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Abstract. Enterprises rely critically on the timely and sustained delivery of in-
formation. To support this need, we augment information flow middleware with
new functionality that provides high levels of availability to distributed applica-
tions while at the same time maximizing the utility end users derive from such
information. Specifically, the paper presents utility-driven ‘proactive availability-
management’ techniques to offer (1) information flows that dynamically self-
determine their availability requirement based on high-level utility specifications,
(2) flows that can trade recovery time for performance based on the ‘perceived’
stability of and failure predictions (early alarm) for the underlying system, and
(3) methods, based on real-world case studies, to deal with both transient and
non-transient failures. Utility-driven ‘proactive availability-management’ is inte-
grated into information flow middleware and used with representative applica-
tions. Experiments reported in the paper demonstrate middleware capability to
self-determine availability guarantees, to offer improved performance versus a
statically configured system, and to be resilient to a wide range of faults.

1 Introduction

Modern enterprises rely critically on timely and sustained delivery of information. An
important class of applications in this context is a company’s operational information
system, which continuously acquires, manipulates, and disseminates information across
the enterprise’s distributed sites and machines. For applications like these, a key attribute
is their availability - 24 hours a day, 7 days a week. In fact, system failures can have dire
consequences, including loss of productivity, unhappy customers, or serious financial
implications. In fact, the average cost of downtime for financial companies, as reported
in [1], is up to 6.5 million dollars per hour and hundreds of thousands of dollars per hour
for retail companies. This has resulted in a strong demand for operational information
systems that are available almost continuously.

Providing high availability in widely distributed operational information systems is
complex for multiple reasons. First, because information flows are distributed, they are
difficult to manage, and failures at any of a number of distributed components or sites
can reduce availability. Second, multiple flows may use the same distributed resources,



thereby increasing the complexity of the system and the difficulty of managing and pre-
venting failures. Third, such systems often have high data rates and intensive processing
requirements, and there are frequently insufficient system resources to replicate all this
data and processing to achieve high reliability. Fourth, information flows must have neg-
ligible recovery times to limit losses to the enterprise. Finally, based on our experience
working with industry partners like Delta Air Lines and Worldspan, systems must re-
cover not only from transient failures but also from non-transient ones (e.g., failures that
will recur unless some root cause is addressed) [2].

How can we provide high availability for information flows, given all of these re-
quirements? Traditional techniques such as recovery from disk-based logs [3] may have
recovery times that are unacceptable for the domain in question. Using active replicas [4]
imposes high additional communication and processing overheads (since all data flow
and processing is replicated) and therefore, may not be an economically viable option.
Another option is to use an active-passive pair [4], where a passive replica of a compo-
nent can be brought up to date by retransmitting messages that had gone to the failed,
active one. This option reduces communication costs, since messages are only sent to the
passive component at failure time. Unfortunately, this may result in long recovery times.
A better solution would be a hybrid of the above approaches, accepting dynamically de-
termined levels of additional processing and communication during normal operation in
order to reduce recovery times when failures occur.

In this paper we extend the active-passive approach to dynamically tune the tradeoff
between normal operation cost and recovery time. In particular, the passive replica will
be periodically refreshed with ‘soft-checkpoints’: these checkpoints transfer the current
state from the active node to the passive node (passive standby), but are not required
for correctness (hence, they are ‘soft’). If the passive replica has been recently brought
up to date by a soft-checkpoint, then recovery will be relatively fast. The tradeoff be-
tween cost and recovery is tuned by changing the frequency at which soft-checkpoints
are transmitted during normal operation. Such tuning is based on user-provided expres-
sions of information utility, and it takes advantage of the following methods for failure
prediction:

o Availability-Aware Self-Configuration — a user-supplied per information flow ‘benefit-
function’ drives the level of additional resources used to guarantee availability. This
ensures preferential treatment of flows that offer more benefit to the enterprise, with
the aim of maximizing benefit across the system.

e Proactive Availability-Management — during its execution, a system may be at dif-
ferent levels of stability (e.g., a heavy memory load could mean an imminent fail-
ure). In many cases, the ‘current stability’ of the system can be quantified in order
increase or decrease the resources expended to ensure desired levels of availability.

e Handling Non-Transient Failures — some failures will recur if the same sequence
of messages that caused the failure is resent during recovery. In this case, we must
use application-level knowledge to avoid fault recurrence. We present several tech-
niques, based on real-world case studies, to deal with such faults.

Proactive availability-management techniques have been integrated into IFLOW,
a high performance information flow middleware described in [5]. The outcome is
a flexible, distributed middleware for running large-scale information flows and for
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managing their availability. In fact, experimentation shows that proactive availability-
management not only imposes low additional communication and processing overheads
on distributed information flows, but also, that proactive fault tolerance is an effective
technique for recovering from failures, with a low recovery time of 2.5 seconds for
an enterprise-scale information flow running on a representative distributed computing
platform. Experiments further show that utility-based availability-management offers
1.5 times the net-utility of the basic active replica approach.

1.1 Example: Operational Information System

An operational information system (OIS) [2] is a large-scale, distributed system that
provides continuous support for a company or organization’s daily operations. One ex-
ample of such a system we have been studying is the OIS run by Delta Air Lines, which
provides the company with up-to-date information about all of their flight operations,
including crews, passengers and baggage. Delta’s OIS combines three different sets of
functionality:

o Continuous data capture - for information like crew dispositions, passengers, air-
planes and their current locations determined from FAA radar data.

o Continuous status updates - for low-end devices like airport flight displays, for the
PCs used by gate agents, and even for large databases in which operational state
changes are recorded for logging purposes.

e Responses to client requests - an OIS must also respond to explicit client requests,
such as pulling up information regarding a particular passenger, and it may generate
additional updates for events like changes in flights, crews or passengers.

