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Abstract. Caching dynamic web content is an effective approach to re-
duce Internet latency and server load. An ideal caching solution is one
that can be added transparently by the developers and provides complete
consistency of the cached documents, while minimizing false cache invali-
dations. In this paper, we design and implement AutoWebCache, a middle-
ware system for adding caching of dynamic content transparently to J2EE
server-side applications having a backend database. For this purpose, we
first present the principles involved in caching dynamic web content, in-
cluding our logic to ensure consistency of the cached entries. Thereafter, we
demonstrate the use of aspect-oriented (AOP) techniques to implement our
system, showing how AOP provides modularity and transparency to the
entire process. Further, we evaluate the effectiveness of AutoWebCache in
reducing response times of applications, thereby improving throughput. We
also analyze the transparency of our system for a general application suite,
considering issues such as dynamic web pages aggregating data from mul-
tiple sources, presence of insufficiently structured interfaces for exchanging
information and the use of application semantics while caching. We use
two standard J2EE web benchmark applications, RUBiS and TPC-W, to
conduct our experiments and discuss the results obtained.

Keywords: Caching, aspect-oriented programming, J2EE applications,
dynamic content.

1 Introduction

Dynamically generated web content represents a large portion of web requests.
The rate at which dynamic documents are delivered is often orders of magnitudes
slower than static documents [9, 11]. Therefore, caching dynamic web content is
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an appealing approach to reduce Internet latency and server load. Web sites for
dynamic content are usually based on a multi-tier J2EE architecture using several
middleware systems [27]: an HTTP server as a web front-end and provider of
static content, an application server to execute the business logic and generate
the dynamic web content, and a database to store the persistent data required
by the application. Dynamic content generation places a significant burden on the
servers, often leading to performance bottlenecks. Caching dynamic web content
can directly address these bottlenecks.

Implementing caching as a middleware solution is particularly attractive. Of
course, an ideal solution is one that can be added transparently by the developers,
possibly even as an after-thought. Some examples of transparently adding caching
to an application are given in [17, 6, 4], but these ignore consistency of the cached
entries. Other solutions provide consistency, but ignore transparency, requiring
manual insertion [10]. There are some projects that provide both consistency and
transparency, such as those caching SQL query result sets [8] at the back-end. The
interesting property of data from result sets of SQL queries is that it is from a
single interface and hence, of one type (homogeneous). An open question is whether
similar techniques can be successful for more complex content such as web pages
that aggregate data from multiple sources (i.e., heterogeneous).

In this paper, we present the design and implementation of AutoWebCache, a
middleware solution for caching dynamically generated content in J2EE applica-
tions. A goal is to move the caching as far forward in the multi-tier architecture
to not only reduce the database activity in the back-end but also the business
logic activity, which is becoming ever more complex and costly at the middle tier.
Unlike caching data such as JDBC SQL results at a single well-specified inter-
face, caching fully formed web pages requires interfacing to both the front-end
(e.g., Tomcat servlet engine) and the back-end (e.g., JDBC interface). Caching
at this level requires information from both interfaces to maintain consistency of
the cached documents. To keep the caching transparent, we cast caching as an as-
pect of the application and use an aspect oriented programming (AOP) framework
to capture the information flowing through various interfaces. We give details of
the AutoWebCache cache system based on AOP principles and the AspectJ [2]
weaving rules that add the caching logic transparently to the application.

We evaluate the performance of our middleware solution with the help of two
J2EE benchmarks - RUBiS and TPC-W. RUBiS implements the core functional-
ity of an auction-site: selling, browsing and bidding [1], while TPC-W simulates
an online-bookstore [30]. We demonstrate the gains in response times using Au-
toWebCache for each. We also analyze the transparency of AutoWebCache for a
general application suite. We argue that for the general case, issues can arise when
caching dynamic content at the front-end due to 1) dynamic web pages aggregat-
ing data from multiple sources, 2) some sources not having sufficiently structured
interfaces for exchanging information and 3) the need to consider semantics of
the application while caching. Although our benchmark applications are servlets-
based and use SQL queries to incorporate dynamism, we believe that the results
and arguments presented in this paper hold true for a general architecture as well.



The contributions of this paper can be summarized as follows:

1. Design, implementation and evaluation of AutoWebCache, a middleware solu-
tion that caches dynamic web pages at the front-end while maintaining con-
sistency with the back-end database(s).

