
WReX: A S
alable Middleware Ar
hite
ture toEnable XML Ca
hing for Web-Servi
esJuni
hi Tatemura1, Oliver Po1, Arsany Sawires2 ?Divyakant Agrawal1, and K. Sel�
uk Candan11 NEC Laboratories Ameri
a10080 North Wolfe Road, Suite SW3-350, Cupertino, CA 95014ftatemura,oliver,agrawal,
andang�sv.ne
-labs.
om2 Department of Computer S
ien
eUniversity of California Santa BarbaraSanta Barbara, CA 93106arsany�
s.u
sb.eduAbstra
t. Web servi
e
a
hing, i.e.,
a
hing the responses of XML webservi
e requests, is needed for designing s
alable web servi
e ar
hite
-tures. Su
h
a
hing of dynami

ontent requires maintaining the
a
hesappropriately to re
e
t dynami
 updates to the ba
k-end data sour
e.In the database, espe
ially relational,
ontext, extensive resear
h has ad-dressed the problem of in
remental view maintenan
e. However, only afew attempts have been made to address the
a
he maintenan
e problemfor XML web servi
e messages. We propose a middleware solution thatbridges the gap between the
a
hed web servi
e responses and the ba
k-end dynami
 data sour
e. We assume, for generality, that the ba
k-endsour
e has a general XML logi
al data model. Sin
e the RDBMS te
hnol-ogy is widely used for storing and querying XML data, we show how oursolution
an be implemented when the XML data sour
e is implementedon top of an RDBMS. Su
h implementation exploits the well-known ma-turity of the RDBMS te
hnology. The middleware solution des
ribed inthis paper has the following features that distinguish it from the existingte
hnology in this area: (1) It provides de
larative des
ription of WebServi
es based on ri
h and standards-based view spe
i�
ation language(XQuery/XPath); (2) No knowledge of the sour
e XML s
hema is as-sumed, instead the sour
e
an be any general well-formed XML data;(3) The solution
an be easily deployed on RDBMS, and (4) The sizeof the auxiliary data needed for the
a
he maintenan
e does not dependon the sour
e data size, therefore, the solution is highly s
alable. Experi-mental evaluation is
ondu
ted to assess the performan
e bene�ts of theproposed approa
h.Keywords:web servi
es,
a
hing, XML views, path expressions, XML-relationalmapping? This work has been done during the author's summer internship at NEC

II1 Introdu
tionPerforman
e degradation of a Web Servi
e
an signi�
antly impa
t the responsetimes of front-end appli
ations that use it. Espe
ially for Web Servi
es thatprovide dynami

ontent to many users (su
h as produ
t information servi
es),laten
y observed by the users is
aused not only by the network transmission,but mainly by server overload at the ba
k-end appli
ation. O�oading pro
essingfrom the ba
k-end appli
ations is thus essential in providing Web Servi
es s
al-ability. Therefore,
a
hing is a key enabling te
hnology for s
alable Web Servi
edelivery.A Web Servi
e
a
he must handle request and response messages (typi
allyformatted using XML); thus the
a
he must pro
ess (e.g., parse XML
ontent of)a request message to identify the response message to be returned. Therefore, astandard HTTP
a
he
annot be dire
tly employed when
a
hing Web Servi
es.Furthermore, in order to a
hieve loose
oupling of remote servi
es, Web Servi
esusually handle messages with
oarser granularities than traditional distributedobje
t messaging su
h as CORBA. This fa
t makes it more diÆ
ult to mapdata sour
e updates to the
a
hed messages. Ca
hing messages for data-drivenWeb Servi
es thus requires middleware support for appropriate propagation ofupdates from the sour
e to the
a
he.It is
ommonly understood that an XML data/query model
an be imple-mented on a relational model to leverage from the proven and highly-optimizedstorage and query
apabilities already provided by existing relational databasesystems [15℄. Thus, one approa
h to
a
hing Web Servi
e
ould be to apply ex-isting te
hnologies that manage data dependen
y between web
ontent and datain relational databases, su
h as Data Update Propagation (DUP)[3℄, view inval-idation [2℄, invalidation based on query templates [4℄, and many other works onview maintenan
e. However, these relational approa
hes will be very ineÆ
ientbe
ause an XML query
an involve too many join operations when translatedinto SQL.In this paper, we propose a middleware ar
hite
ture, WReX, that bridgesthe semanti
 gaps among Web Servi
e messages, a relational data model, andan XML data model, for
a
hing Web Servi
es. To make the proposed mid-dleware solution appli
able to various data sour
es, the WReX represents thesour
e data in the
a
hes as XML views and provides a de
larative way to de-�ne Web Servi
es to a

ess the data. The WReX ar
hite
ture (Se
tions 3 and4) aims at resolving the impedan
e mismat
h between the
a
hed data
ontentand the underlying database te
hnology by applying re
ent XML-spe
i�
 viewmaintenan
e te
hniques transparently in a relational setting.Consequently, the WReX introdu
ed in this paper
onsists of two
omplemen-tary
omponents: (1) Web Servi
e Content Des
ription (WSCD) me
hanism �llsthe gap between Web Servi
e messages and XML views of the sour
e data and (2)XML view maintenan
e mapped to relational storage �lls the gap between XMLviews and updates to the sour
e data. This novel middleware ar
hite
ture hasthe following features that distinguish it from the previous works: (1) It providesde
larative des
ription of Web Servi
es based on ri
h and standards-based view

IIIspe
i�
ation language (XQuery/XPath); (2) No knowledge of the sour
e XMLs
hema is assumed, instead the sour
e
an be any general well-formed XML data;(3) The solution
an be easily deployed on RDBMS, and (4) The size of the aux-iliary data needed for the
a
he maintenan
e does not depend on the sour
edata size, therefore, the solution is highly s
alable. Experimental evaluation is
ondu
ted to assess the performan
e bene�ts of the proposed approa
h. Exper-imental evaluations presented in Se
tion 5 establish the performan
e bene�ts ofthe WReX middleware approa
h.2 Ca
he-enabled Servi
e Middleware Ar
hite
tureFigure 1 illustrates WReX, a Web Servi
e middleware ar
hite
ture enhan
edwith web servi
e
a
hing. WReX
onsists of a Web Servi
e Appli
ation Server,an XML Data Sour
e, and an Update Manager, whi
h are implemented on topof a
ommon Web
omputing platform (e.g., a J2EE appli
ation server and arelational database server). WReX lets users des
ribe and deploy Web Servi
esthat deliver
ontent generated from their own data sour
es. Given the des
riptionof a Web Servi
e, the middleware manages request/response message
a
hes.
WS Application (Data Service)