In this paper, we model the information acquisition, manipulation, and dissemina-
tion done by such an OIS as an information flow graph (a sample flow-graph is shown
in Figure 1). We then present techniques, based on this flow-graph formalization, to
proactively manage OIS availability such that the net-utility achieved by the system
is maximized. This is done by assigning per information flow availability guarantees
which are aligned with the benefit that is derived from the information flow, and by
proactively responding to perceived changes in system stability. We also present addi-
tional techniques, based on real-world case studies, that can help a system recover from
non-transient failures.



2 System Overview

This section describes a model of the information flows under consideration, and it
elaborates the fault model used for the proactive availability-management techniques
explained later.

2.1 Information Flow Model

An information flow is represented as a directed acyclic graph G(Vy, Eg, Upet) with
each vertex in V; representing an information-source, an information-sink or a flow-
operator that processes the information i.e. Vy = Viources U Viinks U Voperators- Edges
E, in the graph represent the flow of information, and may span multiple intermediate
edges and nodes in the underlying network. The utility-function U, is defined as:

Upet = Benefit — Cost (D

Both benefit and cost are expressed in terms of some unit of value delivered per unit time
(e.g., dollars/second). Benefit is a user-supplied function that maps the delay, availabil-
ity, etc. of the information flow to its corresponding value to the enterprise. Cost is also a
user-supplied function; it maps resources such as CPU usage and bandwidth consumed
to the expense incurred by the enterprise. We will expand the terms of this seemingly
simple equation in upcoming sections.

2.2 Fault Model

We are concerned with failures that occur after the information flow has been deployed.
In particular, we consider fail-stop failures of operators that process events. Such failures
could result from problems in the operator code or in the underlying physical node.
Other factors might also cause failures, but are not considered here, including problems
with sources, problems with the sink, or link failures between nodes. While such issues
can cause user-perceived failures, they must be addressed with other techniques. For
example, link failures could be managed by retransmission or re-routing at the network
level.

For the purpose of failure recovery, we assume that each flow-operator consists of
a static-state Sgyq1ic that contains the information about the edges connected to the op-
erator and the enterprise logic embedded in the operator; in contrast, the dynamic-state
Sdynamic 18 the information that is a result of all the updates that have been processed
by this operator (shown in Figure 1). Recovery therefore, is dependent upon the cor-
rect retrieval of the states Sgtqric and Sgynamic, Which jointly contain the information
necessary for re-instantiation of flow-operator and information flow edges. However,
as described next, simply recovering these states may not prevent the recurrence of a
failure.

Transient Faults. A fault can be caused by a condition that is transient in nature (e.g.,
a memory overload due to a mis-behaving process). Such faults will not typically recur
after system recovery. In our formulation, a transient fault would cause the failure of
an operator, and correct retrieval of the two states associated with the operator would
ensure permanent recovery from this fault. The techniques proposed in this paper are
capable of effectively handling faults of this nature.



Non-Transient Faults. Non-transient faults may be caused by some bugs in the code
or some unhandled conditions. For information flows, this may mean recurrence of the
fault even after recovery, particularly when recovery entails repeating the same sequence
of messages that caused the fault. To deal with faults of this nature, we note that the
output produced by a flow-operator in response to an input event & depends on the
existing dynamic-state Sqynamic, the operator logic encoded as Sgtqtic, and the event
FE itself. Therefore, the failure of an operator on arrival of an event E is a result of
the 3-tuple < Saynamic, Sstatic; &2 >. Thus, any technique that aims to deal with non-
transient failures must have application-level methods for retrieving and appropriately
modifying this 3-tuple. Our prior work presents examples of such methods [2], and we
generalize such techniques here.

3 Utility-Driven Proactive Availability-Management

Traditional techniques for availability-management typically rely on undo-redo logs,
active-replicas, or active-passive pairs. A new set of problems is presented by informa-
tion flows that form the backbone of an enterprise. For instance, using traditional on-disk
undo-redo logs for information flows would lead to unacceptable recovery times for the
enterprise domain in face of machine or disk failures. The other end of the availability-
management spectrum, which uses active replicas, would impose large additional com-
munication and processing overheads due to the high arrival rate of updates, typically
making it economically infeasible for the enterprise to use this option. In response, we
take the active-passive pair algorithm [4], and customize it for enterprise-scale informa-
tion flows. To do this, we will incorporate our previous work on soft-checkpoints [6],
and add the ability to dynamically choose checkpointing intervals to reduce communi-
cation and processing overheads. For completeness, we first describe the existing active-
passive pair and soft-checkpoint techniques, and then describe our enhancements.

3.1 Basic Active-Passive Pair Algorithm

To ensure high-availability for the flow-operator, in its simplest form, the active-passive
pair replication requires: a passive node containing the static-state Sg;q¢;c Of the flow-
operator hosted on the active node, an event log at the flow-graph vertices directly up-
stream to the flow-operator in question, a mechanism to detect duplicates at the vertices
directly downstream to the flow-operator, and a failure detection mechanism for the
active node hosting the primary flow-operator.

In case of a failure, recovery proceeds as follows: the failure detection mechanism
detects the failure and reports it to the passive node. On receipt of the failure message,
the passive node instantiates the flow-operator, making use of the static-state, Sstqtic, al-
ready available at the node. The instantiated operator then contacts the upstream vertices
for retransmission of the events in their event log. The newly instantiated operator node
processes these re-transmitted events in a normal fashion, generating output events, and
leaving it to the downstream nodes to detect the resulting duplicates. Once the retrans-
mission of the event log has been completed, the resulting dynamic-state, Saynamic
will be recovered to the state of the failed operator, and normal operations can resume.
Unfortunately, this simple algorithm can lead to long recovery times, large event logs
at the upstream nodes, and large associated retransmission costs. The remedy to these
problems is the ‘soft-checkpoint’ technique, described next.