2. Demonstrating that dynamic web caching can be considered a crosscutting
aspect and, therefore, AOP methods should be considered as a flexible and
easy-to-use tool to develop the middleware support.

The remainder of this paper is organized as follows. Section 2 gives some back-
ground on dynamic web applications and aspect-oriented programming. Section
3 outlines the principles involved in designing a dynamic web cache and gives an
overview of our AutoWebCache system. Section 4 describes the implementation
of AutoWebCache using aspect-oriented techniques, and analyzes its transparency
with respect to an application. Sections 5 and 6 present our evaluation environment
and the results of our evaluation, respectively. Section 7 provides a discussion of
our experiences. Section 8 discusses some related work and finally, Section 9 draws
our conclusions.

2 Background

2.1 J2EE Web Applications

Java 2 Platform, Enterprise Edition (J2EE) defines a model for developing dis-
tributed applications, e.g., web applications, in a multi-tiered architecture [27].
Such applications usually start with requests from web clients that flow through
an HTTP server front-end and provider of static content, then to an application
server to execute the business logic and generate web pages on-the-fly, and finally
to a database that stores resources and data (see Figure 1).

Fig. 1. Architecture of Dynamic Web Applications

Upon an HTTP client request, either the request targets a static web document
that the web server can return directly; or the request refers to a dynamic docu-
ment, in which case the web server forwards that request to the application server.
The application server runs one or more software components (e.g., Servlets, EJB)
that query a database through a JDBC driver (Java DataBase Connection driver)
[28] and retrieve data to generate a web document on-the-fly.



2.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a methodology with concepts and con-
structs to modularize crosscutting concerns (i.e., aspects) [15]. With AOP, the
different aspects involved in a system are separately implemented in different mod-
ules. The developer can also specify the manner in which these modules need to
be woven to form the final system. Aspects are woven together via the join point

model, a fundamental concept in AOP specifying identifiable execution points in
a system. Such join points include method calls and executions, constructor calls,
read and write access to fields, exception handler invocations, etc. Pointcuts allow
a programmer to capture certain join points while an advice provides a way to
express crosscutting actions to be performed at a certain pointcut. At a point-
cut, an advice specifies the weaving rules involving that point, such as performing
some actions before or after the execution of the pointcut. Figure 2 shows the
basic principle of adding caching transparently to a web application, using aspect
weaving.
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Fig. 2. Aspectizing Caching

3 Dynamic Web Caching

Caching dynamic web content prevents the client from remotely re-accessing the
database server to re-execute SQL queries, and from regenerating dynamic web
pages on the application server. In this section, we first present the principles in-
volved in designing a dynamic web cache, including our logic to ensure consistency
of the cached documents. We then give an overview of our implemented system.
Concrete details about the implementation based on aspectizing web caching are
provided in the next section.

3.1 Designing a Web Cache

Designing a cache for web documents is rendered complicated by the dynamic na-
ture of web applications, requiring mechanisms to maintain consistency between
the data and its cached copy. Specifically, dependency needs to be established be-
tween requests that read the data in the back-end (read-only requests) and those
that make updates to the back-end (write-requests). We divide the design of such



a caching system into the following mechanisms:

- Cache checks. Upon a client read-only request, the cache is first checked to
look up the requested document. In case of a hit, the cached document (e.g. a web
page) is simply returned to the client, bypassing the request execution.
- Cache inserts. Upon a miss in the cache during a client read-only request,
the request is executed by the application server (and SQL queries are possibly
executed on the database server) to dynamically generate a web document that is
returned to the client; and a copy of that document is stored in the cache.
- Collecting consistency information. For a read request, we attach the infor-
mation mapping the underlying database set used in the generation of response to
this request (dependency information). Similarly, for a write request, we associate
information regarding the database set updated by this request (invalidation in-
formation).
- Cache invalidations. Upon a client write request, the cache entries that are
affected by the write must be invalidated. This would require making use of the
consistency information.
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Fig. 3. Cache Structure

Figure 3 shows the basic structure of our cache. The first table stores the
entries of web pages, indexed by URI of the client requests including the request
arguments (input info). The second table maintains details about the read-only
queries (template + vector of dynamic values = dependency info) used in the
formation of the cached pages. When a write query occurs, a query analysis engine
determines the set of read queries affected by the update. This information is then
used to remove the invalidated entries from the cache.