XML Data Source

WS Application Server

RDBMS

Data

Source

update

aux

Update Manager

Management
Components

Content
Processor

Application

Content Logic:

WSDL+WSCD

Application Data:

Any XML

XPath
Cache

Content
Cache

deploy deploy

WS
Client update

SQL

XPath

query
XML-Relational Mapping

Application

Management

Logic

Fig. 1. WReX: Web Servi
e Ca
hing Ar
hite
tureA Web Servi
e appli
ation is deployed on top of the WS Appli
ation Serverand the XML Data Sour
e as
an be seen Figure 1. The appli
ation has threemajor parts: (1) data (data sour
e to be published), (2)
ontent logi
 (des
rip-tion of message
ontent to be generated from the data sour
e) , and (3) man-agement logi
 (user authenti
ation, logging, and metering). The
a
he-enabledWeb Servi
e appli
ation server
onsists of the following
omponents: (1) Variousmanagement
omponents, (2) a message
ontent
a
he
omponent, (3) a
on-tent pro
essor, and (4) an XPath
a
he. Management
omponents manipulatemessages (e.g., insert data in the header) genereted by the
ontent pro
essor.

IV Management
omponents handle management tasks su
h as user a

ountingand monitoring with approprite transformation of message
ontent. Web servi
emessages that
ontain management information are mu
h less reusable even ifa
tual
ontent delivered to the user (e.g., produ
t information) is reusable. Byseparating management fun
tions as these
omponents, WReX lets the other
omponents fo
us on managing relationships between message
ontent and thesour
e data and makes
a
he more appli
able.The
ontent logi
 spe
i�es how to generate
ontent of a message in responseto a request message from a Web Servi
e
lient. A short
oming of the existingte
hnologies is that, the Web Servi
e de�nition language (WSDL) only de�nesinterfa
es (su
h as data types) of request/response messages, but does not pro-vide
ontent relationship between request and response messages [18℄. To bridgethis gap, we introdu
e a des
ription platform, Web Servi
e Content Des
ription(WSCD), whi
h provides a template of a response message that
an
ontain ref-eren
es to data in a request message and queries to the sour
e data. When theappli
ation server re
eives a request message, it generates a response message byintegrating a message template and
ontent fragments retrieved from the datasour
e. Ca
hing is applied to both generated response messages (Content Ca
he)and retrieved
ontent from the sour
e (XPath Ca
he).This approa
h is similar to JSP (Java Server Pages) or ESI (Edge Side In-
ludes). JSP provides a template of dynami
 web pages and lets the appli
ationserver
onstru
t a page from the template and
ontent fragments generated byappli
ations. Several appli
ation servers provide
a
hing fun
tionality for su
h
ontent fragments in order to redu
e appli
ation overload. ESI is a markuplanguage used to de�ne web
ontent
omponents for dynami
 assembly anddelivery of web pages at edge servers. The edge server dynami
ally integratesfragments into a web page and needs to retrieve only non-
a
heable or expiredfragments from the original servers. Datta et al. [5℄ has extended this approa
hto enable more
exible
ontent
omposition on the edge server resulting in en-han
ed
a
heability and reusability of
ontent. In this sense, our approa
h
an beseen as an extension of the JSP/ESI
on
ept from HTML to XML
ontext withXML
a
he update management. Another related example is the Weave manage-ment system [19℄ that enables the user to
reate Web
ontent using de
larativespe
i�
ation and
a
hes various intermediary data su
h as views of relationaldata, XML page fragments, and HTML pages. Although it supports XML
on-tent generation from relational databases, update maintenan
e between
a
hedXML
ontent and data sour
e is based on time stamps and spe
i�ed with event-
ondition-a
tion rules.To enable
a
hing of XPath queries to the data sour
e as well as the messageresponses from the Web Servi
e itself, the Update Manager needs to monitorupdates in the data sour
e and identify
hanges in the
a
hed results. Here, notethat an XML-aware data sour
e is
ommonly implemented on an XML-awareRDBMS, whi
h
an leverage from the maturity of RDBMS implementations,extensive tuning, proven s
alability, sophisti
ated query pro
essing and queryoptimizers. However, even though the underlying DBMS is relational, tradi-

Vtional view/
a
he management solutions for relational data
an not be dire
tlyapplied to an XML data/query model. For example, Ca
hePortal [2℄ automates
a
he update management based on a view invalidation te
hnique in a relationalmodel. However, when a query involves many join operations, whi
h is the
ase ofXML queries in a relational model, it is very ineÆ
ient due to
osts from an ex-tra database snapshot and over invalidation. Therefore, we introdu
e an updatemanagement middleware
omponent whi
h bene�ts from the relational natureof the ba
k-end database, while deploying XML-spe
i�
 view management te
h-niques (i.e., the Update Manager that a

esses the data sour
e through SQLqueries (Figure 1)).2.1 Web Servi
e Content Des
ription (WSCD)Given a servi
e request, the Web Servi
e generates response messages basedon the servi
e logi
. The interfa
e between the request and response is usuallyde�ned using WSDL (Web Servi
e De�nition Language). WSDL, on the otherhand, does not des
ribe
ontent relationships between request and response mes-sages, whi
h are needed for managing updates. We propose Web Servi
e ContentDes
ription (WSCD) language that des
ribes how a response message is gener-ated for a given operation spe
i�ed in WSDL. Formally, the WSCD for a servi
eoperation o
onsists of three parts: (V; T; S), where V is the variable assignmentde�nition, T is the template de�nition, and S is the sour
e referen
es.{ The variable assignment de�nition V de�nes how to extra
t data from arequest message. Mapping from a request message to variables is given bypairs of name and XPaths: V = f(namei; xpathi)g. Given a request message,whi
h
an be seen as an XML do
ument, V generates a spe
i�
 variable as-signment v = fnamei = valueig. In addition to the generation of a responsemessage, v is used as the identity of the message
a
he: the identity
onsistsof an operation name and a variable assignment (o; v).{ The template T de�nes the
ontent of a response message with referen
es tothe variables V . The template
an
ontain XQuery expressions to dynami-
ally insert data derived from the data sour
e.{ The sour
e referen
e S maps URIs of data sour
e servi
e endpoints to do
-ument URIs referred to by XQuery expressions in T .Figure 2 shows an example of aWSCD des
ription. Elements <
d:Variables>,<
d:Template>, <
d:Servi
eEPR>
orrespond to (V; T; S), respe
tively.A variable is de�ned with a part of the request message (i.e. input) of aWSDL operation and an XPath expression that indi
ates data within the part.Combined with WSDL binding information, it is translated to a full XPathexpression applied to a request message, for example:\/Envelope/Body/GetBookRequest/Category/text()"in
ase of the SOAP literal binding. A template spe
i�es an XML
ontent of apart of the response message (i.e., output) of a WSDL operation. It
an
ontain