The event logs at the upstream nodes and their retransmission to the recovered oper-
ator are required for reconstructing the dynamic-state Sgynamic, of the failed operator.
However, in practice, it is advantageous to retain additional stable state at the passive
node in order to avoid the need to re-transmit the entire event log. Such state saving
is called soft-checkpointing, because it is not needed for correctness. Soft checkpoints
can be updated on an intermittent basis in the background. Once taken, the component
receiving the checkpoint no longer requires the events on which the state depends for
reconstructing Sgynamic. This in turn permits upstream nodes to discard the event logs
for which the soft-checkpoint has been taken. Soft-checkpointing, therefore, is an opti-
mization that reduces worst-case recovery time and permits the reclamation of logs.

The introduction of soft-checkpoints requires small modifications to the recovery
mechanism described earlier in this section. The flow-operator at the active node in the
duration prior to failure would intermittently send messages to the passive node that
contain information about the incremental change to its dynamic-state since the last
message. The passive node, after the receipt of complete state update message from the
active node, applies the incremental modifications to the state it holds and then sends
a message to the flow-operator’s upstream neighbors about the most recent event con-
tained in the message from the active node. The upstream nodes can use such infor-
mation to purge their event logs. In case of a failure, the algorithm proceeds exactly as
described earlier, but only a small fraction of the events needs to be re-transmitted and
processed.

3.2 Availability-Utility Formulation
In this section, we use a basic availability formulation to better describe the effects
and trade-offs in soft-checkpoint-based active-passive replication. Availability Az is
described in terms of Mean-Time Between Failure, MT' B F' and Mean-Time To Repair,
MTTR. MTBF

AL = TBF + MTTR @
As stated earlier, our approach contributes to a reduction in recovery time and also
reduces the processing and communication overhead imposed as a result of ensuring
a certain level of availability. The reduction in recovery time results in lower MTTR
and a reduction in associated overheads diminishes cost. Jointly, both result in higher
net-utility U,¢;, which is the actual utility provided by the system.

With our approach, MTTR depends on two factors: (1) the time to detect a failure,
and (2) the time to reconstruct the dynamic-state of the operator. Failure detection mech-
anisms generally rely on time-outs to detect failures and therefore, depend on the coarse-
ness of the timer used for this purpose. Some research in the domain of fault-tolerance
has focused on multi-resolution timeouts [7], but to simplify analysis, henceforth, we
assume that the time to detect a failure is a constant. The second factor contributing to
MTTR depends on the soft-checkpoint algorithm. Specifically, a higher frequency f.p,
expressed in per unit time, of such checkpoints would lead to a smaller number of events
required to reconstruct Sqynamic in case of a failure. Therefore:

1
MTTR x — 3)
fcp

For simplicity, we next derive the availability-utility formulation for a single information
flow (self-configuration across multiple information flows is addressed in Section 3.3),




and we assume that the Benefit and C'ost depend only on availability. In this case,
in general, the benefit derived from a system is directly proportional to its availability.
Thus: . MTBF
Benefit < MTBF + ¥/l @)
The above formulation may lead one to believe that a higher f., is good for the system.
Unfortunately, a higher f., also means more cost to propagate checkpoints from the
active node to the passive node. Therefore:
Cost < fep 5)
Note that a higher f., also results in fewer events retransmitted per soft-checkpoint;
however, for large values of MTBF this effect is minor compared to the effects described
above (increase in benefit due to better availability, and compared to the increase in cost
due to a higher frequency of checkpoints). Experiments reported in Section 5.2 study the
effects of soft-checkpoint frequency on the cost and availability of information flows.
Combining equations 1, 4, 5, and replacing proportionality using constants, we ar-
rive at: ko x MTBF
Unet - MTBF + kl/fcp kB X fcp7 (6)
which represents the business-utility calculation model and the constants are determined
by business level objectives [8, 5], or using more detailed formulation described later.
This equation expresses the key insight that net-utility depends not only on MTBF, but
also on the soft-checkpoint frequency used in a system, the latter both positively con-
tributing to net-utility (by reducing the denominator) and directly reducing net-utility
(by increasing the term being subtracted). Intuitively, this means that frequent check-
pointing can improve utility by reducing MTBFE, but that it can also reduce utility by
using resources that would otherwise directly benefit the information flow.

3.3 Availability-Aware Self-Configuration

Ideally, we would like to maximize the availability of an information flow, but given
that there is an associated cost, our actual goal is to choose a value of availability that
maximizes its net-utility. In our algorithm and its mathematical formulation, f, is the
factor that governs availability. By setting the derivative of equation 6 equal to zero, we
find that the value of f., that maximizes net-utility is:

_ k‘l X k‘g kl
Jer = V ks x MTBF MTBF )

In the presence of multiple information flows, each with a different benefit-function,
the resource assignment for availability is driven by the need to maximize net-utility
across all deployed information flows. Total net-utility of the entire system, then, is the
sum of individual net-utilities of information flows. For a system with n information
flows, we will need to calculate { f,, f2,, .., f2 }, which will automatically determine
resource assignments. The value of f, for each information flow can be calculated using
partial differentials, and the involved calculations are omitted due to space constraints.