3.2 Maintaining Cache Consistency

Determining if a client write request invalidates the cached page resulting from
a previous client read-only request is equivalent to determining if the set of SQL
queries associated with the former request invalidates one of the SQL queries
underlying the latter request. For this purpose, our implemented solution includes
a query analysis engine that has the task of determining the dependencies between
SQL queries. Query analysis has two primary components:

– Determining possible dependencies between queries. SQL queries are
given as templates (the vector of dynamic values for a particular instance to



be known at run-time). If a read query template shares common tables and
columns with an update query template, then a dependency is established.

– Actual intersection testing to reveal true dependencies. A true in-
tersection between a read query and an update query (with a dependency
established) exists if the update modifies one or more columns in the row(s)
being read, and/or results in changing the set of rows satisfying the selection
clause of the read query [20].

It is interesting to note that while the first component of this analysis is based
on the static portion of the query string (i.e. query template), the second com-
ponent comes into play at run-time, once we know the actual values used in the
selection criteria. For efficiency, our system caches the results of the first com-
ponent and re-uses them while encountering the same queries again. In practice,
there are usually a small fixed number of different query templates, thus, the query
analysis cache stabilizes very quickly (Figure 4).

Fig. 4. Query Analysis Cache Statistics for RUBiS and TPC-W

Our analysis engine explores a balance between invalidation precision and its
associated evaluation cost, the cost of precision being determined by the detail of
query analysis required to extract the relationship needed. The engine supports
three cache invalidation policies that increase precision by providing progressively
more refined analysis:

1. A simple method is to check if the columns used in the read query are also
updated in the write query. This column-only check may result in many false

positive indications that an intersection exists when, in fact, there is none.
E.g., reading then updating column a from table T creates an intersection, but
reading column a and updating column c does not.

(a) “SELECT a FROM T WHERE b=X” vs “UPDATE T SET a=new val...” may intersect
if the column updated is a (as here) or b.

(b) “SELECT a FROM T WHERE b=X” vs “UPDATE T SET c=new val...” does not in-
tersect (assuming c!= a,b).

2. To make the test for intersection more precise, selection criteria in the read
query’s WHERE-clause are matched to values from the write query to see if
the same rows are being updated. E.g., if a read’s selection clause requires
that T.b=X, but for the write query T.b=Y and X 6= Y, then the queries do not
intersect.

(a) “SELECT a FROM T WHERE b=X” vs “UPDATE T SET a=new val WHERE b=Y”, does
not intersect if X 6= Y .

3. Invalidates can be made even more precise by executing extra queries to re-
trieve missing data needed to test for intersection. Continuing with the prior
example, if the value of the field T.b is not specified in the write query itself,



Fig. 5. Caching Read Requests

Fig. 6. Handling Write Requests

then an extra query can be made to the database to read the value of T.b
in the row(s) being updated. This option generates additional queries (by the
cache) to the back-end but reduces unnecessary webpage invalidations. E.g.,

(a) “SELECT a FROM T WHERE b=X” vs “UPDATE T SET a=new val WHERE d=W”, but
there is no reference to the value of b in the update query.

(b) Therefore, the cache generates a query for column b of the row being
updated: “SELECT b FROM T WHERE d=W”.

(c) The read and update queries intersect if the value returned equals X (from
the read query).

We refer the reader to [20] for detailed descriptions of the engine’s handling of var-
ious query types for each of the above three cases. The last (and most aggressive)
technique which we call the AC-extraQuery strategy is used in this study.

Figure 5 and Figure 6 show how collecting dependency and invalidation infor-
mation, and how cache check, insert and invalidation operations take place within
web application request handlers. From the figures, it is clear that to provide con-
sistency, information is gathered both at the front-end (request arguments in the
servlet engine) as well as the back-end (queries being shuttled to the database).
This is in contrast to caching of SQL query result sets, which requires capturing
calls to the database at the JDBC interface only [8].

3.3 Overview of the AutoWebCache system

Our design is called AutoWebCache, a system for caching web pages and managing
their consistency [3, 20]. In AutoWebCache, the cache is located on (in front of) the



application server (though it could easily be used in a proxy cache formation), and
it consists of a set of web pages from read-only requests indexed by the request URI
+ set of arguments. A page is invalidated if a client update request modifies the
data set used to generate the cached page. AutoWebCache uses the most precise
cache invalidation strategy discussed prior, namely the AC-extraQuery strategy.
Web pages resulting from client write requests are not cached.

Fig. 7. Cache API

The main package of the AutoWebCache system is the jwebcaching.cache pack-
age. It provides several classes, among which the Cache class provides the necessary
features for cache management, including interaction with the query analysis en-
gine to maintain consistency of the cached web pages. Figure 7 illustrates a part
of the API of this class.