VI<
d:WSCD xmlns:
d=... operation="GetBook"><
d:Variables><
d:Let name="
ategory" part="body"path="/GetBookRequest/Category/text()"/><
d:Let name="maxpri
e" part="body"path="/GetBookRequest/Max/text()"/><
d:Let name="minpri
e" part="body"path="/GetBookRequest/Min/text()"/></
d:Variables><
d:Template part="body"><GetBookResponse><
d:Query>FOR ... LET... WHERE... RETURN...</
d:Query></GetBookResponse></
d:Template><
d:Servi
eEPR .../></
d:WSCD> Fig. 2. Example of Web Servi
e Content Des
riptionan XQuery spe
i�ed in <
d:Query>. The query may refer to variables de�ned inthe variables part.Note that WSCD is meant to provide a simple spe
i�
ation of message
on-tent in a request-response Web Servi
e operation. If the user wants a full setof programming fun
tionality to
reate Web Servi
e (su
h as event handling), aspe
ial programming language for Web Servi
es, su
h as XL [8℄,
ould be usedinstead of WSCD. In fa
t, sin
e XL uses XQuery expressions to a

ess data,a possible extension of WReX is to support the XL language, in addition toWSCD, for servi
es with
ompli
ated intera
tions.Our WSCD approa
h is also related to \de
larative web servi
es" [1℄, usedfor
omposing dynami
 XML do
uments by importing fragments. For optimizeddata management, a de
larative web servi
e that provides fragments is de�nedas an XQuery on data sour
es. Although they fo
us on data repli
ation issues ina distributed environment, they also state possibility of querying
ost redu
tionthrough an update propagation me
hanism, on whi
h we fo
us in this paper.2.2 Ca
he Management using WSCDTheWSCD des
ription of Web Servi
e messages provides a framework to manageWeb Servi
e
a
hing. First, the system needs to identify the mat
hing in
omingrequests and
a
hed response messages. This task is done by extra
ting valuesfrom an in
oming message with XPath expressions in the variable de�nition Vsin
e the
a
he identity is given as a variable assignment (o; v). EÆ
ient �ltering[7℄
an be applied to pro
ess multiple XPath mat
hing results in a s
alablemanner. Then we fo
us on the se
ond task: to manage update dependen
iesbetween
a
hed messages and the data at the sour
e.

VIIAs des
ribed above, the WSCD template
ontains a set of XQuery expressionsXQ = fxqig to insert dynami
 data from the sour
e into response messages.Sin
e an XQuery expression xq
ontains referen
es to the variables V and thesour
e S, what the system needs to manage is an XQuery instan
e (xq; v; S):when the result of an XQuery instan
e is updated, the message
a
he items that
ontain this result must be updated or invalidated.An XQuery statement a

esses do
uments (i.e., the sour
e data) throughXPath expressions. Thus, a set of XPath expressions XP = fxpig is extra
tedfrom XQueries XQ and is given to the XPath
a
he
omponent, whi
h
a
hesan XPath instan
e: (xp; v; S). The XPath Ca
he re
eives an XPath query fromXQuery Pro
essor and returns the query result from the
a
he. If it is not
a
hed,the XPath Ca
he issues an XPath query to the data sour
e. The data sour
ereturns the query result and makes available auxiliary data required to maintainXPath
a
he (Se
tion 3).When the Update Manager observes updates in the data sour
e, it determinesthe impa
t of the sour
e update to
a
hed XPath results. During this pro
ess, theUpdate Manager uses the auxiliary data and update data to identify the
a
heupdates. It may also a

ess the sour
e data if needed. Then it maintains
a
hedresults in the XPath Ca
he a�e
ted by the update. Consequently, message
a
heitems that refer to the a�e
ted XPath instan
es are also either invalidated ormaintained. In order to e�e
tively manage update dependen
y between message
a
he and the data sour
e, the WReX uses our XML-spe
i�
 view maintenan
ete
hniques des
ribed next.3 XPath Ca
he Maintenan
eIn this se
tion we des
ribe the data model and the in
remental XPath mainte-nan
e te
hnique WReX relies on. Further details of both are presented in [13℄.3.1 Data ModelAs des
ribed earlier, the underlying logi
al model of the data sour
e is XML.Ea
h XML data sour
e is represented as an ordered tree in whi
h every node nis a pair hn:id; n:labeli where n:id is a node identi�er that uniquely identi�es thenode and n:label is a string that des
ribes the node type and/or value. We useupper-
ase letters to represent the node labels. For example, A, B, and C arenode labels. We use numeri
 subs
ripts to distinguish di�erent nodes that havethe same label. Thus, Ai and Aj refer to two distin
t nodes with the same labelA. Figure 3 shows an example do
ument tree and path expression that will beused as a running example to illustrate the in
remental maintenan
e te
hnique.3.2 Update ModelA sour
e update is a transformation of the sour
e XML do
ument. Any sour
etransformation
an be expressed in terms of the two primitive operations of

VIII

R

B
1

A
1

B
2

C
1

 C
2

D
2

D
1

C
6

C
3

 E
1

C
4

D
3

A
2

B
3

E
2

A
3

B
4

E
3

 C
5

B
5

D
4

D
5

E
4

X
1

 X
2

X
3

(a) XML Data=A==B[Count(==E) � 1 _Count(=D) � 1℄==C[Count(==E) = 0℄==D(b) XPath QueryFig. 3. (a) An Example XML Tree and (b) a path-expression Eaddition and deletion of leaf nodes. Thus, for simpli
ity, in this se
tion, wefo
us on the maintenan
e operations needed to handle these two types of sour
eupdates. Formally, we model a sour
e update U as a pair hU :type;U :pathi whereU :type is the type of the update: Add (add a leaf node) or Delete (delete aleaf node). U :path is the path of all the an
estors of the added or deleted nodestarting with the do
ument root and ending with the added or deleted nodeitself. The added or deleted node itself is referred to as U :node. For example,U = hAdd; (R;X1; A1; B1; Z)i represents the addition of node Z as a
hild nodeof node B1 in the XML do
ument shown in Figure 3(a).3.3 Query ModelPath expressions are the basi
 building blo
ks of XML queries and therefore arefundamental to implementing Web Servi
es in our framework. The
a
he
ontentis the result of applying path expression-based queries to the sour
e do
ument.A path expression E of size N is a sequen
e of N steps: (s1; s2; � � � sN). A stepsi is a triple hsi:axis; si:label; si:predi where (i) si:axis is an axis test (
hild '/'or des
endent '//'); (ii) si:label is a label test; and (iii) si:pred is an optionalpredi
ate test whi
h
an be any
omplex
ondition examining the labels andthe stru
ture of the nodes in the subtree of the node being tested. Predi(n) issaid to be true if and only if (1) Node n belongs to the sour
e tree, and (2)si:pred evaluates to true at node n or step si does not have a predi
ate test. Forexample, Pred3(C1) in the example is true be
ause C1 satis�es the
onditions3:pred sin
e C1 has no des
endants labeled E.