3.4 Proactive Availability-Management

We have established that net-utility depends on checkpoint frequency and MTBF. How-
ever, the MTBF in a real system is not a constant. Instead, the rate of failures fluctuates,
with more failures occurring when the system is in an unstable state. For example, dur-
ing periods of extreme overload, the system is likely to experience many component
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Fig. 2: Enterprise error-log showing predictable behavior of failures

failures. If we can better approximate the current MTBE, and in particular predict when
there will be many failures, we can make better decisions about checkpointing, increas-
ing the checkpoint rate when the current MTBF is low (and failures are imminent.)

Failure prediction. An effective way to estimate the current MTBF is to use failure pre-
diction techniques to generate ’early alarms’ when a failure seems to be imminent. By
using failure prediction, our approach can be ‘better prepared’ for an imminent failure,
by taking more frequent soft-checkpoints. Analysis logs provided to us by one of our
industry partners strengthens our belief in the usefulness of dynamic failure prediction.
These logs contain error messages and warnings that were recorded at a middleware
broker over a period of 7 days, along with their time-stamps. Figure 2 shows the distri-
bution and severity of errors recorded at the broker node. One interesting observation of
these logs is that errors recur at almost the same time (around 9:00am as read from the
log time-stamp) beginning from the 2nd day. Another interesting observation about the
same set of logs is that 128 errors of severity level 1 occurred from 7:30pm in the first
day before a series of level 4 errors occurred from 8pm. Based on such logs, it would
be reasonable, therefore, to assume lower MTBF (i.e., predict imminent failures) for the
9am time period and the period when a large number of less severe errors occur, than
for other time periods in which this application executes. We note that similar time- or
load-dependent behaviors have been observed for other distributed applications[10].

We implemented the Sequential Probability Ratio Test(SPRT) used in MSET [11,
12] failure prediction method, to predict failures injected by the FIMD [13] failure in-
jection tool, including timing delay, omission, message corruption datatype, message
corruption length, message corruption destination, message corruption tag, message cor-
ruption data, memory leak, and invalid memory access. The SPRT method is a run-time
statistical hypothesis test that can detect statistical changes in noisy process signals at
the earliest possible time, e.g., before the process crashes or when severe service degra-
dation occurs. SPRT has been applied successfully to monitor nuclear power plants, and
it has recently been used for software aging problems, e.g., for the database latch con-
tention problem, memory leaks, unreleased file locks, data corruption, etc. For example,
an early warning may be raised about 30 seconds (the ’early warning capability’) before
a memory leak fault causes the service to degrade dramatically or the process crashes.
For database shared-memory-pool latch contention failures, early warning capabilities
of 5 minutes to 2 hours have been observed. For additional information about SPRT and
associated MSET method, please refer to [11] and to an extended version of this text in
a technical report [14].



Modulating checkpoint frequency. The idea behind proactive availability-management
is to use failure prediction to modulate f.,. We first provide the important yet simple
guideline regarding checkpoint frequency modulation, we then develop a detailed for-
mulation for enterprise-scale information flows, and finally, present a formulation and
method to meet some specific availability requirement while also maximizing net-utility.

General guideline. Intuitively, if a failure prediction turns out to be correct, the sys-
tem ‘benefits’ because of reduced MTT' R; if a prediction turns out to be a false-positive,
the system still operates correctly, but it pays the extra ‘cost’ due to increased f,. Stated
more formally, let:

« = prediction false—positive rate

0B = prediction false-negative rate

ép modulated checkpoint frequency after a failure is predicted
Tproactive = duration of increased checkpoint frequency

k = timeout after which an operator is concluded to have failed

Earlier, C'ost was shown to be proportional to soft-checkpoint frequency. The new
cost, Cost’, due to modulated fép, is:
Cost' = Cost x fép/fcp 8
This increased cost is incurred for a duration equal to T}, oqctive, and it is incurred each
time a prediction is made. Therefore, the additional cost incurred per prediction is:
6Cost = (fl,/ fep — 1) x Cost X Tyroactive 9)
The increase in f,, also affects the availability of the system and therefore, the

benefit, Bene fit’, derived from the system. Using equation 4, we have:
MTBF + ki/f,

MTBF + k1/ fep
Therefore, the increase in benefit due to a correct prediction that affects a period equal
to MTBF is:

Benefit' = x Benefit (10)

dBenefit = (Benefit' — Benefit) x MTBF (11)
Since A is the fraction of false-positives and because there is no increase in benefit
due to a false positive, the following condition expresses when proactive availability-
management based on failure prediction is beneficial for an entire system:
0Cost < (1 — ) x dBenefit (12)
Proactive availability-management. Different systems could have different types
and formulations of benefit and cost, and the above analysis provides the general guide-
line regarding proactive availability-management. For the enterprise information flow
system targeted by this paper, the proactive availability-management problem can be
formulated in more details as follows. Proactive availability-management regulates check-
point frequency based on stability predictions to maximize net business utility. By con-
sidering ‘total cost’, including the cost of checkpointing and the utility loss because of a
failure (i.e. the extra utility the system could offer if there had been no failure), the prob-
lem of maximizing net-utility can be converted to the problem of minimizing total cost.
This total cost consists of the cost of normal checkpointing (at frequency f.,), Cost?,
the cost due to false-positive failure prediction (i.e., the failure predictor raises a false
alarm), C'ost/P, the cost due to false-negative failure prediction (i.e., a failure is not pre-
dicted successfully), Costf™, and finally, the cost associated with failure recovery when
a failure is successfully predicted, Cost?P®.



