
Contory: A Middleware for the Provisioning of
Context Information on Smart Phones

Oriana Riva

Helsinki Institute for Information Technology
P.O. Box 9800, FIN-02015 HUT, Finland

oriana.riva@hiit.fi

Abstract. Context-awareness can serve to make ubiquitous applications
deployed for mobile devices adaptive, personalized, and accessible in dy-
namically changing environments. Unfortunately, existing approaches for
the provisioning of context information in ubiquitous computing environ-
ments rarely take into consideration the resource constraints of mobile de-
vices and the uncertain availability of sensors and service infrastructures.
This paper presents the design, prototype implementation, and experimen-
tal evaluation of Contory, a middleware specifically designed to accomplish
efficient context provisioning on mobile devices. To make context provision-
ing flexible and adaptive based on dynamic operating conditions, Contory
integrates multiple context provisioning strategies, namely internal sensors-
based, external infrastructure-based, and distributed provisioning in ad hoc
networks. Applications can request context information provided by Con-
tory using a declarative query language which features on-demand, periodic,
and event-based context queries. Experimental results obtained in a testbed
of smart phones demonstrate the feasibility of our approach and quantify
the cost of supporting context provisioning in terms of energy consumption.

Key Words: Context-awareness, middleware, smart phones, energy consumption

1 Introduction

Context-awareness is emerging as a promising enabler of various ubiquitous ap-
plications deployed for usage on mobile devices. In principle, mobile devices can
acquire context data through a large variety of sensors embedded in the device and
in the surrounding environment. In practice, making context information available
for usage to applications running on such devices often turns out to be an ambi-
tious demand [1]. Mobile devices are typically resource-constrained, while context
provisioning is often a complex process consisting of several sequential and par-
allel sub-processes, which can lead to significant power consumption and memory
utilization; for example, reasoning algorithms can require large storage space and
complex computations. The integration of sensors in mobile devices should not
compromise portability, usability (e.g., size, weight, design, and aesthetics), cost,
and lifetime of everyday mobile devices. Some sensors may not be operative in
every environment (e.g., GPS in indoor environments).



2 Oriana Riva

Typically, context-aware applications either directly sense and locally process
context data (e.g., Context Toolkit [2]) or rely on external context infrastruc-
tures [3], which collect, process, and disseminate context data of multiple enti-
ties. Additionally, the increasing availability of ubiquitous connectivity, such as
Bluetooth and WiFi, on mobile devices makes feasible a distributed provisioning
approach, in which devices share context information of different types in mo-
bile ad hoc networks. These three strategies for context provisioning are all valu-
able, but they build upon specific assumptions which might not be always and
constantly verified. In ubiquitous environments, operating conditions of mobile
clients can vary widely over time and space. For instance, in resource-rich envi-
ronments, powerful context infrastructures can provide applications with required
context data, thus reducing the computational load on single devices. Conversely,
in resource-impoverished environments, devices can rely either on their own sen-
sors and processing capabilities or on neighboring devices. In order to cope with
the dynamism and heterogeneity of such environments, more flexibility is required
in accomplishing context provisioning.

This paper proposes the CONTextfactORY (Contory) middleware for context
provisioning on smart phones. Contory offers an SQL-like interface to generate
context queries, in which applications can specify type and quality of the desired
context items, context sources, push or pull mode of interaction, and other prop-
erties. Contory processes context queries and collects context data by employing
multiple strategies for context provisioning, namely internal sensors-based, exter-
nal infrastructure-based, and distributed provisioning in ad hoc networks. This
approach presents two advantages. First, arranging different context strategies per-
mits compensating for the temporary unavailability of one mechanism and coping
with dynamic resource availability. Second, combining results collected through dif-
ferent context mechanisms allows applications to partly relieve the uncertainty of
single context sources and to more accurately infer higher-level context information.
Since smart phones are becoming increasingly interesting to academia and industry
as platforms for realizing the ubiquitous computing vision, the smart phone was
selected as development platform. To assess system performance and quantify the
energy consumption on smart phones, we ran experiments in a testbed of Nokia
Series 60 and Nokia Series 80 phones. Moreover, to evaluate the practical feasibility
of the proposed approach, we built a prototype application for a sailing scenario.

Core concepts and design principles for the deployment of Contory have been
previously presented in [4]. This paper makes the following contributions: (i) it
presents full design and implementation of a middleware supporting multiple strate-
gies for context provisioning; (ii) among these strategies, it offers an infrastructure-
less approach to collect context data over mobile ad hoc networks; (iii) it describes
a middleware and real-world applications implemented on a smart phone platform;
(iv) it provides experimental results that give insights into the performance of
smart phones in terms of energy consumption.

The rest of the paper is organized as follows. Section 2 discusses several existing
context provisioning strategies. Section 3 presents requirements and design princi-
ples at the basis of Contory. Section 4 presents query model, software architecture,
and programming interface of Contory, while implementation details are given in



Contory 3

Sensors

on device
Service

infrastructure

Application

Context

acquisition

Context

dissemination

Sensors in the

environment

Application

Context

processing

and reasoning

Application

Context

Provider

Application

Sensors

on device

Context

Provider

Sensors in the

environment

Application

Application

Sensors

on device

Context

Provider
Context

Provider

Sensors in the

environment

a) Internal context provisioning b) External centralized context provisioning c) External distributed context provisioning

Context

Provider Context

Provider

Context

Provider
Sensors

on device

Fig. 1. Context provisioning strategies

Section 5. Section 6 describes experimental results and a prototype application
using Contory. Section 7 discusses related work. The paper concludes in Section 8.

2 Context Provisioning

Context can be defined as any information that can be used to characterize the
situation of an entity [2]. Context provisioning is the process by which context infor-
mation is acquired, processed, and made available for usage. Hereafter, we refer to
context providers as the software components in charge of performing context pro-
visioning. Sensors integrated in the handheld device and in the environment, tags
and beacons, positioning systems, biosensors on user can be used to acquire raw
context data about the user’s physical and social environment. Context providers
process raw data using mechanisms such as feature extraction, aggregation, classi-
fication, and clustering in order to infer the user’s context. Finally, the extracted
context is made accessible to the application and other external components.