IXGiven an expression E , a do
ument tree D, and a sequen
e of
ontext nodesC (the set of staring nodes from D), a query, Q = q(E ; C;D) returns a sequen
eof nodes R as a result. For example,
onsider the query Q = q(E ; C;D) where:D is the do
ument tree shown in Figure 3(a), C = (X1; X2; X3) are the shadednodes the same �gure, and E is the path expression spe
i�ed in Figure 3(b).Given this query,1. the �rst step s1 (=A) starts at every node in C and sele
ts all the
hildrenwith label A; this results in the �rst intermediate result R1 = (A1; A2; A3).2. s2 (==B[Count(==E) � 1_Count(=D) � 1℄) starts at every node in R1 andsele
ts all the des
endants with label B that have at least one des
endantlabeled E or at least one
hild labeled D; this results in the se
ond inter-mediate result R2 = (B2; B3; B4; B4; B5; B5). Note that B4 - and also B5 -o

urs twi
e in R2 be
ause it
an be derived in two ways from nodes of R1,one from A2 and another one from A3.3. starting at R2, step s3 (=C[Count(==E) = 0℄) sele
ts all the des
endants la-beled C that have no des
endants labeled E; this results inR3 = (C3; C4; C5; C5; C5).4. �nally, s4 (==D) starts at R3 and sele
ts all the des
endants labeled D.Hen
e, the �nal result of Q is R = R4 = (D3; D3; D4; D4; D4).We di�erentiate between the multiple o

urren
es of the same node in a resultby using a numeri
 supers
ript. For example, we denote the result R as R =(D13 ; D23; D14; D24; D34).For a node n 2 R, the sub-sequen
e of the an
estors of a node n that mat
hedthe steps of E , and thus
aused n to appear in R is referred to as the resultpath of n and denoted as ResultPath(n). ResultPathi(n), where i � 0, is theith element in ResultPath(n). In the example query above, ResultPath(D13) =(X1; A1; B2; C3; D3) and ResultPath(D13)2 = (X1; A1; B2; C3; D3) is B2.3.4 In
remental Maintenan
e of Path Expression ResultsA sour
e update U
an a�e
t the
a
hed result R by adding or deleting nodesto any of the intermediate results Ri. The primary reason of su
h additions anddeletions is
hanging the truth values of the expression predi
ates at the stepsof the expression:If an update
hanges a predi
ate Predi(n) from false(true) to true(false),we say that the update dire
tly adds (deletes) node n at step i.A dire
t addition (deletion) at step i
an indu
e other indire
t additions (dele-tions) in steps j > i. The �nal result R is a�e
ted if and only if the e�e
t propa-gates all the way to step N . For example, if U = (Add; (R;X1; A1; B1; E5)), thenPred2(B1)
hanges from false to true. The dire
t e�e
t of this is to add B1 toR2. The resulting indire
t e�e
ts are the addition of C1 and C2 to R3 and thenthe addition of D1 and D2 to R4. For ea
h step, the in
remental maintenan
epro
ess �rst dis
overs all the dire
t e�e
ts and then uses these e�e
ts to dis
overthe indire
t ones.

XDis
overing the Dire
t E�e
ts of the Updates. We identify the dire
te�e
ts of the updates in two phases: Axis&Label test and the predi
atetest.Phase I - Axis&label test: Let us de�ne Æ+i and Æ�i as the sequen
es of all nodesthat U dire
tly adds/deletes at Ri respe
tively. Let also Æi = Æ+i t Æ�i . The jobof this phase is to identify a sequen
e �i su
h that we
an guarantee, withoutany sour
e queries, that Æi � �i.In [13℄, we showed that every node n in Æi must also belong to U :path.Moreover, for a node n to be dire
tly added to be in Æi, it must have an an
estorin every Rj , j < i. Sin
e n itself belongs to U :path, then all its an
estors alsobelong to U :path. This suggests that U :path has mu
h of the information neededto identify the nodes of Æi. In fa
t, applying the axes and labels tests to U :path,ignoring the predi
ate tests, provides a sequen
e �i whi
h is guaranteed tobe a supersequen
e of Æi. This is be
ause this pro
ess uses a relaxed sele
tion
ondition (it ignores the predi
ate tests, whi
h evaluation requires querying thesour
e) over the bran
h U :path whi
h is guaranteed to in
lude all the nodes ofall the Æi's. Computing the �i's from U :path pro
eeds very similar to
omputingthe Ri's from the sour
e tree D. For example,
onsider an update U of addinga node D6 as a
hild of D4. In this
ase, U :path is the tree bran
h that startswith the root R and ends with D6. Computing the di�erent �i's as des
ribedabove results in: �0 = (X2; X3), �1 = (A2; A3), �2 = (B3; B4; ; B4; B5; B5),�3 = (C5; C5; C5), �4 = (D4; D4; D4; D6; D6; D6). Note that the only nodesthat will be dire
tly added are the three o

urren
es of D6 that appear in �4;all the other nodes n in all the
omputed �i's will not be added or deletedbe
ause U did not a�e
t Predi(n). Note that, be
ause D6 did not exist beforeU o

urred, the value Predi(D6), 8i is false before U . Similarly, if an updatedeletes a node n from the sour
e tree, the value Predi(n), 8i is false after U .Phase II - Predi
ate test: This phase identi�es the exa
t sequen
e Æi by deter-mining whi
h nodes in �i had their predi
ate values
hanged due to the update.To dete
t su
h
hanges we need to
ompare, for every node in Æi, the valuesof Predi(n) before and after U o

urred. Let us denote the value of the predi
atebefore the update o

urred as Predbeforei (n) and the value after the update asPredafteri (n). The value of Predafteri (n)
an be easily
al
ulated by querying thesour
e. The value of Predbeforei (n), on the other hand,
annot be
omputed by asour
e query be
ause the update U has already been in
orporated at the sour
e.On
e again, in [13℄, we showed that we
an dedu
e the value of Predbeforei (n)using the information of the result paths. Spe
i�
ally, we showed that if we de�neRPi(n) to be true if and only if n is the ith element of the result path of somenode in R, then we
an take Predbeforei (n) = RPi(n). Therefore, we keep theresult paths' information as auxiliary data with the
a
hed result R. With that,we
ompute Predbeforei (n) without issuing any sour
e queries. To
ompute thesize of this auxiliary data, re
all that ea
h result path is of length N + 1; if Mis the size of the
a
hed result R, then the size of the auxiliary data is
learly