Table 1: Four types of cost
Cost? =[1-P1 -0+ a)]fcpcl,
Cost!? = angptoCl,
Cost™™ = BPCy/(2fep) +BP(k+1/(2fep))Cy,
Cost™ = (1= B)P[Ca/(2fip)+(k+1/(2f5p))Cytfint Cal-

These four types of cost are summarized in Table 1. For the cost of normal check-
points, CostP, (1 is the cost for each checkpoint update (e.g., the communication cost),
and P is the possibility an operator could fail from any time t to t+1 (seconds). Here,

’

P(1—fB+a) is the fraction of time when the checkpoint frequency is f,,,, due to correct
failure predictions and false alarms. For the cost of false-positive failure prediction, ¢, is
the average time a predictor raises an early alarm for a severe failure. In the equation for
the cost due to false-negative prediction, C' ostf™, the first term is the total state recovery
cost, i.e., the cost for the passive node to recover from the latest checkpointed state to
the state when the failure occurred, including retransmission cost and re-computation
cost. Cs is the average recovery cost per unit time($/sec). The second term is the to-
tal utility loss from the time when failure occurs to the time when the system recovers
to normal operational status. In other words, this term represents the utility the system
could provide if there had been no such failure. C'5 is the utility the system provides
per second($/ sec)if there is no failure. The cost associated with failure recovery when a
failure is successfully predicted, C'ostP?, is determined in a similar manner as C' ostf™,
To regulate checkpoint frequency, proactive fault tolerance finds the best checkpoint
frequency, f,,, when there is no failure predicted, and the best checkpoint frequency,
fép, after the time a failure is predicted. This is done by minimizing the total cost.
Meet specific availability requirement. Often, enterprises have specific requirements
for system availability. For example, a 365 x 24 system with maximum allowed average
downtime of 8.76 hours (i.e., 525 minutes) per year requires 99.9 percent availability,
while a system with only 3 minutes of service outage must have at least a 99.999 percent
availability. To achieve such availability is difficult due to the high cost of fault tolerance
services and equipments. Proactive availability-management is able to strike a balance
between these two factors by jointly considering availability and utility when regulating

checkpoint frequency. Notice that MTTR can be expressed as:
MTTR = (1/2fep + k) B+ (1/2f%, + k) (1= 3), (13)

where k is the timeout after which we conclude that a module actually failed, the avail-
ability is given by:

s MTBF _1-P-MTTR
'™ MTBF + MTTR — 1
=1—p[(1/2fecp + k) B+ (1/2f,, + k) (1 — B)] (14)

Proactive fault tolerance meets the minimum availability requirement and also maxi-
mizes net utility by solving the following equation:

Minimize{Cost = Cost® + Cost/? + Cost!™ + CostP*}, subject to:

1= p[(1/2fep + k) B+ (1/2fl, + k) (1= B)] > Ao (15)
This optimization problem is of small size with two variables and one constraint, and is
solved using standard Quasi-Newton method with inverse barriers.



3.5 Handling Non-Transient Faults

Non-transient failures are a result of bugs or unhandled conditions in operator code.
Traditional techniques for ensuring high-availability that use undo/redo logs [3, 6] are
useful for transient failures, but for non-transient failures, they may result in recurrence
of faults during recovery. The same applies to replication-based approaches [15], for
which all replicas would fail simultaneously for non-transient faults.

As described in Section 2.2, a non-transient failure of the information flow in our
model is a result of the 3-tuple < Sgtatic; Sdynamic, &£ >. The active-passive pair
approach for ensuring high-availability has sufficient information during recovery to
change this 3-tuple. The passive-node during recovery has access to Ssiqeic, @ stale
state Sy, ,,,mic» and a set of updates 7" from the upstream nodes that when applied to

dynamic» Would lead to Syynamic. The rationale behind our approach to avoid non-
transient failures is simple: avoid the 3-tuple that caused the failure. This can be done in
a number of ways, and the retransmitted updates 7" along with application-level knowl-
edge holds the key:

e Dropping Updates: the simplest solution to avoid recurrence of a fault is to avoid
processing the update that caused the failure. Our earlier work on ‘poison messages’
used this technique [2].

e Update Reordering: changing the order in which updates are applied to S (’wnamic
during recovery can avoid Sqynaemic. This makes use of application-level knowledge
to ensure correctness.

e Update Fusion: combining updates to avoid an intermediate state could be an op-
tion. A simple example of this approach could be the use of this technique to avoid
‘division by zero’ error.

e Update Decomposition: decomposing an update into a number of equivalent updates
can be an option with several applications, and this can potentially avoid the fault.

While seemingly simple, the techniques described above are often successful in re-
alistic settings. For example, one of our collaborators, reported an occasional surge in
the usage of resources connected to their Operational Information System (OIS) [16]
that traced back to a particular uncommon message type. The resulting performance
hit caused other subsystem’s requests to build up, including those from the front ends
used by clients, ultimately threatening operational failure (e.g., inappropriately long re-
sponse times) or revenue loss (e.g., clients going to alternate sites). Such uncommon
request/message, termed ‘Poison Messages’, were later found to be identifiable by cer-
tain characteristics. The solution then adopted was to either drop or re-route the poison
message in order to maintain operational integrity.

4 Middleware Implementation

IFLOW [5] is an information flow middleware developed at Georgia Tech. [IFLOW im-
plements the information flow abstraction of Section 2.1 and provides methods to deploy
and then optimize (by migrating operators) the information flow. For more details please
refer to [17].

We now briefly describe the features that enable proactive availability-management
in the IFLOW middleware. These features are implemented both at the control plane
and the data plane of this middleware infrastructure.