4 Aspectizing Web Caching

Aspect-oriented programming (AOP) hands us an efficient tool to perform caching
by treating it as a concern that cuts across the application. In this section, we
describe our implementation of AutoWebCache, an AOP based caching middleware
system. We will also analyze the transparency of the caching aspect with respect
to a general application suite.

4.1 Implementing an AOP based caching

AspectJ [2] is an aspect-oriented environment that provides the AOP constructs
and set of tools for aspects written in the Java programming language. The AspectJ
language exposes a set of join points that are well-defined places in the execution
of a Java program flow.

Figure 8 gives an example of a pointcut and advice declaration in the AspectJ
language. This example defines a pointcut called doGetExecution that designates



(a)   aspect ServletExecution {
(b)   // Pointcut definition
(c)      pointcut doGetExecution() :
(d)           execution(
(e)                   void HttpServlet+.doGet(
(f)                           HttpServletRequest, HttpServletResponse)) ;
(g)   // Advice definition
(h)      before() : doGetExecution() { ... crosscutting actions ...}
(i)   }

(a)   aspect ServletExecution {
(b)   // Pointcut definition
(c)      pointcut doGetExecution() :
(d)           execution(
(e)                   void HttpServlet+.doGet(
(f)                           HttpServletRequest, HttpServletResponse)) ;
(g)   // Advice definition
(h)      before() : doGetExecution() { ... crosscutting actions ...}
(i)   }

Fig. 8. Pointcut and Advice Examples

the execution of the doGet method in the HttpServlet class or its subclasses1 that
takes a first argument of type HttpServletRequest and a second argument of type
HttpServletResponse (lines (c)-(f) in Figure 8). This example also defines an advice
that executes prior to the specified pointcut (the doGet method, line (h) in Fig-
ure 8). Please notice that the pointcuts and advices that define the weaving rules
to be applied are specified as entities separate from the individual aspect modules.
Weaving the final system from individual aspects is performed by the ajc tool, the
AspectJ compiler.

In order to apply aspect-oriented techniques for caching dynamic web pages in
J2EE applications, the following properties are needed:

– The entry and exit points of request handlers in web applications must be well-
known points. This is necessary to automatically inject cache check, insert and
invalidation operations to those handlers.

– The call to SQL queries that underlie the request handlers in web applica-
tions must be well-known points. This is necessary to collect dependency and
invalidation information.

4.2 AutoWebCache - an AOP based Web Cache

We implemented AutoWebCache as an AOP-based solution that helps in transpar-
ently injecting caching mechanisms to web applications. This involved the following
steps:

– Weaving rules specification - defines how to integrate the caching aspect
into the web application core aspect. The weaving rules specify the points in the
application where mechanisms for cache check, insert, invalidation operations
etc. need to be injected (see Figure 5 and Figure 6).

– Aspect weaving - the process of composing the final cache-enabled system
from individual web application and AutoWebCache aspects by following the
weaving rules, using the AOP compiler (see Figure 2).

Figure 9 shows how to capture the execution of a Servlet’s main method in
AspectJ; this is necessary to inject cache checks, inserts and invalidations. Since
Java Servlets are defined with a standard API, their main methods are known as
being either doGet or doPost that respectively implement HTTP GET and POST;

1 The + sign following the HttpServlet class name in Figure 8 designates its subclasses.



Fig. 9. Capturing Servlets’ main method

and the AspectJ’s execution keyword used in the pointcut captures the execution
of those methods 2.

Cache checks and inserts. Figure 10 describes the rules for tackling read-
only Servlets. The around advice surrounds the normal execution of the main
method of a Servlet with cache checks and inserts (the proceed keyword calls the
normal execution of the method). In case of a cache hit, the normal execution of
this Servlet is bypassed. For a cache miss, an entry is added in the cache along
with the dependency information associated with this request (c.f., Figure 5).

Fig. 10. Weaving rules for cache checks and inserts

Cache invalidations. Figure 11 describes an advice that is aimed at tackling
write Servlets; it defines the after advice that executes following a Servlet’s main
method. Specifically, it uses the invalidation information attached with this request
(c.f., Figure 6) to invalidate the affected cache entries.