A large number of approaches have been proposed to support context provi-
sioning. As Fig. 1a shows, a first basic strategy, called internal context provi-
sioning, consists of deploying specialized context providers to be installed on the
device. The integration of these context providers into applications can lead to in-
creased complexity, loss of generality and reuse, and expensive and time-consuming
application development. Alternatively, context providers can be organized in li-
braries, toolkits (e.g., Context Toolkit [2]), frameworks (e.g., TEA framework [5]),
middleware (e.g., RCSM [6]), thus providing application developers with uniform
context abstractions. However, in many situations, it is unrealistic to assume that
individual mobile devices will constantly carry any type of conceivable sensor or
will be capable of interacting with any type of sensor embedded in the environment.

A second strategy consists of deploying autonomous context-service compo-
nents, running on remote devices, accessible by multiple applications, and inde-
pendent of the application logic. Existing examples are external service infrastruc-
tures [3] (e.g., Confab [7] and JCAF [8]), and shared servers (e.g., the Trivial
Context System (TCoS) [9]). We call this approach, depicted in Fig. 1b, external
centralized context provisioning. These shared context services are in charge



4 Oriana Riva

of discovering suitable context sources and processing, storing, and disseminating
gathered context data. Multiple context providers on different applications can pull
or subscribe to these services to retrieve context information related to certain con-
text entities. On the one hand, by sharing sensors and computing resources, this
approach reduces the computational load on single devices and makes applications
less tied to a specific sensor platform. On the other hand, relying on a centralized
system presents scalability, extensibility, and fault-tolerance issues.

A third possibility, albeit rarely considered in this field, is a distributed model as
the one depicted in Fig. 1c. We call this approach external distributed context
provisioning. The key idea is to abstract context provisioning as the problem of
supporting the access to a distributed database where data are provided by context
providers located on the nodes of a Mobile Ad-hoc NETwork (MANET). Nodes
equipped with the necessary sensors can acquire raw context data, process them,
and make them accessible to neighboring nodes. Ubiquitous connectivity already
available on commercial mobile devices enables proximity networks of this type.

3 Contory Requirements and Design

The deployment of a middleware for context provisioning stems from the necessity
to move a number of core data and services for context sensing, management, and
distribution from their multiple instances into a centralized provision of services.
Requirements for the deployment of Contory were gathered from experiences with a
context-based application developed in the DYNAMOS1 Project. The DYNAMOS
application, described in [10], aims to proactively provide mobile users with nearby
services that are of interest based on the user’s current context and needs. The
application prototype runs on smart phones and was specifically designed to target
the needs of a community of recreational sailboaters. In June and August 2005, we
conducted two field trials with sailboats in which such an application was used by
about 30 persons equipped with Nokia 6630 phones and GPS devices.

During the regatta, location-awareness was accomplished by means of GPS
devices connected through Bluetooth (BT) to the phone. Location updates were
encapsulated in events and constantly transmitted over GPRS/UMTS for storage
in a remote repository. Collected location traces were fairly discontinuous due to
several disconnection problems. First, several BT disconnections between the phone
and the GPS device occurred (typically one disconnection per hour). Second, when
a UMTS connection was active and the phone went through 2G/3G handover, the
phone switched off (this did not occur if the phone was set to operate only in
2G mode). Additionally, the traffic of events carrying context updates and going
from the phone to the remote repository had to be optimized and largely reduced,
in order to avoid the phone to switch off due to high memory consumption and
network connectivity problems.

Besides these phone-specific issues, these experiences in the real field of action
helped discover technical problems regarding context sensing and context manage-
ment. We found that (i) context provisioning based exclusively on local sensors is
1 Dynamic Composition and Sharing of Context-Aware Mobile Services. URL:

http://virtual.vtt.fi/virtual/proj2/dynamos/



Contory 5

often not reliable enough; (ii) sharing of context information owned by multiple
users can provide useful services to the end-user, enlarge the spatial range of con-
text monitoring, reduce global resource utilization, and permit coping with sensor
unreliability; (iii) external infrastructures should be ready to cope with frequent
user disconnections (e.g., by incorporating prediction or learning algorithms); and
(iv) the client application should be ready to cope with frequent disconnections
from remote repositories.

The design of Contory followed four main guiding principles:

– Flexible and reliable context provisioning : Ideally, context provisioning should
take place without any interruption, e.g., due to hardware faults or temporary
disconnections from context sources. In Contory, multiple context provision-
ing strategies are made available and can be dynamically and transparently
interchanged based on sensor availability and resource consumption.

– Common querying interface: To formulate requests about heterogenous context
items, Contory supports an SQL-like context query language. This common
interface allows applications to specify type and qualifying properties of the
required context data.

– Push and pull access mode: Context-aware applications can interact with Con-
tory by using either a pull or a push mode; they can submit on-demand queries
or long-running queries (periodic or event-based queries).

– Modularity and extensibility : Contory glues several context provider compo-
nents together. Separation of semantic definition of the provided information
and availability of modular context providers enhances adaptation to variable
configurations. New sources of context information and processing algorithms,
which will be developed in the forthcoming years, will need to be easily accom-
modated in the existing architecture.

4 Contory Middleware Architecture

Contory aims to provide specialized and transparent support for retrieving context
items of different types and quality. This section describes core concepts for the
design of Contory, its software architecture, and programming interface.

4.1 Context Items and Context Metadata

The context associated with a certain situation can be expressed as a set of con-
text items, each describing a specific element of the situation. For instance, the
situation walking outside could be represented by the triplet <noise=medium,
light=natural, activity=walking>. Context items can describe spatial information
(location, speed), temporal information (time, duration), user status (activity,
mood), environmental information (temperature, light, noise), and resource avail-
ability (nearby devices, device power). In Contory, context data are exchanged
by means of cxtItem objects. Each cxtItem consists of type (context category),
value (current value(s) of the item), and timestamp (the time at which the con-
text item had such a value). Optionally, it can have a lifetime (validity dura-
tion), a source identifier (e.g., sensor, infrastructure, and device addresses), and



6 Oriana Riva

other metadata information. Types of metadata information include correctness
(i.e, closeness to the true state), precision, accuracy, completeness (if any or no part
of the described information remains unknown), and level of privacy and trust.