4.1 Control Plane

The control plane in IFLOW is the basis for managing information flows. Self-management
methods involve running a self-configuration and a self-optimization algorithm, carried
out by exchanging control messages between physical nodes that are external to the
data fast paths used to transport IFLOW data. Control actions involve operations like
flow-control, operator re-instantiation, etc. The main new features of the IFLOW con-
trol plane that are used for proactive fault tolerance are described below:

e Availability-aware self-configuration module: the benefit-formulation in IFLOW al-
lows for availability goals to be specified, and determines the best value of f., by
using the formulation described in Section 3.2.

e Failure detection & prediction: IFLOW attempts to use the regular traffic from a
node to determine its liveness, but it switches to specific detection messages if there
is no regular traffic from the node to the monitoring node. We also have a provision
for multi-resolution timeouts to reduce the load imposed by the failure detection al-
gorithm. Finally, state can be maintained to use failure history for predicting failures,
but we have not yet implemented any specific technique into IFLOW.

o Control messages: SOAP calls are used to notify active-node failure, to communi-
cate log purge points to upstream vertices, etc.

e Update re-direction in case of failure: a simple control mechanism exists at the
upstream vertices to re-direct updates to the passive node in case of failure. The
connection between upstream vertices and the passive node is created at the time of
flow deployment.

4.2 Data Plane

A fast data-path is one of the key design philosophies of the IFLOW middleware. We

have taken care that the features required for proactive availability-management have

minimal impact on the data-path. In order to ensure proactive availability-management,

the state of an operator on the data plane needs to be soft-checkpointed and the changes

need to be periodically communicated to the passive-node. The fact that a soft-checkpoint
is not necessary for correctness of proactive availability-management ensures minimal

impact on the data-path. Specifically, the active-node can transfer the soft-checkpoint

to the passive node asynchronously, and this will not compromise the correctness of
our algorithm. The specific features required for proactive availability-management are

described below:

e Logging at upstream vertices: any update that is sent out from the source vertex is
logged to enable retransmission in case of failure. Additional logs can be established
at intermediate nodes (an operator vertex is a source for downstream vertices) to
enable faster recovery. The log module also implements a mechanism to purge the
log when a message is received from the downstream node after a soft-checkpoint
is completed.

o Soft-checkpoint module at operator vertices: the soft-checkpoint module tracks the
changes in Sgynamic since the last soft-checkpoint. It is also responsible for sending
soft-checkpoints to the passive node.



Fig. 3: Sample testbed. The testbed topology is generated using GT-ITM and is configured at
emulab facility.

e Duplicate detection at the downstream node: the duplicate detection mechanism is
based on the monotonic update system proposed in our earlier work [6]. When the
updates cannot be ordered using the contained attributes, a monotonically increasing
attribute (e.g., the real-time clock) is appended to the out-going update that uniquely
identifies this update.

e Additional edge between active-passive pair: a supplementary data-flow between
the active-passive pair delivers the soft-checkpoints to the passive vertex.

e Maintaining checkpoints at passive-node: the passive vertex contains the logic that
applies an incoming soft-checkpoint to the recorded active node state.

5 Experiments

Experiments are designed to evaluate the performance our proactive availability-management
techniques. First, simulations are used to better understand the behavior of the self-
configuration module that determines the availability requirement based on the user-
supplied benefit function. Next, an end-to-end setup is created on Emulab [18], repre-
senting an enterprise-scale information flow to compare our approach against the tradi-
tional approaches and to study the effect of different soft-checkpoint intervals and proac-
tivity on aspects like MTTR, recovery cost, and net-utility. Results show that proactive
availability-management is effective at providing low-cost failure resilience for infor-
mation flow applications, while also maximizing the application’s net-utility.

5.1 Simulation Study

A simulation study is used to compare utility-based availability management to simple
approaches that are not availability-aware. The study uses a 128 node topology gener-
ated with the GT-ITM internetwork topology generator [19]. The formulation of net-
utility U,,.; determines benefit as: benefit = ki x (ko — delay)2 X availability x
available Bandwidth /required Bandwidth, and cost is calculated as: cost = dataRatex



Table 2: Self-Determining Availability based on Benefit

Optimization Criterion Utility| Cost|{Delay
Net-Utility (dollars/sec) |431991|52670| 2160
Cost (dollars/sec) 79875(14771|80315
Delay (msec) 222 444| 191
fep (sec™ 1) 0.050] 0.018] 0.020
Availability (percent) 99.88(99.66| 99.70

bandwidthCostPer Byte. Random costs are assigned to the network links, expressed
in dollars per byte. We substitute (k; = 1.0, k2 = 150.0) in the benefit formulation for
the this specific simulation [5]. The MTBF is assumed to be 86400sec. and the MTTR
is assumed to be 864sec. for a f., value of 0.01Hz. (Many values are possible for these
variables. However, we must choose some values when conducting our simulations, and
the ones we chose are reasonable for the enterprise environment.) We first deploy the
flow-graph using the net-utility specification from equation 1 as the optimization crite-
ria, and the results are shown in Table 2 under the column labeled ‘Utility’. The results
show a high achieved net-utility with acceptable values for delay, f., and availability.
The second deployment (under ‘Cost’) focuses instead on minimizing the cost, and it
uses 1/cost as the optimization criteria. The effect of choosing a different criteria is
evident in the reduced cost, achieved by allowing a higher delay and a lower availability
(resulting from lower f.,). The final experiment uses 1/delay to drive the deployment.
This results in a reduction of delay achieved for the flow-graph, but at the expense of
net-utility and availability.

