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Abstract. Recently, we have seen increasing numbers of denial of service (DoS)
attacks against online services and web applications either for extortion reasons,
or for impairing and even disabling the competition. These DoS attacks have
increasingly targeted the application level. Application level DoS attacks emu-
late the same request syntax and network level traffic characteristics as those of
legitimate clients, thereby making the attacks much harder to be detected and
countered. Moreover, such attacks usually target bottleneck resources such as
disk bandwidth, database bandwidth, and CPU resources. In this paper we pro-
pose server-side middleware to counter application level DoS attacks. The key
idea behind our technique is to adaptively vary a client’s priority level, and the
relative amount of resources devoted to this client, in response to the client’s past
requests in a way that incorporates application level semantics. Application spe-
cific knowledge is used to evaluate the cost and the utility of each request and
the likelihood that a sequence of requests are sent by a malicious client. Based
on the evaluations, a client’s priority level is increased or decreased accordingly.
A client’s priority level is used by the server side firewall to throttle the client’s
request rate, thereby ensuring that more server side resources are allocated to
the legitimate clients. We present a detailed implementation of our approach on
the Linux kernel and evaluate it using two sample applications: Apache HTTPD
micro-benchmarks and TPCW. Our experiments show that our approach incurs
low performance overhead and is resilient to application level DoS attacks.

1 Introduction

Recently, we have seen increasing activities of denial of service (DoS) attacks against
online services and web applications to extort, disable or impair the competition. An
FBI affidavit [32] describes a case wherein an e-Commerce website, WeaKnees.com,
was subject to an organized DoS attack staged by one of its competitors. These at-
tacks were carried out using sizable ‘botnets’ (5,000 to 10,000 of zombie machines) at
the disposal of the attacker. The attacks began on October 6th 2003, with SYN floods
slamming into WeaKnees.com, crippling the site, which sells digital video recorders,
for 12 hours straight. In response, WeaKnees.com moved to a more expensive host-
ing at RackSpace.com. However, the attackers adapted their attack strategy and re-
placed simple SYN flooding attacks with a HTTP flood, pulling large image files from
WeaKnees.com. At its peak, it is believed that this onslaught kept the company offline
for a full two weeks causing a loss of several million dollars in revenue.



As we can see from the example above, sophisticated DoS attacks are increasingly
focusing not only on low level network flooding, but also on application level attacks
that flood victims with requests that mimic flash crowds [24]. Application level DoS
attacks refer to those attacks that exploit application specific semantics and domain
knowledge to launch a DoS attack such that it is very hard for any DoS filter to distin-
guish a sequence of attack requests from a sequence of legitimate requests. Two char-
acteristics make application level DoS attacks particularly damaging. First, application
level DoS attacks emulate the same request syntax and network level traffic characteris-
tics as that of the legitimate clients, thereby making them much harder to detect. Second,
an attacker can choose to send expensive requests targeting higher layer server resources
like sockets, disk bandwidth, database bandwidth and worker processes [6][28][32].

As in the case of WeaKnees.com, an attacker does not have to flood the server with
millions of HTTP requests. Instead, the attacker may emulate the network level request
traffic characteristics of a legitimate client and yet attack the server by sending hun-
dreds of resource intensive requests that pull out large image files from the server. An
attacker may also target dynamic web pages that require expensive search operations
on the backend database servers. A cleverly constructed request may force an exhaus-
tive search on a large database, thereby significantly throttling the performance of the
database server.

Problem Outline. There are two major problems in protecting an online e-Commerce
website from application level DoS attacks. First, application level DoS attacks could
be very subtle making it very hard for a DoS filter to distinguish between a stream of
requests from a DoS attacker and a legitimate client. In section 2 we qualitatively ar-
gue that it would be very hard to distinguish DoS attack requests from the legitimate
requests even if a DoS filter were to examine any statistics (mean, variance, etc) on the
request rate, the contents of the request packet headers (IP, TCP, HTTP, etc) and even
the entire content of the request packet itself. Second, the subtle nature of application
level DoS attacks make it very hard to exhaustively enumerate all possible attacks that
could be launched by an adversary. Hence, there is a need to defend against application
level DoS attacks without knowing their precise nature of operation. Further, as in the
case of WeaKnees.com, the attackers may continuously change their strategy to evade
any traditional DoS protection mechanisms.