XIIn
remental Maintenan
e (Expression E, Update U)1- �0 = C \ U:pathR+ = R� =() //Empty sequen
esi = 1 // loop variable2- WHILE (i � N AND �i�1 is not empty)2-1 j = iWHILE (sj has no predi
ate test AND j < N) j++2-2 �j = q((si; si+1; � � � ; sj):axis&label; �i�1;U:path)2-3 Let Tj = (njn 2 �j ^ Predafterj (n) = true)2-4 Æ+j = (njn 2 Tj ^RPj(n) = false)2-5 R+ = R+ t q((sj+1 ; sj+2; � � � ; jN); Æ+j ;D)2-6 R� = R� t (njn 2 R ^ResultPathj (n) 2 (�j � Tj))2-7 �j = Tj � Æ+j2-8 i = j + 13- R = RtR+R = R�R�Fig. 4. In
remental View Maintenan
e Algorithm for XML Path ExpressionsO(M �N). Thus the auxiliary data size is bounded by the expression size andthe result size and it does not depend on the sour
e data size.Dis
overing the Indire
t E�e
ts of the Updates To dis
over the indire
te�e
ts from the dire
t ones, we need to handle two
ases:1. Indire
t additions due to dire
t additions: when a node n is dire
tly addedto Ri then, in order to retrieve the indire
t additions at R, the maintenan
ealgorithm issues a sour
e query with
ontext as n and with the steps sequen
e(si+1; si+2; � � � ; sN). This query is denoted as q((si+1; si+2; � � � ; sN); (n);D).2. Indire
t deletions due to dire
t deletions: when a node n is dire
tly deletedfrom Ri, then all the nodes r 2 R that
ame to R due to n belonging toRi must also be deleted from R. These are the nodes r 2 R whi
h haveResultPathi(r) = n. Thus, using the auxiliary data des
ribed above, we
andis
over the indire
t deletions without issuing any sour
e queries.The Full Algorithm. Figure 4, shows an algorithm based on the ideas pre-sented above. Step 1 initializes some algorithm variables. R+ and R� are thesequen
es of nodes to be added and deleted, respe
tively, in R. The loop in step2
omputes the di�erent �0s. Step 2-1 assigns the value of j su
h that the rangei : j spans all the expression steps starting at i that do not have predi
ate tests.For this range, no predi
ate tests are needed be
ause all the predi
ates are knownto be true, by de�nition, before and after U . Thus, there are no dire
t e�e
tsin this range. Therefore, the algorithm
ombines all the axis&label tests of thisrange in one step, namely, step 2-2. Step 2-3 identi�es Tj as the sequen
e of thenodes of �j that have Predafterj (n) = true. Step 2-4 then dis
overs the dire
tadditions at Rj . These dire
t additions are then used by step 2-5 to dis
overthe indire
t e�e
ts on R. Step 2-6 dis
overs all the ultimate deletions at R, it

XIIimpli
itly dis
overs the dire
t deletions and uses them to dis
over the indire
tones. Step 2-7 ex
ludes from �j the nodes that will not have e�e
ts on lateriterations, this is formally proved in [13℄. Step 2-8 in
rements the loop variableto start after j in the next step. Finally, step 3 updates R using R+ and R�.Note that the algorithm does not di�erentiate between sour
e addition anddeletion updates, the only
ase that needs to make su
h distin
tion is whenU :node itself belong to �N , this
ase is impli
itly taken
are of in the
omputa-tion of Predi(n) before and after UIn addition to the result R, the auxiliary data also need to be maintained.This is not shown here for simpli
ity.In the following se
tion, we show how this algorithm is implemented whenthe sour
e XML do
ument is stored in an RDBMS and hen
e, queried by SQLqueries.4 Implementation over RDBMSAlthough there have been several e�orts to build native XML database sys-tems [10, 11℄, a
ommon
onsensus is to use RDBMS te
hnology to leveragefrom the proven and highly-optimized storage and query
apabilities alreadyprovided by existing relational database systems [15℄.Therefore, in this se
tion, we show how the in
remental XPath maintenan
ealgorithm des
ribed in Se
tion 3
an be implemented when RDBMS te
hnologyis used for the storage of the XML sour
e data, the auxiliary data, and the
a
hed results. This requires an update management middleware whi
h bridgesthe gap between the XML logi
al data model at one side, and the relationaldatabase implementation at the other side.First, we will des
ribe the XML-to-RDBMS and XPath-to-SQL mappings
hemes the middleware uses (Se
tion 4.1). Then we will des
ribe how to employthis relational framework for in
remental view maintenan
e of XPath queries tosupport eÆ
ient Web Servi
e
a
hing (Se
tion 4.2).4.1 Storing and Querying XML over RDBMSXML Data to Relational Data Mapping Given the mismat
h between theXML data model (whi
h has a nested stru
ture) and the relational data model(whi
h is
at), several te
hniques have been proposed for storing and query-ing XML do
uments using relational database systems [6, 9, 16, 15℄. These ap-proa
hes typi
ally work as follows. The �rst step is relational s
hema generation,where relational tables are
reated for the purpose of storing XML do
uments.The next step is XML do
ument shredding, where XML do
uments are storedby shredding them into rows of the tables that were
reated in the �rst step. The�nal step is XML query pro
essing (XPath queries in our
ase), where XPathqueries over the stored XML do
uments are
onverted into SQL queries over the
reated tables.