4.2 Context Query Language

From an application’s point of view, Contory mostly acts as a data-retrieval system
to which context-aware applications submit context queries. Although similar to a
database system, the dynamism and fuzziness of context data lead to important
differences. Context sources can provide large amounts of context data, hence some
aggregation and filtering functions are required. Context monitoring is a continuous
process, hence not only on-demand queries but also long-running queries have to
be supported. Although different applications have usually different requirements,
rather than deploying application-specific interfaces, we abstracted the functional-
ity of several applications into one common SQL-like context query language. The
query template has the following format.

SELECT <context name> [*]

FROM <source>

WHERE <predicate clause>

FRESHNESS <time>

DURATION <duration> [*]

EVERY <time> | EVENT <predicate clause>

The SELECT and DURATION clauses (marked with [*]) are mandatory. SE-
LECT specifies the type of the requested context item. DURATION specifies the
query lifetime as time (e.g, 1 hour) or as the number of samples that must be
collected in each round (e.g., 50 samples).

Contory aims to offer different levels of transparency to the application devel-
oper. The maximum transparency is achieved when the FROM clause is unspecified
and the middleware autonomously and dynamically selects the context provisioning
mechanism to be employed. Alternatively, the FROM clause offers to the program-
mer several ways to control type and characteristics of the context sources to be
employed. Context sources can be of three kinds according to the three context
provisioning mechanisms supported: internal sensor-based (intSensor), external
infrastructure-based (extInfra), and distributed context provisioning in ad hoc
networks (adHocNetwork). In the case of adHocNetwork provisioning, the FROM
clause also tells multiplicity (numNodes) and distance (numHops) of the context
source nodes. For example, the search for suitable context items can involve all
nodes that can be discovered (numNodes=all) or the first k nodes found within a
distance lower than j hops (numNodes=k, numHops=j). Alternatively, the program-
mer can also specify the destination to which the query has to be sent. This
destination can be the identifier of an entity (e.g., to know when a friend is nearby)
or the coordinates of a region to be monitored (e.g., next exit on the highway).

WHERE contains filtering predicates expressed using the context item’s metadata.
FRESHNESS specifies how recent the context data must be. Finally, our query lan-
guage provides support for long running queries by means of EVERY and EVENT



Contory 7

clauses. These clauses are mutually exclusive. The EVERY clause allows the ap-
plication to specify the rate at which context data should be collected (periodic
query). The EVENT clause determines the set of conditions that must be met at
the context provider’s node before a new result is returned (event-based query).

In the following example, the query returns, for one hour, temperature values
collected from the first 10 nodes found in an ad hoc network within a distance of
at most 3 hops; data are not older than 30 seconds, have accuracy of 0.2 oC, and
are sent every time the average temperature exceeds 25 oC.

SELECT temperature

FROM adHocNetwork(10,3)

WHERE accuracy=0.2

FRESHNESS 30 sec

DURATION 1 hour

EVENT AVG(temperature)>25

4.3 Contory Software Architecture

Fig. 2 depicts the conceptual architecture of Contory. ContextFactory is the core
component of the overall architecture. One ContextFactory is instantiated on each
device and made accessible to multiple applications. Based on the Factory Method
design pattern [11], this design model aims to define an interface for creating ob-
jects, but let subclasses decide which class to instantiate. In our case, the Con-
textFactory offers an interface to submit context queries, but lets Facade com-
ponents (subclasses) decide which ContextProvider components (classes) to in-
stantiate. The ContextFactory provides support for (i) context sensing and com-
munication, (ii) context provisioning and sharing, and (iii) queries and providers
management. In the following, we describe each functionality along with their core
architectural components.

Context Sensing and Communication Context data can be sensed from a
large variety of CxtSources such as external sensors (e.g., a GPS device), integrated
monitors (e.g., a power management framework), external servers (e.g., a weather
station). To provide discovery of CxtSources as well as to support communication
with them, different types of Reference modules can be available on the device.
Typically, a Reference mediates the access to a certain communication module by
offering useful programming abstractions. As shown in Fig. 2, Contory includes
four types of References. The InternalReference is specialized to support communi-
cation with sensors integrated in the device. The BTReference provides support to
discover BT devices and services, and to communicate with them. The WiFiRefer-
ence manages communication in WiFi networks, but also provides abstractions for
content-based routing, geographical routing, and multi-hop communication in ad
hoc networks. The 2G/3GReference manages communications with remote entities
over the corresponding network standards and offers an event-based interface.

Mobile systems can undergo unexpected changes in the level of resource avail-
ability, for example, when a new application is started or when the host moves
to a different network domain. Moreover, in wireless environments, disconnections



8 Oriana Riva

Cxt

Sources
Cxt

Sources

Context sensing

and communication

Cxt

Sources
Cxt

Sources

Context provisioning

and reasoning

Context storage

and sharing

Resources

Monitor

Cxt

Sources
Cxt

Sources

Cxt

Sources
Cxt

Sources

Internal

Reference
2G/3G

Reference

WiFi

Reference

Cxt

Aggregator
Cxt

Aggregator
C

o
n

te
x

t
F

a
c

to
ry

Query and providers

management

BT

Reference

Cxt

Query

Cxt

Query

Cxt

Query

Application

Application

Application

Event-based

commun.

MANET

commun.

MANET

commun.

O

E

P

on-demand query

event-based query

periodic query

LocalCxt

Provder

O E P

LocalCxt

Provider

O E P
AdHocCxt

Provder

O E P

AdHocCxt

Provider

O E P
InfraCxt

Provder

O E P

InfraCxt

Provider

O E P

Infra

Facade

AdHoc

Facade

Local

Facade

Access

Controller

Query

Manager

Cxt RepositoryCxt Publisher

Fig. 2. Contory middleware architecture

and bandwidth fluctuations are common. These issues make necessary the adoption
of dynamic resource allocation mechanisms. The ResourcesMonitor component is
in charge of maintaining an updated view on the status of several hardware items
(e.g., device drivers), on the device’s overall power state, and on the available mem-
ory space. Each time, network, sensors, or device failures affect the functioning of a
communication module, the corresponding Reference notifies the ResourcesMonitor
module. This, in turn, will inform the ContextFactory which will enforce a recon-
figuration strategy to take over. For example, if a BT-GPS device suddenly discon-
nects, the location provisioning task can be moved from a LocalLocationProvider
(using the BTReference) to an AdHocLocationProvider (using theWiFiReference).