Fig. 11. Weaving rules for cache invalidations

2 In case a Servlet’s doGet and doPost methods are interleaved, it is necessary not to
capture the execution of both methods, but only the top-level one. This can be achieved
in AspectJ using a cflowbelow pointcut (see [17], Chapter 3). For simplicity purposes,
we do not use it here.



Collecting consistency information. Figure 12 declares a pointcut that
captures calls to read-only and write SQL queries (through standard JDBC API
calls, e.g., executeQuery, executeUpdate). The after advice executes following an
SQL query and collects the consistency information - dependency (read query
templates + value vectors for a read-only request handler) or invalidation (write
query templates + value vectors for a write request), derived from that query.

If a read query is aborted during the formation of response for a client request,
the corresponding web page is not stored in the cache. Further, if a write query
does not complete successfully, it is not considered for determining the cache entries
affected. For simplicity, implementation details concerning these points have been
omitted from our presentation.

Fig. 12. Collecting Consistency Information

4.3 Analysing Transparency of AutoWebCache

Caching of dynamic web content can not be considered as an aspect completely
orthogonal to the application, in general. In this subsection, we outline some issues
that affect the transparency of AutoWebCache with respect to a general applica-
tion suite.

Capturing Information Flow through various Interfaces. To maintain com-
plete consistency of the cache with the back-end databases, the caching scheme
must capture all flow of information in the application, from front-to-back. Such
information can flow through various interfaces:

- Entry and Exit points. AutoWebCache requires well-defined interfaces for iden-
tifying the entry and exit points of a request. In our benchmarks, the Java Servlet
APIs provide a standard way to capture entry and exit of a http client request.
Further, each cached document is uniquely identified by the URI and Servlet pa-
rameters specified in the request.
- Modification to underlying Data Sets. When time-lagged weak consistency is
employed, once cached, entries are valid until some timeout occurs. To provide a
strong consistency of cached documents, however, changes must be tracked on the
data used to generate the documents. In our case, we capture modifications to the
data sets by capturing the associated SQL requests.
- Cookies. Some web applications store part of their request parameters in cookies,
instead of specifying them explicitly in the http requests (e.g., the user name and
password). In this case, the client includes its cookie [21] in all requests to the



server. A cookie is a small amount of state with no defined structure. Thus, if each
web application defines its own ad-hoc cookie structure, transparency is difficult
to achieve in AutoWebCache.
- Multiple Sources of Dynamism. A dynamic web page can be formed by aggre-
gating data from multiple sources. Currently, AutoWebCache handles dynamism
resulting out of SQL queries to a database. However, as long as the interfaces
for accessing such sources of dynamism are well-defined, AutoWebCache can be
extended easily to provide a high degree of transparency.

The Hidden State Problem. Implied in the design of AutoWebCache is that
the http request contains all the information necessary for the servlet to create
the web page, thus, identical requests (which will map to the same cache entry)
result in the same page being generated. Any other state that affects the web
page content is considered hidden state. For example, some applications employ
randomly generated information for advertisement banners [25]. Another instance
is the use of static variables inside the application. In such setups, each subsequent
identical http request results in generation of different web pages. Such requests
should be marked as uncacheable by the developer.

Use of Application Semantics. For aspect-orientedness to be used, the key se-
mantic concepts must be conveyed via the syntax of the code and, therefore, must
be rather straightforward. In some cases, however, understanding the nature of ap-
plication provides avenues for improving performance of the caching system. For
instance, in one of our benchmarks, the TPC-W application, the expensive Best

Seller web interaction uses a 30 second window allowing dirty reads. In essence,
the effects of a change committed to the database by any web interaction which
completed less than 30 seconds before the Best Seller is permitted to be not re-
flected in the response page for Best Seller. This conforms to clauses 3.1.4.1 and
6.3.3.1 of the TPC-W v1.8 specification [30]. Such concepts form a part of the
complex application semantics, and as we demonstrate in the results section, can
be quite effective in performance improvement.

5 Evaluation Environment

Test-bed J2EE Web Applications. We tested with the J2EE applications on-line
bookstore TPC-W and auction site RUBiS. TPC-W implements an on-line book-
store [30] and defines 14 different interactions among which are accessing a user
home page, listing new products and best sellers, registering a new user, updating
the shopping cart, ordering. We used an implementation of TPC-W proposed by
the University of Wisconsin [18]. RUBiS implements the core functionality of an
auction site modeled over eBay [1]. It defines 26 interactions including register-
ing new users, browsing items by category or region, bidding, buying or selling
items, and leaving comments. Both TPC-W and RUBiS provide a benchmarking
tool that emulates web client behavior and provides statistics (e.g., client response



time). For evaluation, we use the shopping mix for TPCW (80% read requests),
and the bidding mix for RUBiS (85% read requests). We vary the client load but
the size of the database is fixed.