Our Approach. In this paper we propose middleware for protecting a website against
application level DoS attacks. Our middleware solution carefully divides its operations
between the server’s firewall and application layer. The firewall component of our mid-
dleware is completely application transparent. The application layer component of our
middleware exports an application programming interface (API) to the application pro-
grammers to improve the website’s resilience to application level DoS attacks.

Our DoS protection middleware is functionally different from most traditional DoS
filters. Our mechanism does not attempt to distinguish a DoS attack request from the
legitimate ones. Instead, our mechanism examines the amount of resources expended
by the server in handling a request, rather than the request itself. We use the utility of a
request and the amount of server resources incurred in handling the request to compute
a score for every request. We construct a feedback loop that takes a request’s score as
its input and updates the client’s priority level. In its simplest sense, the priority level



might encode the maximum number of requests per unit time that a client can issue.
Hence, a high scoring request increases a client’s priority level, thereby permitting the
client to send a larger number of requests per unit time. On the other hand, a low scoring
request decreases a client’s priority level, thereby limiting the number of requests that
the client may issue per unit time. Therefore, application level DoS attack requests that
are resource intensive and have low utility to the e-commerce website would decrease
the attacker’s priority level. As the attacker’s priority level decreases, the intensity of its
DoS attack decreases.

Benefits. Our approach to guard an online service against application level DoS attacks
has several benefits.
1. An obvious benefit that follows from the description of our DoS protection mecha-
nism is that it is independent of the attack’s precise nature of operation. As pointed out
earlier it is in general hard to predict, detect, or enumerate all the possible attacks that
may be used by an attacker.
2. A mechanism that is independent of the attack type can implicitly handle intelli-
gent attackers that adapt and attack the system. Indeed any adaptation of an application
level DoS attack would result in heavy resource consumption at the server without any
noticeable changes to the request’s syntax or traffic characteristics.
3. Our mechanism does not distinguish requests based on the request rate, the packet
headers, or the contents of the request. As pointed out earlier (and discussed in Section
2) it is very hard to distinguish an attack request from the legitimate ones using either
the request rate or the contents of the request.

Contributions. The key contributions of this paper include:
1. We propose a request throttling mechanism that allocates more server resources to
the legitimate clients, while severely throttling the amount of server resources allocated
to the DoS attackers. This is achieved by adaptively setting a client’s priority level in
response to the client’s requests, in a way that can incorporate application level se-
mantics. We provide a simple application programming interface (API) that permits an
application programmer to use our DoS protection mechanism.
2. The proposed solution does not require the clients to be preauthorized. The absence
of preauthorization implies that the server does not have to establish any out of band
trust relationships with the client.
3. Our proposed solution is client transparent, that is, a user or an automated client side
script can browse a DoS protected website in the same way as it browsed an unprotected
website. Our DoS protection mechanisms do not require any changes to the client side
software or require super user privileges at the client. The clients can seamlessly browse
a DoS protected website using any standard web browser that supports HTTP cookies.
All instrumentations required for implementing our proposal can be incorporated on the
server side.
4. We present a detailed implementation of our proposed solution on the Linux kernel
and a concrete evaluation using two sample applications: Apache HTTPD benchmark
[2] and the TPCW benchmark [37] (running on Apache Tomcat [3] and IBM DB2 [20]).
Our experiments show that the proposed solution incurs low performance overhead
(about 1-2%) and is resilient to application level DoS attacks.



2 Application Level DoS Attacks

In this section, we present two examples of application level DoS attacks. Then, we
discuss existing approaches for DoS protection, highlighting the deficiencies of those
approaches in defending against application level DoS attacks.

2.1 Examples

Example 1. Consider an e-Commerce website like WeaKnees.com. The HTTP requests
that pulled out large image files from WeaKnees.com constituted a simple application
level DoS attack. In this case, the attackers (a collection of zombie machines) sent the
HTTP requests at the same rate as a legitimate client. Hence, a DoS filter may not
be able to detect whether a given request is a DoS attack request by examining the
packet’s headers, including the IP, the TCP and the HTTP headers. In fact, the rate of
attack requests and the attack request’s packet headers would be indistinguishable from
the requests sent by well behaved clients.