The AccessController module is responsible for controlling the interaction with
external sources and requesters of context items. The AccessController keeps track
of previously connected context sources (such as sensors or devices) and also of
blocked context sources. This list is continuously refreshed so that only the most
recent and the most often accessed sources are kept in memory. If the application
requires high-security operating mode, every time a new context source is encoun-
tered, it is blocked or admitted based on explicit validation by the application. In
low-security mode, every new entity is trusted.

Context Provisioning and Sharing CxtProviders are responsible for accom-
plishing context provisioning. Optionally, they can also incorporate reasoning mech-
anisms for inferring higher-level context data. A CxtAggregator can be used to com-
bine context items collected from single or multiple CxtProviders. Alternatively,
advanced context processing mechanisms can be performed by external context
infrastructures, distributed across remote components or implemented at the ap-
plication level.



Contory 9

CxtProviders are of three types. LocalCxtProviders manage the access to lo-
cal sensors which can be integrated in the device or be accessible via BT. These
providers periodically pull sensor devices and report values that match WHERE
and FRESHNESS requirements. InfraCxtProviders are responsible for retrieving
context data from remote context infrastructures. AdHocCxtProviders are respon-
sible for supporting distributed context provisioning in ad hoc networks; to gather
context data from nodes in a MANET, these providers utilize the BTReference
(only for one-hop routing) or the WiFiReference (also for multi-hop routing). Based
on the EVENT and EVERY clauses specification, context providers offer three
modes of interaction: on-demand query, event-based query, and periodic query.

The CxtRepository module is responsible for storing gathered context informa-
tion, locally or remotely. Only a few recent context data are stored locally, while
complete logs can be stored in remote repositories of context infrastructures. The
CxtPublisher allows publishing context information in ad hoc networks by means
of the BTReference or the WiFiReference. Each time a context item has to be
published, two access modalities can be applied: public access allows any external
entity to access the item, and authenticated access locks the item with a key that
must be known by the requester.

Queries and Providers Management The QueryManager is responsible for
maintaining an updated list of all active queries and for assigning queries to suitable
Facade components. For each of the three types of context provisioning mechanisms
supported, a corresponding Facade module offers a unified interface for managing
CxtProviders of that specific type. The purpose of utilizing the Facade design pat-
tern [11] is to abstract the subsystem of CxtProviders to offer a more convenient
(unidirectional) interface to the ContextFactory. The Facade knows which subsys-
tem classes (i.e., CxtProviders) are responsible for a certain query and can direct
actions or requests of the ContextFactory to the correct component.

The QueryManager invokes the factory method processCxtQuery(CxtQuery
q) of the ContextFactory to assign the query to one or multiple Facades. The as-
signment is done base on the requirements specified in the query’s FROM clause,
based on sensor availability, and in the respect of the active control policies. For
instance, a control policy can specify the maximum level of memory and power
consumption that should be tolerated at runtime. Control policies are formu-
lated as contextRules consisting of a condition and an action statements. Con-
ditions are articulated as Boolean expressions, and the operators currently sup-
ported are equal, notEqual, moreThan, and lessThan. An example of condition
is <batteryLevel,equal,low>. Through and and or operators, elementary condi-
tions can be combined to form more complex ones. Whenever a condition is posi-
tively verified at runtime, the associated action becomes active and it is enforced by
the ContextFactory. Actions currently supported are reducePower, reduceMemory,
and reduceLoad. The enforcement of these actions can have different effects such
as the switch from a certain provisioning mechanism to another one or the in-
terruption of a query execution. For example, the activation of the reducePower
action can cause the suspension or termination of high energy-consuming queries



10 Oriana Riva

(e.g., those using the 2G/3GReference) or the replacement of WiFi-based multi-hop
provisioning with BT-based one-hop provisioning.

Once the query has been assigned to a Facade, in order to avoid redundancy and
keep the number of active queries minimal, the Facade performs query aggregation.
This process consists of two sub-processes: query merging and post-extraction. The
Facade first checks whether the new submitted query q1 can be merged with any
other active query q2. If q3 = merge(q1,q2) can be found, q3 is the new query to
be processed. The post-extraction sub-process is applied to the received results for
q3 in order to extract the data matching the original queries q1 and q2. The merge
function implements a simplified version of the clustering algorithm defined in [12].
This algorithm builds on the definition of a “distance” metric between queries. The
algorithm computes the distance between each pair of queries and if it is below a
certain threshold, the two queries are put in the same cluster. In our design, for
simplicity, we put in the same cluster queries with the same SELECT clause. Once
clusters are formed, the merging is performed by applying clause-specific merging
rules, as exemplified below:

q1:

SELECT temperature

FROM adHocNetwork(all,3)

FRESHNESS 10sec

DURATION 1hour

EVERY 15sec

q2:

SELECT temperature

FROM adHocNetwork(all,1)

FRESHNESS 20sec

DURATION 2hour

EVERY 30sec

q3:

SELECT temperature

FROM adHocNetwork(all,3)

FRESHNESS 20sec

DURATION 2hour

EVERY 15sec

Upon the aggregation process has completed, the Facade module either in-
stantiates a new CxtProvider or updates the query parameters of an existing
CxtProvider (e,g., in case the new query has been merged with an already ac-
tive query). CxtProviders of different Facades can be assigned to the same query,
but each CxtProvider is assigned only to one (single or merged) query at time.

4.4 Contory Programming Interface

The Contory API shields the programmer from the underlying communication plat-
forms and context provisioning aspects. To interact with Contory, an application
needs to implement a Client interface and implements the following methods:

– receiveCxtItem(CxtItem cxtItem) in order to handle the reception of col-
lected context items;

– informError(String msg) to be called by several Contory modules in case of
malfunctioning or failure;

– makeDecision(String msg) to be invoked by the AccessController to grant
or block the interaction with external entities.

The application can access Contory services through the ContextFactory in-
terface. As shown below, this interface offers methods for submitting and erasing
context queries (line 2 and 3), for publishing or erasing context items (line 4), and
for remotely storing context items (line 5). In order to be eligible to publish context
items and made them accessible to other clients, the publisher must register and
be authenticated (line 6). Likewise, the client can deregister (line 7).