Client Emulator. Both benchmarks use a client-browser emulator to generate re-
quests. A client session is a sequence of interactions for the same client. For each
client session, the client emulator opens a persistent HTTP connection to the Web
server and closes it at the end of the session. The average think time between
requests (7 sec) and session time (15 min) conform to clauses 5.3.1.1 and 6.2.1.2
of the TPC-W v1.8 specification [30]. All our experiments warm the cache for 15
minutes before collecting statistics over the next 30 minutes.

Software & Hardware. We use the Apache v.1.3.22 web server and the Jakarta
Tomcat v3.2.4 servlet engine, with the MySQL v2.04 type 4 JDBC driver, run-
ning on Sun JDK 1.4.2. The database is MySQL v.3.23.43-max with MyISAM
tables. All machines have an Intel Xeon 2.4GHz CPU, 1GB ECC SDRAM, the
2.4.20 Linux kernel, and a 120GB 7200 rpm disk drive. All machines are connected
through a switched 1Gbps Ethernet LAN.

Using this setup, we next analyse the AutoWebCache system, and shed light on
some of these important questions:

– What is the effect of AutoWebCache on the performance of an application?
– How does the semantics of an application relate to cache efficiency?
– What is the relative benefit of caching on different read-only requests?
– How much do AOP techniques help in implementing the caching system?

6 Results

In our first experiment, we study the effectiveness of AutoWebCache in reducing
the response time of applications. Figure 13 shows the response time for RUBiS,
comparing the results of the cache-enabled version (AutoWebCache) with the orig-
inal application (No cache). Here, RUBiS is running the bidding mix which has
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Fig. 13. Response Time for RUBiS - Bidding Mix

updates. Thus, we need to generate cache invalidations to ensure cache consistency.
For this mix, the cache hit rate is 54% 3. We see that AutoWebCache provides a
clear performance benefit, improving response time by upto 64%.

3 All numbers reported here are for the most optimal AC-extraQuery cache invalidation
strategy of AutoWebCache. See [20] for results comparing different strategies.
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Fig. 14. Response Time for TPC-W - Shopping Mix

Figure 14 shows the results for TPC-W, using the primary reporting mix of
shopping which has updates. Please note the log scale of the y-axis. From the graph,
we again see that AutoWebCache version of the application has significantly faster
response times than the No cache version. In this case, the response time is reduced
by up to 98%, and the cache hit rate is 43%. The overhead of processing cache
lookups can be measured by forcing a cache miss on every lookup. The performance
difference to NoCache is negligible (not distinguishable at the millisecond scale)
so it is not shown in the graph.
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Fig. 15. Cache Improvement in TPC-W based on Application Semantics

In our second experiment, we present how knowledge of the application seman-
tics can help in improving the efficiency of AutoWebCache. In TPC-W application,
the expensive BestSeller request uses a 30 second window allowing dirty reads,
permitting those changes committed to the database less than 30 seconds before
this request to be not reflected in the response (c.f., Section 4.3). Making use of this
semantics, the best seller pages were marked cacheable for a full 30 second window.
The performance improvement with this optimization is shown in Figure 15.
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Fig. 16. Relative Benefits for different Requests in RUBiS

In our next experiment, we analyze the relative benefit of caching on different
individual read-only requests. Figure 16 shows that for RUBis (with 1000 clients),



as expected, requests benefit by varying degree using the AutoWebCache system.
Requests BrowseCategories and BrowseRegions have an almost 100% hit rate,
while requests BuyNow and PutComment have the least cache hit ratios. While
most of the misses in the last two categories were cold misses,4 for ViewItem and
ViewBids, most of the misses were due to invalidation of the cached entries.
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Fig. 17. Relative Benefits for different Requests in TPCW

Figure 17 shows the relative benefits experienced by different requests for
TPCW, running with 400 clients. However, there are two differences in this graph
from the one we obtained for RUBiS. Firstly, in the case of TPCW, two re-
quests (unlike any in RUBiS), SearchRequest and HomeInteraction were ex-
plicity marked uncacheable because they use a random number generator to pro-
duce advertisement banners. Secondly, most of the hits for BestSeller request
were obtained using a 30 second window for invalidation (described earlier). Such
application semantics were not used for any request in RUBiS.
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Fig. 18. Breakdown of different Requests in RUBiS w.r.t. Response Time