Example 2. One could argue that a DoS filter that examines the HTTP request URL
may be able to distinguish DoS attackers that request a large number of image files
from that of the good clients. However, the attackers could attack a web application us-
ing more subtle techniques. For example, consider an online bookstore application like
TPCW [37]. As with most online e-Commerce applications, TPCW uses a database
server to guarantee persistent operations. Given an HTTP request, the application logic
transforms the request into one or more database queries. The cost of a database query
not only depends on the type of the query, but also depends on the query arguments. For
instance, an HTTP request may require an exhaustive search over the entire database or
may require a join operation to be performed between two large database tables. This
makes it very hard for a DoS filter to detect whether a given request is a DoS attack
request by examining the packet’s headers and all its contents. In fact, the rate of attack
requests and the attack request’s packet headers and contents would be indistinguish-
able from those sent by any well behaved client unless the entire application logic is
encoded in the DoS filter. However, this could make the cost of request filtering almost
as expensive as the cost of processing the actual application request itself. Indeed a
complex DoS filter like this could by itself turn out to be a target for the attackers.

2.2 Existing Approaches

Preauthorization. One way to defend from DoS attacks is to permit only preauthorized
clients to access the web server. Preauthorization can be implemented using SSL [30]
or IPSec [25] with an out of band mechanism to establish a shared key between a preau-
thorized client and the web server. Now, any packets from a non-preauthorized client
can be filtered at the firewall. However, requiring preauthorization may deter clients
from using the online service. Also, for an open e-Commerce web site like eBay or
Amazon, it may not be feasible to make an exhaustive list of all clients that should be
authorized to access the service. Further, it would be very hard to ensure all authorized
clients will behave benignly. A DoS attack from a small subset of preauthorized clients



may render the server unusable.

Challenge Mechanism. Challenge based mechanisms provide an alternative solution
for DoS protection without requiring preauthorization. A challenge is an elegant way to
throttle the intensity of a DoS attack. For example, an image based challenge [24] may
be used to determine whether the client is a real human being or an automated script. A
cryptographic challenge [40] may be used to ensure that the client pays for the service
using its computing power. However, most challenge mechanisms make both the good
and the bad clients pay for the service, thereby reducing the throughput and introducing
inconvenience for the good clients as well. For instance, an image based challenge does
not distinguish between a legitimate automated client script and a DoS attack script.

Network Level DoS Attacks. There are several network level DoS protection mecha-
nisms including IP trace back [33], ingress filtering [13], SYN cookies [4] and stateless
TCP server [18] to counter bandwidth exhaustion attacks and low level OS resource
(number of open TCP connections) utilization attacks. Yang et al.[45] proposes a cryp-
tographic capability based packet marking mechanism to filter out network flows from
DoS attackers. However none of these techniques are capable of addressing application
level DoS attacks. Nonetheless one should keep in mind that the application level DoS
filters only augment the network level DoS filters but do not replace them.

Application Level DoS Attacks. The network layer DoS filters cannot handle applica-
tion level DoS attacks primarily because they lack application level semantics. There
have been some proposals that degrade the image/video quality [15][8][21] when the
server experiences heavy overload. It is to be noted that such techniques are more ef-
fective in protecting the servers from overload than from DoS attacks.

2.3 Threat Model

We assume that the adversary can spoof the source IP address. We also assume that
the adversary has a large but bounded number of IP addresses under its control. If an
IP address is controlled by the adversary, then the adversary can both send and re-
ceive packets from that IP address. We assume that the adversary can neither observe
nor modify the traffic to a client whose IP address is not controlled by the adversary.
However, the adversary can always send packets with a spoofed source IP address that
is not essentially controlled by the adversary. We also assume that the adversary has
large, but bounded amounts of networking and computing resources at its disposal and
thus cannot inject arbitrarily large numbers of packets into the IP network. We assume
that the adversary can coordinate activities perfectly to take maximum advantage of its
resources.

3 Trust Tokens

3.1 Overview

Figure 1 shows a high level architecture of our proposed solution. Our approach al-
locates more server resources to good clients, while severely limiting the amount of



Fig. 1: Overview Fig. 2: Architecture

Fig. 3: Control Flow

resources expended on DoS attackers. The maximum amount of resources allocated to
a client is represented by the client’s QoS level. We use trust tokens (denoted as TT in
Figures 2 and 3) to encode the QoS level that a client is eligible to receive. Although
our architecture is capable of supporting arbitrary QoS policies, for the sake of sim-
plicity, we characterize a client’s QoS level exclusively by its priority level (a totally
ordered numeric value). A client’s trust token is embedded in a standard HTTP cookie
that is included in all responses from the server to the client. Using the standard cookie
semantics, a legitimate client would include the trust token in all its future requests to
the server. A client presenting a valid trust token to the server would be served at the
priority level encoded in the token. Otherwise, the client’s request would be dropped at
the server’s IP layer or firewall.