Contory 11

1 public interface ContextFactory{

2 boolean processCxtQuery (CxtQuery query);

3 void cancelCxtQuery(String queryID);

4 boolean publishCxtItem(String cxtItem , boolean published);

5 void storeCxtItem(CxtItem cxtItem);

6 void registerCxtServer(CxtServer client);

7 void deregisterCxtServer(CxtServer client);

8 }

Different vocabularies are made available to the application developer: (i) the
CxtVocabulary contains context types, context values, and metadata types for
specifying context items and device resources; (ii) the QueryVocabulary contains
parameters for specifying context queries; and (iii) the CxtRulesVocabulary con-
tains operators and actions for specifying control policies.

5 Implementation

Contory has been implemented using Java 2 Platform Micro Edition (J2ME). Cur-
rently, two separate implementations exist: one for Connected Limited Device Con-
figuration (CLDC) 1.0 and Mobile Information Device Profile (MIDP) 2.0 APIs,
and one for Connected Device Configuration (CDC) 1.0. The J2ME platform was
selected since it currently represents the most widespread computing platform for
personal mobile devices. All software development was done using Nokia Series 60
and Nokia Series 80 phones. In the following, we provide specific insights into the
implementation of References and distributed context provisioning. The Internal-
Reference module has not been implemented yet because no sensors integrated in
the phone platform used for the development were available at deployment time.

5.1 References Implementation

The BTReference utilizes the Java Specification Request 82 (JSR-82) available for
CLDC. This specification defines a standard set of APIs for BT wireless technol-
ogy and specifically targets devices that are limited in processing power and mem-
ory. The specification includes support for (i) discovery (device discovery, service
discovery, and service registration), (ii) communication (establishing connections
between BT devices and using those connections for BT communication), and (iii)
device management (managing and controlling these BT connections).

Since no standardized support exists to program ad hoc networks, the WiFiRef-
erence provides device and service discovery, content-based routing, multi-hop com-
munications in ad hoc networks by means of the Smart Messages (SM) [13] distrib-
uted computing platform. This was specifically designed for highly volatile networks
such as MANETs. We utilize the portable version of SM [14] implemented for the
J2ME CDC platform. An SM is a user-defined application, similar to a mobile
agent, whose execution is sequentially distributed over a series of nodes using exe-
cution migration. The nodes on which SMs execute are named by properties, called
tags, and discovered dynamically using application-controlled routing. Tags have
a name, similar to a file name in a file system, which is used for content-based



12 Oriana Riva

naming of nodes. To move between two nodes of interest, an SM explicitly calls
for execution migration. An SM consists of code bricks, data bricks (mobile data
explicitly identified in the program), and execution control state. To support SM
execution, the SM runtime system runs inside a Java virtual machine and consists
of: (i) admission manager that performs admission control and prevents excessive
use of resources by incoming SMs, (ii) code cache that stores frequently executed
code bricks, (iii) scheduler that dispatches ready SMs for execution on the Java
virtual machine, and (iv) tag space that provides a shared memory addressable by
names for inter SM communication and synchronization. The tag space offers a
uniform view of the network resources in terms of naming and access to resources.
We use SM tags to publish context items in the ad hoc network.

The 2G/3GReference offers support for event-based communication by using
the Fuego middleware [15]. This middleware is implemented in Java and provides
a scalable distributed event framework and XML-based messaging service. This
middleware also runs on mobile phones supporting Java MIDP 1.0.

5.2 Distributed Context Provisioning using BT and SM

Distributed context provisioning has been implemented using the BTReference in
one-hop ad hoc networks and using the WiFiReference in multi-hop ad hoc net-
works. Distributed context provisioning is accomplished in three phases: initializa-
tion, publishing, and execution.

In the BT-based implementation, the initialization phase places the BT device
into inquiry mode and specifies an event listener that will respond to inquiry-
related events. A context item can be published by advertising a context service
on the BT server (service registration). The server creates a service record de-
scribing the offered context service and adds it to the server’s Service Discovery
Database (SDDB). This is visible and available to external BT entities. The AdHoc-
CxtProvider first discovers accessible BT devices (in some cases a list of pre-known
devices is used) and then looks for available services on the discovered devices.

In the WiFi-based implementation, the WiFiReference expresses its willingness
to participate in the Contory ad hoc network by exposing the tag “contory”. In
such a way, every time an SM needs to be routed from a certain source to a
certain destination, all nodes in the ad hoc network exposing the “contory” tag
will collaborate with each other to forward the SM towards the destination. To
publish a context item in the ad hoc network, the AdHocCxtPublisher exposes
on the local node a tag whose name contains the type and whose value contains
the value and metadata of the context item (e.g., (temperatureTag :< name =
temperature >,< value = 14oC, 1oC, trusted >)). To discover context items of
interest, the context query is encapsulated in an SM-FINDER that is routed towards
nodes exposing the desired context tag (i.e., the tag whose name matches the
SELECT clause of the carried query). To disambiguate between multiple messages,
a unique identifier is associated with each query and with each result. If no valid
result is received within a certain timeout, the query is cancelled. If nodes exposing
context items of the type of interest are discovered, WHERE, FRESHNESS and
EVENTS requirements specified in the query are evaluated. If positively verified,



Contory 13

Table 1. Latency times of basic Contory operations

Entity acts as: Operation Elapsed time (msec)

Avg [90% Conf interval]

ContextProvider createCxtItem 0.078 [0.001]

adHocNetwork, BT-based: publishCxtItem 140.359 [0.337]

adHocNetwork, WiFi-based: publishCxtItem 0.130 [0.006]

extInfra, UMTS-based: publishCxtItem 772.728 [158.924]

ContextRequester createCxtQuery 0.219 [0.001]

adHocNetwork, BT-based, one hop: getCxtItem 31.830 [0.151]

adHocNetwork, WiFi-based, one hop: getCxtItem 761.280 [28.940]

adHocNetwork, WiFi-based, two hops: getCxtItem 1422.500 [60.001]

extInfra, UMTS-based: getCxtItem 1473.000 [275.000]

the value of the context item along with additional metadata properties are saved
in the SM-FINDER which is routed back to the query issuer. In order to cope with
nodes mobility, the SM-FINDER maintains a hopCnt that indicates how many hops
the message has traversed until that moment. When the SM-FINDER is delivered to
the AdHocCxtProvider issuer, if hopCnt>numHops the receiver discards the result
because the CxtPublisher that provided such a result is out of the range of interest.

