)

1000 4
500 -

[10 20 30 40 50 60 70 80 L 100
Source Updates

(b) XP6

Fig. 6. Incremental View Maintenance versus Full Re-Computation (Queries XP5,
XP6)

XIX

Process Cycle Time Comparison

(13 deps no predicate,

0
[+ Mlew Update Through Incremrertal Mei — Full Source Query |

s s SN s fi s i el 5

g

g

Cycle Time (ms
B 8 B

8

t 1 [1 1
/\ \ n NN I /\
0’\..‘ “M’JW \ P Lol Lo s Ao W
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 8 89 B 97

Source Updates

Fig. 7. Incremental View Maintenance versus Full Re-Computation (Query XP4)

6 Conclusion

In this paper, we have proposed WReX, a Web Service middleware architec-
ture that enables cache management by bridging the gap between Web Service
message caching and updates in the source data. Our solution consists of two
components: (1) Web Service Content Description (WSCD) that fills the gap
between Web Service messages and XML views of the source data; and (2) XML-
specific view maintenance that fills the gap between XML views and updates in
the source data. Cache-enabled Web Services are easily described and deployed
on a common platform with proven RDBMS technology. Through experimental
evaluation, we have demonstrated the performance benefits of our incremental
view maintenance. Future work includes more effective maintenance of multiple
XPath views and multiple updates, extension of our approach to other XML-to-
RDBMS mapping schemes (such as schema-aware mappings), and more detailed
studies on the entire middleware performance.

References

1. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML
documents with distribution and replication. In SIGMOD Conference, pages 527
538, 2003.

2. K. S. Candan, D. Agrawal, W. Li, O. Po, and W. Hsiung. View invalidation for
dynamic content caching in multitiered architectures. In The 28th Very Large Data
Bases Conference, 2002.

3. J. Challenger, P. Dantzig, and A. Iyengar. A scalable system for consistently
caching dynamic web data. In In Proceedings of IEEE INFOCOM’99, 1999.

4. C. Y. Choi and Q. Luo. Template-based runtime invalidation for database-
generated web contents. In APWeb 2004, 2004.

5. A. Datta, K. Dutta, H. M. Thomas, D. E. Vandermeer, and K. Ramamritham.
Proxy-based acceleration of dynamically generated content on the world wide web:

XX

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

An approach and implementation. ACM Trans. Database Syst, 29(2):403 443,
2004.

A. Deutsch, M. Fernandez, and D. Suciu. Storing Semi-structured Data with
STORED. In Proceedings of the 1999 ACM International Conference on Manage-
ment of Data (SIGMOD’1999), 1999.

Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and
predicate evaluation for high-performance XML filtering. ACM Trans. Database
Syst, 28(4):467 516, 2003.

. D. Florescu, A. Grunhagen, and D. Kossmann. XL: An XML programming lan-

guage for web service specification and composition. In WWW2002, International
World Wide Web Conference, 2002.

D. florescu and D. Kossman. Storing and Querying XML Data using an RDBMS.
IEEE Data Engineering Bulletin, 22(3):27 34, 1999.

Roy Goldman, Jason McHugh, and Jennifer Widom. From Semistructured Data
to XML: Migrating the Lore Data Model and Query Language. In Proceedings of
the ACM International Workshop on the Web and Databases (WebDB’99), 1999.

J. Naughton, D. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis, J. Kang,
R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy andJ. Shanmugasun-
daram, F. Tian, K. Tufte, S. Viglas, C. Zhang, B. Jacksonand A. Gupta, and
R. Chen. The Niagara Internet Query System. IEEE Data Engineering Bulletin,
24(2), 2001.

Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,
and Nigel Westbury. Ordpaths: Insert-friendly xml node labels. In SIGMOD
Conference, pages 903-908, 2004.

Arsany Sawires, Junichi Tatemura, Oliver Po, Divyakant Agrawal, and K. Selcuk
Candan. Incremental Maintenance of Path-Expression Views. In SIGMOD Con-
ference, 2005.

Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael]J. Carey, Ioana
Manolescu, and Ralph Busse. Xmark: A benchmark for xml data management. In
VLDB, pages 974-985, 2002.

Jayavel Shanmugasundaram, Rajashekhar Krishnamurthy, Igor Tatarinov, Eugene
Shekita, Efstratios Viglas, Jerry Kinman, and Jefferey Naughton. A General Tech-
nique for Querying XML Documents using a Relational Database System. In
Proceedings of the 2001 ACM International Conference on Management of Data
(SIGMOD’2001), 2001.

Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J. Carey,
Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficiently publishing
relational data as xml documents. In Proceedings of 26th International Conference
on Very Large Data Bases (VLDB’2000), September 10-14, 2000, Cairo, Eqypt,
pages 65 76, 2000.

Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eu-
gene J. Shekita, and Chun Zhang. Storing and querying ordered XML using a
relational database system. In Proceedings of the 20002 ACM International Con-
ference on Management of Data (SIGMOD’2002), pages 204—-215, 2002.

D. B. Terry and V. Ramasubramanian. Caching xml web services for mobility.
ACM Queue, 1(3):70 78, 2003.

K. Yagoub, D. Florescu, V. Issarny, and Patrick Valduriez. Caching strategies for
data-intensive web sites. In The VLDB Journal, pages 188-199, 2000.