5.2 Testbed Experiments using IFLOW

This set of experiments is conducted on Emulab [18], and the network topology is again
generated using the GT-ITM internetwork topology generator. In many cases, enter-
prises would hand tune their topology for availability and performance, instead of using
an arbitrary topology. For example, an enterprise may explicitly designate a primary
and secondary data center. An arbitrary topology is used in our experiments in order
to understand how our techniques perform without the benefit of additional hand tun-
ing. Figure 3 shows the testbed used for experimental evaluations. Background traffic is
generated using cmu-scen-gen [20], injected into the testbed using rate-controlled udp
connections. For the testbed depicted in Figure 3, background traffic is composed of 900
CBR connections. We use the utility formulation in Equation 15 to better study the net-
utility and the costs associated with checkpointing and failures. Required availability is
99.9% if not stated otherwise.

Variation of Net-Utility for Different Approaches. The first experiment studies the
variation of net-utility with different availability-management approaches in the pres-
ence of failures. For simplicity, only one failure is injected into the system. We con-
duct experiments with the active replication approach, the passive replication approach
with varying soft-checkpoint intervals, and our proactive replication approach. Figure 4
clearly demonstrates that the active replication approach provides lowest net-utility. This
is because of the high amount of replicated communication traffic when using this ap-
proach. After a failure, net-utility of the active approach increases slightly; there is less
replication traffic, because the failed node no longer sends replicated output updates.
The experiment also corroborates the analysis in Section 3.2: a lower soft-checkpoint
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Fig. 4: Net utility rate variations using active, passive or proactive fault tolerance ap-
proaches. A failure is injected into one operator node at the time ¢ = 40s.

interval for the passive approach imposes higher communication cost on the system and
therefore, results in lower net-utility. Note that if availability were a predominant factor
in the net-utility formulation, then a lower soft-checkpoint interval could have resulted
in higher net-utility. The cost of soft-checkpoints is almost negligible when the interval
is greater than 5 seconds, but its effect is evident for an interval of 2 seconds.

Our proactive approach provides the highest net-utility overall, as it modulates the
soft-checkpoint interval and takes into account the perceived system to offer preventive
fault tolerance. For instance, it switches to a smaller soft-checkpoint interval just before
the failure and is therefore able to recover as fast as the passive approach with a 2
seconds update interval, while performing as well as the passive approach with a 30
seconds update interval at other times. We note that evaluation of failure prediction
techniques is not the focus of this paper (such kind of evaluations appear in [14]). To
investigate how prediction accuracy affects the system, these experiments simulate a
predictor for the proactive approach, with failure prediction statistically generated at
various levels of accuracy. In particular, we notify the soft-checkpoint mechanism that
a failure is imminent, no matter whether the prediction is correct or a false positive.

Variation of MTTR for Different Approaches. The variation of MTTR and its stan-
dard deviation with different approaches are shown in Figure 5. For each approach, nine
experiments are used to obtain the mean and standard deviation. The active replication
approach (not shown in the graph) has no explicit recovery time. This is because the
node downstream of the replicated operator continues to receive processed updates even
after the failure of one active replica. On the other hand, the passive replication approach
which attempts to avoid the high cost of active replication incurs recovery times that in-
crease with the soft-checkpoint interval. The reason for this increase is the time taken
for reconstructing the operator state: the higher the soft-checkpoint interval, the larger
the number of updates required to rebuild the state. Recovery time for the passive repli-
cation approach depends on the soft-checkpoint interval. It ranges from 3.7 seconds (for
a 2 second interval) to 14.8 seconds (for a 30 second interval). Our proactive approach,
as expected, performs well as compared to other passive replication approaches, since
it is able to change over to a very small soft-checkpoint interval just before the failure,
and hence, has low MTTR. The experiment demonstrates the importance of choosing
the right soft-checkpoint interval automatically to maximize availability at low cost and
thereby maximize the net-utility of information flows.
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Fig. 6: Utility before failure and during re-
covery, and the total cost to recover from one
failure.

Cost & Net-Utility During Recovery. Our proactive availability-management approach
increases soft-checkpoint activity when a failure is predicted in the near future, but it
maintains a low soft-checkpoint activity at other times. The analysis of net-utility value
before failure, during failure recovery, and the total cost to recover from failure are sum-
marized in Figure 6. Net-utility using proactive availability-management is higher than
any other approach, because it contains a very recent soft-checkpoint for the operator
state and therefore, incurs the least cost during recovery. Note that passive replication
with an interval of 2 seconds also incurs a low cost during recovery, but this is achieved
by losing non-negligible net-utility at normal operation time.

Effects of Checkpoint Frequency and Prediction Accuracy on Cost and Availabil-
ity. The next experiment closely examines the effect of checkpoint frequency on the
system, both in terms of system availability and the cost imposed to gain a unit amount
of utility. As mentioned in Section 3.2, a higher f., leads to a higher number of soft-
checkpoint messages from the active to the passive node, but it also leads to a smaller
number of updates being required to reconstruct the operator state during recovery. The
conflicting behavior of incurred cost due to f., is represented in Figure 7 by the two
parabolic curves. Ideally, we would like to spend the minimum cost to achieve a unit
amount of utility and would therefore, like to choose a value of f., that is located at the
dip of the parabolic curve. Note that the cost/utility ratio is consistently higher for the
passive vs. the proactive approach. We also show the effect of f.,, on the availability of
the system: the change is in line with the formulation described in Equation 4. However,
the interesting insight from this experiment is the direct correspondence between the
lowest achievable cost/utility and the flattening of the availability curve.