6 Evaluation

We evaluated Contory in two phases. We built an experimental testbed of smart
phones and measured response times and energy consumption for different context
operations. We then evaluated Contory by building a real-world application using
it. This section presents experimental results and prototype application.

6.1 Experimental Results

The objective of this experimental analysis was to demonstrate the practical feasi-
bility of the proposed approach, give an insight on the performance of our prototype
implementation, and quantify its cost mostly in terms of energy consumption. Our
experimental testbed consisted of a Nokia 6630 phone (Symbian OS 8.0a, 220 MHz
processor, WCDMA/EDGE, 9 MB of RAM), a Nokia 7610 phone (Symbian OS
7.0s, 123 MHz processor, GPRS, 9 MB of RAM), 3 Nokia 9500 communicators
(Symbian OS 7.0s, 150 MHz processor, WLAN 802.11b/EDGE, 64 MB of RAM),
and a Bluetooth GPS Receiver InsSirf III.

Latency Experiments Table 1 reports latency times for four main Contory oper-
ations: createCxtItem, publishCxtItem, createCxtQuery, and getCxtItem. The
size of a context query object is 205 bytes, while the size of a context item varies
from 53 bytes (e.g., a wind item) to 136 bytes (e.g., a location item). For these
experiments, we used a lightItem whose size is 136 bytes. CxtItem and cxtQuery
objects that are transmitted over UMTS using the event-based platform are en-
capsulated in event notifications whose size is 1696 bytes.



14 Oriana Riva

Battery support

MultimeterPhones running

Contory

BT-GPS device

Fig. 3. Power measurements testbed setup

On the context publisher side, publishing a context item with the BT-based
mechanism takes much longer than with the WiFi-based mechanism. The reason
for this stems from the BT registering process. With BT, to make an item acces-
sible, this needs to be encapsulated in a DataElement and registered into the BT
ServiceRecord. With SM, this operation corresponds to simply creating a new
SM tag and storing its name and value in the TagSpace hashtable. The variability
of latency times for publishing a context item in the remote infrastructure is quite
extreme and is due to the high delay variability in UMTS networks.

On the context provider side, adHocNetwork provisioning can be BT-based or
WiFi-based. For the BT case, the latency time reported in the table represents
the time needed to receive a context item, once device and service discovery has
occurred (BT device discovery takes approximately 13 sec and BT service discovery
takes approximately 1.12 sec). For the WiFi case, we ran experiments using a 2-
hops topology with three communicators arranged in a line. The two latency times
reported in the table represent the time needed to retrieve one context item located
at a distance of one or two hops, once the route has been built. The additional time
required to build the route is approximately twice the corresponding latency value
in the table. The break-up analysis for SM experiments shows that connection
establishment accounts for 4-5% of the total latency time, serialization for 26-33%,
thread switching for 12-14%, and transfer time for 51-54%. The SM overhead is
negligible. Finally, measured latency times for extInfra vary enormously, ranging
from 703 msec up to 2766 msec.

Energy Consumption Experiments Energy consumption remains one of the
most critical issues that needs to be addressed in application development on mobile
phones. While CPU speed and storage capacity have increased over the last 10
years, battery energy shows the slowest trend in mobile computing [16]. To measure
energy consumption on phones, we inserted a multimeter in series between the
phone and its battery. The testbed setup is shown in Fig. 3. We used a Fluke 189



Contory 15

multimeter, which was connected to a PC to record the readings. The meter read
current inputs approximately every 500 ms. The precision of our measurements
depends mostly on the precision of the multimeter and the stability of the voltage
on the phone battery. The resistance of the wires was found to be negligible. The
multimeter has an accuracy of 0.75% and precision of 0.15%. The stability of the
voltage is important since this is used to compute the power consumption based on
Ohm’s law. We did some preliminary experiments to measure the voltage on the
phone while performing different operations; we found out that under high load the
battery deviated less than 2% from 4.0965 V for the first hour at least. To minimize
the impact of the voltage variance, we ran short experiments and always with a full
battery. Given that the shunt voltage of the meter is 1.8 mV/mA, we calculated
that the maximum inaccuracy of our experiments was approximately 8%. We ran
the experiments in an office environment with background noise due to other mobile
phones, wireless LANs, BT, etc. Even though a noise-free environment would have
been desirable, we ran all experiments in the same spot, thus emulating a daily life
scenario with an almost constant level of background noise.

All experiments were performed from five to ten times. High energy consuming
experiments were set to last no longer than 10 min. All numbers hereafter reported
were collected on a Nokia 6630 phone and a Nokia 9500 communicator (only when
WiFi was used). Initially, we measured the cost of different operating modes when
the GSM radio was turned off. When BT is turned off, back-light is switched on, and
display is switched on, the average power consumption is about 76.20 mW. If the
back-light is turned off, the consumption decreases to 14.35 mW. A consumption
of 5.75 mW is achieved if also the display is turned off. Turning on BT in page
and inquiry scan state increases the power consumption to 8.47 mW. Turning on
Contory as well leads to a power consumption of 10.11 mW. We ran all experiments
(except UMTS-based tests) with the GSM radio off, back-light off, and display off.

Table 2 reports energy consumption results for all three context provisioning
mechanisms. On the provider side, the energy consumption for providing context
items is relatively contained. On the requester side, we distinguish three cases.

For BT-based mechanisms, the cost of processing context queries is mostly
due to the device discovery phase which lasts approximately 13 sec. Once the BT
device is discovered, being periodically notified with context data is fast and the
energy cost is definitely low. Results for intSensor were gathered by connecting
the BT-GPS device to the phone. While the discovery cost is the same for BT-
based intSensor and adHocNetwork, the cost for maintaining a periodic exchange
of data is higher for intSensor. This is due to the larger size of the exchanged data
(GPS-NMEA data are 340 bytes big) and the packet segmentation BT applies.