XIIIid label type value parent1 Manus
ripts element NULL 01.1 Category attribute Fi
tion 11.3 Book element NULL 11.3.1 ISBN attribute 1-555860-438-3 1.31.3.3 Title element NULL 1.31.3.3.1 NULL value A Story 1.3.31.3.5 Author element NULL 1.31.3.5.1 Country attribute USA 1.3.51.3.5.3 NULL value John Doe 1.3.51.5 Monograph element NULL 11.5.1 ISBN attribute 1-888570-843-5 1.51.5.3 Title element NULL 1.51.5.3.1 NULL value Another Story 1.5.31.5.5 Author element NULL 1.51.5.5.1 Country attribute Canada 1.5.51.5.5.3 NULL value Tom Alter 1.5.5Fig. 5. Sr
TBL: The XML Do
ument TableOne simple approa
h of shredding is to store ea
h node in the XML tree as atuple in a relational table, whi
h maintains all the ne
essary information, su
h asthe node label, and node type. Node identi�ers are used to
apture and representthe stru
ture of the XML sour
e in the relational database. In order to eÆ
ientlymaintain path-expression views over XML do
uments, two essential propertiesmust be provided by node identi�ers: First, element(s) updated in the sour
eXML do
ument should be easily identi�ed. Se
ondly, stru
tural (parent,
hild,des
endent, sibling) relationships among the elements of the XML do
umentshould be easily determined using the node identi�ers. These are
riti
al foreÆ
ient query pro
essing and also in fa
ilitating e�e
tive view maintenan
e inthe presen
e of updates.Several approa
hes are proposed to assign node identi�ers to the nodes inXML do
ument. We apply one su
h approa
h
alled, the ORDPATH [12℄ s
heme(also used in the up
oming version of Mi
rosoft SQL Server). ORDPATH iden-ti�ers
an be assigned to the nodes of an XML tree without requiring a s
hema.ORDPATHs are
on
eptually similar to the Dewey Order introdu
ed in [17℄.The resulting identi�ers have the property that an
estor relationships betweenthe nodes is
aptured by the pre�x relationship between the
orresponding nodeidenti�ers: an
estor(ni; nj)$ prefix(ni:nid; nj :nid):Consider the following sample XML do
ument:<Manus
ripts Category="Fi
tion"><Book ISBN="1-555860-438-3"><Title>A Story</Title><Author Country="USA">John Doe</Author></Book><Monograph ISBN="1-888570-843-5"><Title>Another Story</Title><Author Country="Canada">Tom Alter</Author></Monograph></Manus
ripts>Figure 5 shows the table Sr
TBL in whi
h an XML do
ument is stored in anRDBMS

XIV{ id: The ORDPATH identi�er originally proposed is implemented as a bitstring, and an RDBMS is supposed to implement primitive fun
tions forstru
tural relationships and query plans optimized for ORDPATHs. In ourprototype, we have implemented an ORDPATH id as a
hara
ter string, asshown in Figure 5, for experimental purpose without implementing primitivefun
tions in RDBMSs. The primitive an
estor(ni:id; nj :id) is implementedas a string pre�x mat
hing: \ni:id LIKE nj :id || '%'". Note that the nodeid
olumn
aptures the order of the XML do
ument, thus this XML ordersemanti
s are not lost when the do
ument is stored in an unordered relationalsystem.{ parent: To identify a parent-
hild relationship e�e
tively in our experimentalprototype, we additionally store the parent node id in the table. The primi-tive parent(ni:id; nj :id) is in fa
t implemented as \ni.id = nj.parent".{ label, type, value: A node type is spe
i�ed in type , whi
h is either anelement, attribute, or value. An element node has its tag name in label.An attribute node has its name and value in label and value respe
tively.A value node has its value in value. Although our view maintenan
e algo-rithm is presented on a simpli�ed do
ument model (i.e., hn:id; n:labeli), it
an be easily mapped in this node model.With this table s
hema in pla
e, XPath queries
an be pro
essed by translatingthem into SQL queries against a table of this s
hema, as illustrated next.4.2 XML Do
ument Update ManagementFor ea
h
a
hed XPath expression, the system stores the following data requiredfor in
remental maintenan
e (Se
tion 3): (1) CntxtTBL: a table of the nodesthat
omprise the query
ontext, (2) Query Statement: an SQL representation ofthe original XPath expression, (3) Individual query step: an SQL representationof ea
h step in the in
remental maintenan
e algorithm, and (4) AuxTBL: theauxiliary data (i.e. the result paths), whose s
hema is AuxTBL(id0, id1, id2, � � �,idN) (where N is the number of steps in the
a
hed expression, ea
h row in thistable stores a result path of the result, and the nodes in the last
olumn idN
omprise R).In the maintenan
e pro
ess, the whole auxiliary data (i.e., AuxTBL) needs tobe maintained, not only the �nal result R whi
h is stored in the last
olumn ofthat table. We have implemented that simply by proje
ting more
olumns in theSELECT
lauses of the following SQL statements. With that, the rows resultingfrom these SQL statements represent partial path expressions. Therefore, we usejoin operations to
on
atenate these partial result paths to form full result pathsto maintain AuxTBL. For simpli
ity, we do not show the
on
atenation querieshere.In addition to these tables, we maintain an update table (UpdtTBL) thatstores the sour
e update being pro
essed. As mentioned before, ea
h update Uis represented by U :path whi
h is a bran
h of the sour
e tree. Thus, we use thesame s
hema as for the Sr
TBL.

XVThe View Maintenan
e Pro
ess We illustrate the view maintenan
e pro
esswith the folowing expression as an example:=site=person[LIKE(�id; "person%")℄=nameTo
onstru
t the SQL query representing this expression, the hierar
hi
al rela-tionships between the nodes
an be represented by either nested SQL queriesor as self-join operations on the sour
e table, Sr
TBL, shown in Figure 5. Weadopted the se
ond option in our solution be
ause it allows the query optimizerto generate more eÆ
ient query plans. Thus, the expression is transformed intothe following SQL query by the middleware:SELECT A.id, B.id, C.id, E.idFROM CntxTBL A, Sr
TBL B, Sr
TBL C, Sr
TBL D, Sr
TBL EWHERE parent(B.id)=A.id AND parent(C.id)=B.id AND parent(D.id)=C.idAND parent(E.id)=C.idAND B.type = 'element' AND A.label = 'site'AND C.type = 'element' AND B.label = 'person'AND D.type = 'attribute' AND D.label = 'id' AND LIKE(D.value,'person%')AND E.type = 'element' AND E.label = 'name'In this query, the �nal result is the set of nodes in the last proje
tion E.id,the other proje
tions A.id, B.id and C.id represent the result path informationwhi
h is used as auxiliary data for the maintenan
e pro
ess.The algorithm in Figure 4 starts by initializing�0 in step 1 by an interse
tionoperation:CREATE TABLE �0(id0) AS(SELECT id FROM CntxtTBL INTERSECTION SELECT id FROM UpdtTBL)Then, in the �rst iteration of the loop, step 2-1 assigns to j the value 2be
ause s1 has no predi
ate test. Then, step 2-2
omputes �2 by the followingSQL statement:CREATE TABLE �2(id0, id1, id2) ASSELECT A.id, B.id C.id FROM �0 A, UpdtTBL B, UpdtTBL CWHERE parent(B.id)=A.id AND parent(C.id)=B.idAND B.type = 'element' AND B.label = 'site'AND C.type = 'element' AND C.label = 'person'The proje
tion of A.id and B.id here are to get partial result paths.In step 2-3, T2 is
omputed by:CREATE TABLE T2 AS SELECT A.id FROM �2 A, Sr
TBL BWHERE parent(B.id)=A.idAND B.type = 'attribute' AND C.label = 'id'AND LIKE(B.value,'person%')Then step 2-4
omputes the dire
t additions at R2 as follows:CREATE TABLE Æ+2 ASSELECT T.id FROM T2 TWHERE NOT EXISTS (SELECT * FROM AuxTBL WHERE id2 = T.id)