Our final experiment studies the effect of prediction accuracy A, on the achieved
cost/utility ratio. It is intuitive that better prediction accuracy would lead to lower cost/utility
for proactive availability-management, and this is clearly depicted in Figure 8. It is in-
teresting to note the behavior of proactive availability-management with a lower f.,
value. When prediction accuracy is low, a small f., leads to very high recovery times
with low net-utility during that period. However, if f., is modulated properly to handle
failures, recovery time decreases and a far lower cost/utility is achieved. Meanwhile, the
effect of prediction accuracy is less prominent when a higher value of f., is used, as the
recovery times don’t improve much, even with a correct prediction.
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6 Related Work

Traditional Fault-Tolerance. Redundancy is probably the earliest form of fault-tolerance;
the approach popularly known as the active replication approach is well-studied, and a
thorough description appears in [4]. Log-based recovery is well-know in the database
domain. Here, a failure is handled with an undo-redo log [3]. Fault-tolerance has also
been studied in the context of transactions [21] and distributed systems [22]. Dynam-
ically trading consistency for availability is proposed in [23] using a continuous con-
sistency model. A number of factors distinguish our approach from these traditional
mechanism, the first and the foremost being its utility-awareness. Another distinction is
our ability to use failure prediction to reduce the overhead of ensuring high-availability.

Failure Detection & Prediction. [7] focuses on the implementation of fault detection,
and proposed a scalable fault detection/collection framework. More recently, researchers
in the autonomic domain have used statistical monitoring techniques to detect failures
in component-based Internet services [12,24]. MSET or multi-variate state estimation
techniques [12] constitute an early warning system that enables failure prediction with
low false alarm probability and has been successfully applied to the thermal control
domain, and more recently, to software aging problems, including predicting memory
leaks, data corruption, shared memory pool latching, etc. In [10], instrumentation data is
correlated to system states using statistical induction techniques to identify system-level
metrics that correlate with high-level performance states. In addition, these techniques
are used to forecast service level objective violations, with prediction accuracy reported
to be around 90%. Our system provides a framework in which several such failure de-
tection and prediction techniques can be implemented to provide high-availability while
imposing a low-overhead.

Fault-Tolerant Distributed Information Systems. Stars [22] presents a fault-tolerance
manager for distributed application, using a distributed file manager which performs ac-
tions like message backups and checkpoints storage for user files. Its reliance on causal



and atomic group multi-cast, however, demands additional solutions in the context of
today’s widely geographically distributed enterprise systems [25].

MTTR may be improved with solutions like Microreboot [26], which proposes a
fast recovery technique for large systems. It is based on the observation that a significant
fraction of software failures in large-scale Internet systems can be cured by rebooting.
While rebooting can be expensive and cause nontrivial service disruption, microreboot-
ing is a fine-grain technique for surgically recovering faulty application components,
without disturbing the rest of the components of the application. Our work could benefit
from such techniques.

GSpace [27] and replica management in Grids [28] studied dynamic data replication
policy and modeling in distributed component-based systems when multiple replicas of
data are desired, e.g., for global configuration data, or in a highly dynamic environment,
to improve availability. For this kind of data replication management, efficient read-one
write-all protocol [29] can be used when updates of the replicated data occur frequently.

IFLOW’s techniques may be directly compared to the fault-tolerance offered in sys-
tems like Fault-Tolerant CORBA [30,31], Arjuna [32] and REL [33], which replicate
selected application/service objects. Multiple replicas allow an object to continue to
provide service even when one of its replicas fails. Passive replication is also provided.
Here, the system records both the state of the currently executing member (primary
member) and the entire sequence of method invocations. While CORBA focuses on the
client-server model of communication, recent systems like Borealis [15] and SMILE [6]
have focused on fault-tolerance for applications that process data streams. The former
uses replication-based fault-recovery, and the authors propose to trade consistency for
recovery time. The latter proposes the soft-checkpointing mechanism that can be used to
implement a low-overhead passive replication scheme for fault tolerance. We differ from
such earlier work because of our explicit consideration of system utility for managing
system availability, and because our system also provides a framework for incorporating
failure prediction techniques.

Utility-Functions. The specific notions of utility used in this paper mirror the work
presented in [8], which uses utility functions for autonomic data-centers. Autonomic
self-optimization according to business objectives is studied in [34], and self-management
of information flow applications in accordance with utility functions is studied in [5]. A
preliminary discussion about availability-aware self-configuration in autonomic systems
appears in [35]. Our middleware carefully integrates the ideas from the above systems
and other domains to build a comprehensive framework for fault-tolerant information
flows.

7 Conclusion

We have proposed techniques for managing the tradeoff between availability and cost
in information flow middleware. First, a net-utility-based formulation of the benefits an
enterprise derives from its information flows combines both performance and reliabil-
ity attributes of such flows. The goal is not simply to attain high utility, but to reliably
provide high utility to large-scale information flow applications. Second, since reliabil-
ity techniques incur costs, thereby reducing utility, proactive methods for availability-
management regulates resources used to guarantee availability and take into account the
fact that system and application behaviors change over time. A specific example is a



higher likelihood of failure in high load vs. low load conditions. Reliability costs, there-
fore, are reduced by exploiting knowledge about the current ‘perceived’ system stabil-
ity. Additional cost savings result from the use of failure prediction methods. Third, the
implementation presented in this paper can deal with both transient and non-transient
failures, the latter relying on application-specific techniques for fault avoidance. Finally,
utility-driven proactive availability-management techniques has been integrated into our
infrastructure for large-scale information flows, where it is shown to impose low addi-
tional communication and processing overheads on information flows. Experimental
results with IFLOW attained on Emulab [18] demonstrate the effectiveness of proactive
fault tolerance in recovering from failures.

Future work will experiment with richer failure prediction techniques, and investi-
gate specific enterprise environments. For instance, we will model the redundant data-
centers mandated by government rules, and will consider the attainment of high avail-
ability and net-utility in information flows that cross multiple organizational boundaries.
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