For WiFi-based provisioning, energy costs are much higher than in the BT cases.
We encountered several problems in running these experiments. Each time a WiFi
connection was established on the communicator inserted in the circuit, the com-
municator switched off after less than 30 sec. New smart phones are low-voltage
devices operating from a single Lithium-Ion cell. During the startup phase, the
high in-rush current causes the phone’s voltage supply to drop due to the multime-
ter’s internal resistance; hence, this drop triggers the internal power management
protection circuit to turn off the phone. However, based on the logs we gathered,



16 Oriana Riva

Table 2. Energy consumption of different context provisioning mechanisms

Context provisioning method: operation Energy consumption per cxtItem (Joule)

Avg [90% Conf Interval]

adHocNetwork, BT-based: provideCxtItem 0.133 [0.002]

adHocNetwork, BT-based: getCxtItem 5.270 [0.010]

(one-hop and on-demand query, including discovery)

adHocNetwork, BT-based: getCxtItem 0.099 [0.007]

(one hop and periodic query, without discovery)

intSensor, BT-based: getCxtItem 0.422 [0.084]

(periodic query, without discovery)

adHocNetwork, WiFi-based: getCxtItem > 0.906 a

(one hop and periodic query)

adHocNetwork, WiFi-based: getCxtItem > 1.693 a

(two hops and periodic query)

extInfra, UMTS-based: getCxtItem 14.076 [0.496]

(on-demand query)

a
includes the cost of having back-light switched on

having WiFi connected at full signal (with back light on) drains a constant current
of 300 mA, which leads to an average power consumption of 1190 mW. This also
means that having WiFi connected is more than 100 times more energy-consuming
than having BT in inquiry mode.

In the tests for extInfra provisioning, turning on the GSM radio produces an
additional power consumption; this comes in peaks of 450-481 mW and every 50-60
sec. Fig. 4 shows the power consumption for a test in which 5 queries were sent
to the infrastructure over UMTS, every 3 min. The maximum power consumption,
which corresponds to when the connection is opened and the request for the item
is sent, is 1000 mW. Such a high energy cost is mostly due to the cost of opening
the UMTS connection. Sending and retrieving larger groups of items in the same
time slot largely reduces the energy consumption per item.

To demonstrate how Contory is able to recover from sensor failures by dynami-
cally switching from one context provisioning mechanism to another, we simulated
a GPS failure. As Fig. 5 shows, initially the phone is retrieving location data
from a GPS device connected through BT. After 155 sec, we caused a GPS failure
by manually switching off the GPS device. As a reaction, Contory switches from
sensor-based provisioning to ad hoc provisioning and starts collecting location data
from a neighboring device. Later on, the GPS device becomes available again. Once
the GPS device is discovered, Contory switches back to sensor-based provisioning.
The cost in terms of power consumption of the switches is due mostly to the BT
device discovery: this varies from 163 mW up to 292 mW.

Experiments Summary These experimental results confirmed the practical fea-
sibility of our approach. The combined use of different context provisioning strate-
gies can bring several benefits. First, it allows to cope with failures of sensing devices
by dynamically replacing one context strategy with another. Second, as each con-



Contory 17

Fig. 4. Power consumption for extInfra
provisioning

Fig. 5. Contory behaviour in the presence
of BT-GPS failure

text provisioning strategy guarantees different performance at different costs, the
possibility of flexibly switching from one mechanism to another permits optimizing
the utilization of computing and communication resources at run time.

6.2 Sailing Application Prototype

Using the Contory API, we re-implemented the DYNAMOS sailing application [10]
and add more context-based services. The use of Contory permitted to decouple
the application implementation from underlying communication modules (e.g., the
BT JSR-82, the Fuego Core event-based framework, the SM platform), from the
repository system, and from sensor technology. The implementation of common
services such as connecting BT sensors or communicating with the remote repos-
itory was accomplished by simply instantiating context query objects in few lines
of code. Moreover, Contory offered support to: (i) extend the application’s context
monitoring range by collecting region-specific observations through ad hoc net-
works and making those data available to remote clients through the infrastructure
support; (ii) share context information about multiple entities and across multiple
devices;(iii) combine information from multiple context sources to enhance context
estimation. In the following, we show two services that have been integrated into
the previous DYNAMOS application and make use of these features.

WeatherWatcher : it allows users to retrieve weather information in a certain
geographical region (e.g., the user wants to know the weather in the proxim-
ity of a guest harbor to visit). Weather information consists of temperature,
wind, speed, humidity, atmospheric pressure, etc. In a sailing scenario, weather
conditions represent an important element for selecting the sailing route, but
as this type of information can change very quickly, the information owned by
boats currently sailing in such a region is often more reliable than the one pro-
vided by official weather stations. Once the user has issued a weather request,
if the target region is not dense enough or too far away to support multi-hop ad
hoc network provisioning, the query is sent to the remote infrastructure. The



18 Oriana Riva

Fig. 6. WeatherWatcher screenshots Fig. 7. RegattaClassifier screenshots

infrastructure checks if any WeatherWatcher of users currently sailing in that
region has recently provided weather information and returns this information
to the requester. Fig. 6 shows the screen interface for this application.

RegattaClassifier : during a regatta competition, this service constantly provides
an updated classification of the current winner of the regatta. Virtual check-
points can be arranged along the route that the boats will take during the
competition. Each time a boat reaches a checkpoint, the RegattaClassifier run-
ning on the phone’s participant (see Fig. 7) communicates to the infrastructure
location and speed of the boat (collected using GPS sensors). The infrastruc-
ture processes this information and provides each participant with an updated
classification and additional statistics of the competition.

7 Related Work

As discussed in Section 2, most research projects investigating context support on
mobile devices use sensor-based or infrastructure-based approaches. Approaches
exploiting the communication support offered by ad hoc networks have rarely been
employed for collecting dynamically changing context data. Our middleware differ-
entiates from these approaches by making use of multiple provisioning mechanisms
and by integrating a distributed approach deployed in ad hoc networks.

Our distributed context provisioning mechanism resembles work done to access
data stored in sensor networks (e.g., Cougar [17], TinyDB [18]). However, these
works consider only stationary sensors, whereas in our distributed model, there are
both stationary and moving context providers. Furthermore, in sensor networks
properties and data produced by nodes are known at the deployment time, while
in MANETs properties and context data differ over time as nodes of different types
move across the physical space. Declarative queries are also one of the preferred
ways of accessing sensor data [19], [20]. We specialized our query language to offer
support for expressing both type and quality of requested context items, and to
support long running queries.