XVIStep 2-5 then uses Æ+2 to dis
over the ultimate additions at R, the SQL queryused to dis
over these additions is:SELECT A.id, B.id FROM Æ+2 A, Sr
TBL BWHERE parent(B.id)=A.idAND B.type = 'element' AND B.label = 'name'(A.id, B.id) in this query result is a partial result path starting at R2 untilR3.Then step 2-6
omputes the ultimate deletions at R as follows:SELECT DISTINCT A.id3 FROM AuxTBL AWHERE A.id2 INSELECT id2 FROM �2 DIFFERENCE SELECT id FROM T2step 2-7 simply redu
es �2 by a DIFFERENCE operator.In the se
ond (also, last) iteration of the loop, we have i = j = 3. In step2-2, �3 is
omputed from the redu
ed �2. Sin
e this iteration is pro
essingthe last expression step, then if U :node belongs to �3 then the
omputationof Pred3(U :node) takes into a

ount U :type. This is
omputed as follows: IfU :type = Add, then Predbefore3 (U :node) = false be
ause U :node did not existin the sour
e before U :node. If U :type = Del, then Predafter3 (U :node) = falsebe
ause U :node does not exist in the sour
e after U :node. These two
ases areimpli
itly taken
are of in the algorithm without testing U :type in the
ompu-tation of Pred3(U :node) before and after U . Finally, all the ultimate additionsand deletions in AuxTBL are determined by joining the partial result pathsdis
overed by the SQL queries shown above.5 Experimental EvaluationIn this se
tion, we experimentally show that the proposed s
heme provides a largeperforman
e impa
t, while in
urring a small storage and pro
essing overhead.For this purpose, we used the XMARK ben
hmark [14℄ to generate a data setof 325,236 nodes. Experiments are done using an Ora
le 9i database on a PCwith Linux 8.0, Pentium 4 1800 MHz CPU with 1 GB memory. We evaluatedthe
a
hing performan
e by using the following XPath queries:{ XP1: /site/people/person[like(�id,"person%")℄/name/text(){ XP2: /site/
losed au
tions/
losed au
tion[pri
e>40℄/pri
e/text(){ XP3: /site//item[
ontains(des
ription,"gold")/name/text(){ XP4: /site/
losed au
tions/
losed au
tion/annotation/des
ription/parlist/listitem/parlist/listitem/text/emph/ketword/text()Overhead of Auxiliary Data Table 1 shows the overhead of auxiliary data(i.e., AuxTBL) in terms of storage requirements and exe
ution time. In additionto
a
hed XPath results (denoted as
olumns R-VAL and R-ID), the system

XVIIR-VAL R-ID AUX SOV FQ FQA EOV(byte) (byte) (byte) (mse
) (mse
)XP1 36538 30103 85199 1.28 532 551 1.04XP2 2366 8312 24267 2.27 802 876 1.09XP3 3080 2327 6096 1.13 3933 4019 1.02XP4 964 752 5525 3.22 3520 3556 1.01Table 1. Overhead in Auxiliary Data Maintenan
e: R-VAL: Result Set Value Stor-age, R-ID: Result Set Node ID Storage, AUX: Auxililary Data Storage, SOV: StorageOverhead (=AUX/(R-VAL+R-ID)), FQ: Full Sour
e Query Exe
ution Time, FQA:Full Sour
e Query with Aux. Data Exe
ution Time, EOV: Exe
ution Time Overhead(=FQA/FQ).needs to store result paths as auxiliary data(AUX). As
an be seen in the AUX
olumn, the storage overhead does not depend on the data size, but dependson the number of steps in the XPath query and the
a
hed data size. Then,to observe the query pro
essing in WReX, we
ompared the original full queryexe
ution time with the exe
ution time of the modi�ed query that also retrievesresult paths to be used as auxiliary data. As shown in the Table 1, the overheadis less than 10% in ea
h
ase.Performan
e Impa
t of Ca
he-enabled Middleware To observe the ben-e�t of WReX in redu
ing the exe
ution time observed by the users, we have
ompared the exe
ution time requirements for in
remental
a
he update andfull re
omputation on the following
a
hed queries:{ XP5: /site/people/person[like(�id,"person2%")℄/name/text(){ XP6: /site/people[person[like(�id,"person1%")℄℄/person[like(�id,"person2%")℄/name/text()For ea
h query, 100 sour
e updates were randomly generated. The results ofthe time
omparison for all the updates are shown in Figures 6(a) and 6(b). Inshort, full queries take 10 to 20 times longer to exe
ute on average. The �gures
learly establish the advantage of the proposed in
remental view maintenan
emiddleware.Finally,
onsider Figure 7, whi
h shows the
a
hing impa
t analysis for queryXP4, whi
h has 13 steps, but no predi
ate. Sin
e there are no predi
ates in XP4,no queries to the sour
e need to be issued for predi
ate
he
king. Therefore, thetime needed for in
remental maintenan
e is rather
onstant, whereas the needfor a

essing sour
es for predi
ate tests had introdu
ed a higher variability to thein
remental maintenan
e time for queries XP5 and XP6 in Figures 6(a) and 6(b).Nevertheless, sin
e predi
ate evaluation is only a part of the overall pro
essingneeded for reevaluation of queries XP5 and XP6, in
remental maintenan
e was
onsistently
heaper even when sour
es are a

essed for predi
ate
he
king.