Figures 18 and 19 report the improvement in response times of individual
requests with AutoWebCache, for RUBiS and TPCW with 1000 and 400 clients,
respectively. For each request, the graphs show the average extra time required to
generate the response for that request in case of a cache miss. Hence, for a miss,
the response time for a request is the sum of the two components. In the case of
RUBiS, AboutMe has high penalty for a miss. However, this is compensated by
a high hit rate for this request. Same arguments can be applied for BestSeller,
ExecuteSearch and NewProducts requests in TPCW. Also, since the requests
SearchRequest and HomeInteraction have low response times, marking them
uncacheable does not impact the performance of AutoWebCache a great deal.

4 Hits for these requests require the same customer and item as a previous request.
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Fig. 19. Breakdown of different Requests in TPCW w.r.t. Response Time

Fig. 20. Web App & Cache Library Code Size vs. Aspect-J Code Size

Figure 20 compares the code size of the individual aspects, the TPC-W and
RUBiS testbed applications and the JWebCaching library. Most of the code for
the AutoWebCache system, including the query analysis engine, lies in the JWe-
bCaching library. This library implements the cache interfaces and can be reused
for various applications. Size of code written in AspectJ for weaving caching into
the application is much smaller. Thus, it is easy to maintain and customize for
different applications.

7 Discussion

A goal in web cache research has been to develop designs that are completely
transparent to the application yet supports strong consistency. Complete trans-
parency means that no effort is required from the application programmer to
achieve caching - such a cache would be easy to add. Support for strong consis-
tency means the cache can ensure it is always synchronized with the state of the
persistent backing store - such a cache would have a wide audience. Caching of
static content achieves both goals. Strong consistency is trivial by the fact that the
content does not change. Transparency is easily achieved as the final content can
be captured at a well-known point - while being sent as the response to a client’s
request.

The complexity of maintaining consistency in our case is due to caching derived

data. We call data such as web pages derived because they are obtained using some
set of data in the persistent store of the application (e.g., rows in the database
tables). In contrast, non-derived data objects map directly to unique items in the
persistent store. Thus, checking for inclusion in the cache is a simple matter of
checking for the existence of a unique global identifier (e.g., a simple id). When
caching derived data, however, the mapping relationship is obscured. Complexities
arise as more than one document can depend on the same field in the database.



Also, dynamic web pages can aggregate data from multiple databases. Therefore,
detecting if a change to a database affects a web page involves testing for inclusion
of the changes in each page’s input set.

Aspect-oriented programming is an efficient tool to capture the information
flow in an application and can be used to inject the caching calls at appropriate
points. Working with AOP gives several benefits:

Modularity. Separation of concerns is inherent to AOP-based systems. The
implementation of each individual aspect (e.g., the J2EE web application and
the logic for caching dynamic content) may evolve separately without inducing a
change in the implementation of the others.

Generality. The AutoWebCache prototype uses AOP to add caching of dy-
namic web pages to a Servlet-based web application that interfaces a database
with JDBC. This methodology is general enough to encompass other sources of
dynamic data. Specifically, individual aspects can be developed separately for each
source and then woven together.

Transparency. Any modification/extension to the application interfaces is
captured by making appropriate changes in the pointcut specifications, and not
the way individual aspects have been developed or woven. This provides a clean
way to make caching look oblivious to the developer.

Our AOP-based framework combines simplicity with flexibility to achieve a
good level of transparency. Let us compare our technique with a compiler-based
approach as in [8]. The compiler does a similar query analysis at compile time and
embeds the results for simple look-up at run-time. The proposed AutoWebCache
system also achieves almost zero run-time analysis overhead via result caching [3],
but is much easier to develop than compiler techniques, making use of AOP tools.
Another subtle advantage of our approach is that it is robust even if the SQL
queries are dynamically formed, as it captures the run-time value of the string at
the point of SQL call. For a compiler, query strings must be statically available.
This assumption might not hold for real-life, complex applications.

We believe that achieving the simultaneous goals of complete transparency
and strong consistency in web caching is not possible for the general case. The
key problem is in automatically verifying that no essential data in an application
needed for caching flows through unexpected interfaces and, thus, elude the consis-
tency logic. Cookies, randomly generated data and application semantics are some
examples of this phenomena from our benchmarks. If an application presents a
fairly orthogonal caching aspect, AutoWebCache would require only minimal de-
veloper intervention. If not, a special weaving rule would be constructed for each
non-orthogonal concept. In the worst case, AOP would extend only modularity as
a benefit, same as that offered by object-oriented techniques.