Few research projects have focused on implementing practical context support
on mobile phones. The ContextPhone [21] is an open-source prototyping platform
built on the Series 60 phone platform. It can be used to sense, process, store,
and transfer context data. The blackboard-based framework of Korpipää [22] im-
plements a ContextManager which provides a publish-subscribe mechanism and a



Contory 19

database for context data on mobile devices. However, in both works the context
sensing relies on information locally available on the device or through BT sensors,
whereas in Contory, we provide flexible access to various types of internal and ex-
ternal sensors. According to the classification of Section 2, these works implement
an internal sensor-based provisioning mechanism.

8 Conclusions

This paper presented Contory, a middleware specifically deployed to enable easy
development of context-aware applications on mobile phones. Our approach pro-
vides high flexibility in supporting context provisioning by integrating several con-
text strategies, namely internal sensors-based, infrastructure-based, and distributed
provisioning in ad hoc networks. Additionally, Contory offers a unified SQL-like
interface for specifying context queries. Using Contory allows context-aware ap-
plications to collect context information from different sources without the need
to uniquely and continuously rely on their own sensors or on the presence of an
external context infrastructure. We demonstrated the feasibility of our approach
by deploying Contory in an experimental testbed of smart phones and quantifying
its cost in terms of energy consumption. We also used Contory to implement a
prototype application for a sailing scenario. Future directions in the development
of Contory will focus on providing more efficient and reliable context provisioning
in mobile ad hoc networks.

Acknowledgments

This work was partly supported by the DYNAMOS project. The author thanks
Cristian Borcea for helpful comments on earlier drafts of this paper, Michael Przy-
bilski for helping in setting up the experimental testbed, and Nishkam Ravi for
providing Portable Smart Messages. She also would like to thank the anonymous
reviewers who helped improve the paper.

References

1. Schmidt, A., Laerhoven, K.V.: How to Build Smart Appliances? IEEE Personal
Communications, Special Issue on Pervasive Computing 8 (2001) 66–71

2. Dey, A.K., Salber, D., Abowd, G.: A Conceptual Framework and a Toolkit for Sup-
porting the Rapid Prototyping of Context-Aware Applications. Human-Computer
Interaction 16 (2001) 97–166

3. Hong, I., Landay, J.A.: An Infrastrucutre Approach to Context-aware Computing.
Human-Computer Interaction 16 (2001) 287–303

4. Riva, O., di Flora, C.: Contory: A Smart Phone Middleware Supporting Multiple
Context Provisioning Strategies. 2nd International Workshop on Services and In-
frastructure for the Ubiquitous and Mobile Internet (SIUMI’06) (2006)

5. Schmidt, A., Adoo, K.A., Takaluoma, A., Tuomela, U., Laerhoven, K.V., de Velde,
W.V.: Advanced Interaction in Context. In: Proceedings of the First Symposium on
Handheld and Ubiquitous Computing (HUC’99), Karlsruhe, Germany (1999) 89–101



20 Oriana Riva

6. Yau, S., Karim, F.: A context-sensitive middleware for dynamic integration of mobile
devices with network infrastructures. Journal Parallel Distributed Computing 64
(February 2004) 301–317

7. Hong, J., Landay, J.: An Architecture for Privacy-Sensitive Ubiquitous Computing.
In: Proceedings of The Second International Conference on Mobile Systems, Appli-
cations, and Services (Mobisys’04), Boston, MA (2004) 177–189

8. Bardram, J.E.: The Java Context Awareness Framework (JCAF) - A Service In-
frastructure and Programming Framework for Context-Aware Applications. In: Pro-
ceedings of the 3rd International Conference on Pervasive Computing (Pervasive’05).
(2005)

9. Hohl, F., Mehrmann, L., Hamdan, A.: A Context System for a Mobile Service Plat-
form. In: Proceedings of the International Conference on Architecture of Computing
Systems(ARCS’02), London, UK, Springer-Verlag (2002) 21–33

10. Riva, O., Toivonen, S.: A Model of Hybrid Service Provisioning Implemented on
Smart Phones. In: The 3rd IEEE International Conference on Pervasive Services
(ICPS’06), IEEE Computer Society (2006) 47–56

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

12. Crespo, A., Buyukkokten, O., Garcia-Molina, H.: Query Merging: Improving Query
Subscription Processing in a Multicast Environment. IEEE Trans. Knowl. Data Eng.
15 (2003) 174–191

13. Borcea, C., Iyer, D., Kang, P., Saxena, A., Iftode, L.: Cooperative Computing for
Distributed Embedded Systems. In: Proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCS 2002), Vienna, Austria (2002) 227–236

14. Ravi, N., Borcea, C., Kang, P., Iftode, L.: Portable Smart Messages for Ubiquitous
Java-Enabled Devices. In: The 1st Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services (MobiQuitous ’04). (2004) 412–421

15. Tarkoma, S., Kangasharju, J., Lindholm, T., Raatikainen, K.: Fuego: Experiences with
Mobile Data Communication and Synchronization. In: 17th Annual IEEE Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).
(2006)

16. Paradiso, J.A., Starner, T.: Energy Scavenging for Mobile and Wireless Electronics.
IEEE Pervasive Computing 4 (2005) 18–27

17. Yao, Y., Gehrke, J.: Query Processing in Sensor Networks. In: Proceedings of the First
Biennial Conference on Innovative Data Systems Research (CIDR 2003), Asilomar,
CA (2003) 233–244

18. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisi-
tional query processor for sensor networks. In: Proceedings of The 2003 ACM SIG-
MOD International Conference on Management of Data (SIGMOD’03), San Diego,
California, ACM Press (2003) 491–502

19. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: Proceedings
of the Second International Conference on Mobile Data Management (MDM ’01),
London, UK (2001) 3–14

20. Chen, A., Muntz, R.R., Yuen, S., Locher, I., Park, S.I., Srivastava, M.B.: A Support
Infrastructure for the Smart Kindergarten. IEEE Pervasive Computing 1 (2002) 49–
57

21. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: ContextPhone: a prototyping
platform for context-aware mobile applications. IEEE Pervasive Computing 4 (2005)

22. Korpipää, P.: Blackboard-based software framework and tool for mobile device con-
text awareness. PhD Thesis. VTT Publications: 579, VTT Electronics, Espoo (2005)
http://www.vtt.fi/inf/pdf/publications/2005/P579.pdf.