XVIII
Process Cycle Time Comparison

(Five steps, one predicate, 325236 nodes in source document, 662 nodes in answer document)

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100

Source Updates

C
y
c
le

 T
im

e
 (

m
s
e
c
)

View Update Through Incremental Maintenance View Update Through Full Query

(a) XP5
Process Cycle Time Comparison

(Five steps, two predicates, 325236 node in source document, 662 nodes in answer documentroc

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90 100

Source Updates

C
y
c
le

 T
im

e
 (

m
s
e
c
)

View Update Through Incremental Maintenance View Update Through Full Query

(b) XP6Fig. 6. In
remental View Maintenan
e versus Full Re-Computation (Queries XP5,XP6)

XIX
Process Cycle Time Comparison

(13 steps, no predicate, 325236 nodes source document, 25 nodes in answer document)

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Source Updates

C
y

c
le

 T
im

e
 (

m
s

e
c

)

View Update Through Incremental Maintenance Full Source Query

Fig. 7. In
remental View Maintenan
e versus Full Re-Computation (Query XP4)6 Con
lusionIn this paper, we have proposed WReX, a Web Servi
e middleware ar
hite
-ture that enables
a
he management by bridging the gap between Web Servi
emessage
a
hing and updates in the sour
e data. Our solution
onsists of two
omponents: (1) Web Servi
e Content Des
ription (WSCD) that �lls the gapbetween Web Servi
e messages and XML views of the sour
e data; and (2) XML-spe
i�
 view maintenan
e that �lls the gap between XML views and updates inthe sour
e data. Ca
he-enabled Web Servi
es are easily des
ribed and deployedon a
ommon platform with proven RDBMS te
hnology. Through experimentalevaluation, we have demonstrated the performan
e bene�ts of our in
rementalview maintenan
e. Future work in
ludes more e�e
tive maintenan
e of multipleXPath views and multiple updates, extension of our approa
h to other XML-to-RDBMS mapping s
hemes (su
h as s
hema-aware mappings), and more detailedstudies on the entire middleware performan
e.Referen
es1. S. Abiteboul, A. Bonifati, G. Cobena, I. Manoles
u, and T. Milo. Dynami
 XMLdo
uments with distribution and repli
ation. In SIGMOD Conferen
e, pages 527{538, 2003.2. K. S. Candan, D. Agrawal, W. Li, O. Po, and W. Hsiung. View invalidation fordynami

ontent
a
hing in multitiered ar
hite
tures. In The 28th Very Large DataBases Conferen
e, 2002.3. J. Challenger, P. Dantzig, and A. Iyengar. A s
alable system for
onsistently
a
hing dynami
 web data. In In Pro
eedings of IEEE INFOCOM'99, 1999.4. C. Y. Choi and Q. Luo. Template-based runtime invalidation for database-generated web
ontents. In APWeb 2004, 2004.5. A. Datta, K. Dutta, H. M. Thomas, D. E. Vandermeer, and K. Ramamritham.Proxy-based a

eleration of dynami
ally generated
ontent on the world wide web:

XX An approa
h and implementation. ACM Trans. Database Syst, 29(2):403{443,2004.6. A. Deuts
h, M. Fernandez, and D. Su
iu. Storing Semi-stru
tured Data withSTORED. In Pro
eedings of the 1999 ACM International Conferen
e on Manage-ment of Data (SIGMOD'1999), 1999.7. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fis
her. Path sharing andpredi
ate evaluation for high-performan
e XML �ltering. ACM Trans. DatabaseSyst, 28(4):467{516, 2003.8. D. Flores
u, A. Grunhagen, and D. Kossmann. XL: An XML programming lan-guage for web servi
e spe
i�
ation and
omposition. In WWW2002, InternationalWorld Wide Web Conferen
e, 2002.9. D.
ores
u and D. Kossman. Storing and Querying XML Data using an RDBMS.IEEE Data Engineering Bulletin, 22(3):27{34, 1999.10. Roy Goldman, Jason M
Hugh, and Jennifer Widom. From Semistru
tured Datato XML: Migrating the Lore Data Model and Query Language. In Pro
eedings ofthe ACM International Workshop on the Web and Databases (WebDB'99), 1999.11. J. Naughton, D. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis, J. Kang,R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy andJ. Shanmugasun-daram, F. Tian, K. Tufte, S. Viglas, C. Zhang, B. Ja
ksonand A. Gupta, andR. Chen. The Niagara Internet Query System. IEEE Data Engineering Bulletin,24(2), 2001.12. Patri
k E. O'Neil, Elizabeth J. O'Neil, Shankar Pal, Istvan Cseri, Gideon S
haller,and Nigel Westbury. Ordpaths: Insert-friendly xml node labels. In SIGMODConferen
e, pages 903{908, 2004.13. Arsany Sawires, Juni
hi Tatemura, Oliver Po, Divyakant Agrawal, and K. Sel�
ukCandan. In
remental Maintenan
e of Path-Expression Views. In SIGMOD Con-feren
e, 2005.14. Albre
ht S
hmidt, Florian Waas, Martin L. Kersten, Mi
haelJ. Carey, IoanaManoles
u, and Ralph Busse. Xmark: A ben
hmark for xml data management. InVLDB, pages 974{985, 2002.15. Jayavel Shanmugasundaram, Rajashekhar Krishnamurthy, Igor Tatarinov, EugeneShekita, Efstratios Viglas, Jerry Kinman, and Je�erey Naughton. A General Te
h-nique for Querying XML Do
uments using a Relational Database System. InPro
eedings of the 2001 ACM International Conferen
e on Management of Data(SIGMOD'2001), 2001.16. Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Mi
hael J. Carey,Bru
e G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. EÆ
iently publishingrelational data as xml do
uments. In Pro
eedings of 26th International Conferen
eon Very Large Data Bases (VLDB'2000), September 10-14, 2000, Cairo, Egypt,pages 65{76, 2000.17. Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eu-gene J. Shekita, and Chun Zhang. Storing and querying ordered XML using arelational database system. In Pro
eedings of the 20002 ACM International Con-feren
e on Management of Data (SIGMOD'2002), pages 204{215, 2002.18. D. B. Terry and V. Ramasubramanian. Ca
hing xml web servi
es for mobility.ACM Queue, 1(3):70{78, 2003.19. K. Yagoub, D. Flores
u, V. Issarny, and Patri
k Valduriez. Ca
hing strategies fordata-intensive web sites. In The VLDB Journal, pages 188{199, 2000.