8 Related Work

Caching of dynamic content with weak consistency can achieve transparency be-
cause, as for static content, no information is needed to synchronize the cached
documents with the backing store. Typically, pages can be set to timeout so that



the cache content is periodically refreshed. CachePortal [4] has a unique form of
weak, time-lagged consistency. It relies on timestamps and HTTP logs to conser-
vatively determine which pages to invalidate. Inconsistencies can exist for a time
between the cache and the backing store.

While caching the contents of the persistent store (non-derived data) directly,
a high degree of transparency with strong consistency can be achieved. Examples
include caching direct copies of raw DBMS tables [29] or caching copies of persis-
tent Java objects [13]. A framework where business rule SQL query result sets are
cached is presented in [8, 12]. As with our work, strong consistency is maintained
through complex analysis of the SQL queries. A high degree of transparency is
achieved through the compiler-based solution to insert the cache API calls tuned
to the Websphere environment. In contrast, our work uses much simpler AOP
tools.

Examples of caching derived data with strong consistency suffer from a low level
of transparency that requires considerable developer input about request structure
or dependencies. DynamicWeb [10] provides a strongly consistent web page cache,
but not transparently as developers must define the dependencies between events,
e.g., read and write queries. Similarly, form-based proxy caching [19] of web pages
requires developers to pre-define configurations of web page formats. Weave [33]
requires the programmer to use a specialized language to describe dynamic web
pages and event handlers to specify invalidations. Various commercial solutions
such as SpiderCache [26], Xcache [32], and Oracle9iAS [22] provide an event API
to the developers to add consistency management.

The current prototype of AutoWebCache is implemented as a generic solution
for a J2EE web application that uses Servlets embedding SQL queries based on
JDBC [27] since this pattern is widely used in many J2EE applications [5]. It
can be easily extended to include other sources of dynamism, as well as other
ways of forming dynamic content, such as PHP [31]. Furthermore, the proposed
caching solution is completely transparent when all database updates go through
the server-side application. However, if some updates are directly performed on
the database, transparency is difficult to achieve. A possible solution is to extend
the caching system with an API similar to the ones provided by the DynamicWeb
and Weave systems to allow an external entity to invalidate cache entries [10, 33].
This external entity could, for instance, work through database triggers.

AOP techniques were experimented for profiling [7], persistence [23], distri-
bution [14], web cache pre-fetching [24], caching static content [17], caching (non-
derived) Java objects [13], and also for transactions [16] where the authors conclude
that, as for consistent caching of dynamic web content, transactions can not be
aspectized in general.

9 Conclusions

In this paper, we presented AutoWebCache, a middleware system for adding
caching of dynamic content transparently to J2EE server-side applications hav-
ing a backend database. Caching fully-formed webpages reduces the work at both



the increasingly costly business logic tier as well as the back-end database tier. We
first outlined the principles involved in caching dynamic web content, including
the logic to ensure consistency of the cached documents. Thereafter, we demon-
strated the use of aspect-oriented techniques to implement our system. We showed
how aspect-oriented techniques improve modularity and transparency of the entire
solution.

Using two standard J2EE web benchmarks, RUBiS and TPC-W, we evaluated
AutoWebCache along various dimensions. First, we studied the effectiveness of
AutoWebCache in reducing the response time of applications. Second, we analyzed
the transparency of our system for a general application suite. We argued that for
the general case, issues may arise when caching at the front-end as dynamic web
pages can aggregate data from multiple sources and also some sources might not
have sufficiently structured interfaces for exchanging the information necessary
for tracking coherency. Furthermore, we showed that knowledge about application
semantics can improve the efficiency of caching.

Our work presents itself several avenues for extension. A database query-results
cache is complementary to webpage caching. Complex SQL queries that cannot be
efficiently parsed for coherency dependency information (e.g., range queries) can be
declared uncacheable at the front-end webpage cache but have its result sets cached
at the back-end, thus, reducing the database costs if not the business logic costs for
those requests. We also want to extend the AutoWebCache system to incorporate
sources of dynamism other than SQL queries, and study their transparency w.r.t.
AOP. Finally, we want to analyze the effect of varying cache size on the hit rates
of requests and investigate different cache replacement strategies in this context.
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