A client’s priority level is used to rate limit its requests at the server’s IP layer or
the firewall. We use an IP level packet filter to filter HTTP requests from the clients.
The packet filter uses weighted fair queuing [35] to throttle a client’s request rate based
on the client’s priority level. Hence, requests from attackers attempting to issue a dis-
proportionately large number of requests (relative to their priority level) are dropped at
the IP layer itself. Filtering requests at the IP layer significantly reduces the amount of
processor, memory, network, and disk resources expended on that request.

A client’s priority level is adaptively varied by the application using application spe-
cific semantics and domain knowledge. For this purpose, we provide a simple and flex-
ible API for application programmers. We describe the concrete API with three sample
implementations in Section 3.3. Allowing the application to set a client’s priority level
permits us to incorporate application specific semantics (domain knowledge) and is thus
highly flexible. IP level (firewall) request filtering ensures that illegitimate requests are
dropped before they can consume much of the server’s resources. In this paper we ex-
plore several algorithms which could be used to vary the client’s priority level and study
its effect on the performance of the web server.

Trust tokens are bootstrapped using an initial trust token issued by the challenge
server when the client first attempts to access the web server. The trust token is en-
crypted in such a way that it would be computationally infeasible for a client to unde-



tectably modify the token. We ensure the priority level of a client is kept up to date; since
the priority level of a client is continuously varied it is very important for the server to
retain the most recent value of a client’s priority level, especially, if the client’s priority
level is dropping.

Our proposed solution is client transparent and requires no changes to the client side
software. All our instrumentation is done at the server side thereby making the deploy-
ment very easy. The instrumentation at the server side includes:

Challenge Server. The challenge server poses a cryptographic challenge to a client,
when the client first accesses the website. On correctly solving the challenge, the chal-
lenge server is responsible for initializing the client’s trust token. A valid trust token
allows a client to send requests to the web server. It is important to note that the client
does not have to solve a cryptographic challenge every time it sends a request to the
server. Further, we use an adaptive mechanism wherein the hardness of solving the
challenge depends on the web server’s load. Indeed, when the server is not overloaded,
our system ensures that the client does not expend its computational resources on solv-
ing a challenge before it is granted permission to access the web server.

Server Kernel or Firewall. The IP layer at the server is modified to use the client’s
priority level to filter HTTP requests sent by a client. The priority level is enforced by
fair queuing [35] requests at the IP level. Filtering requests at the IP layer saves a lot
of computing and memory resources that are otherwise expended on the request as it
traverses up the server’s network stack.

Application Server. The application layer at the server is modified to use application
specific rules to update a client’s priority level. The client’s new priority level is com-
puted using a utility based model that considers the set of recent requests sent by the
client and the amount of server resources consumed by these requests.

3.2 Design

In this section, we describe how a trust token is constructed. Then, we describe tech-
niques to use the trust token to defend against application level DoS attacks.

Trust Token. A 24 Byte long trust token (tt) is constructed as follows: tt = 〈prio, tv,
HMK(cip, sip, tv, prio)〉, where cip (4 Bytes) denotes the client’s IP address, sip (4
Bytes) denotes the server’s IP address, tv (4 Bytes) denotes the time at which the trust
token was issued (time is expressed as the number of seconds from 1st Jan 1970), prio

(4 Bytes) denotes the priority level assigned to the client by the server, MK denotes
a secret cryptographic key used by the server and H denotes a keyed pseudo-random
function (like HMAC-MD5 or HMAC-SHA1 [27]). A priority level of zero indicates
that all requests from the client would be dropped by the server.

Client Side. Figure 2 below shows our architecture and Figure 3 shows the operational
usage of the trust token. A legitimate client operates as follows. A client obtains its to-
ken tt when it solves a challenge. The token is stored as a HTTP cookie in the client’s
browser. The client includes the token tt in all its HTTP requests to the server.

Server Side Firewall. On the server side firewall, we perform two operations. First, we



filter HTTP requests based on the validity of the trust token. Second, if the trust token is
valid, the server extracts the client’s priority level and throttles the client’s request rate
using fair queuing.

The server checks if the packet is a HTTP request and if so, it extracts the HTTP
cookie tt. It validates the trust token tt as follows. A trust token tt is valid if the tt.cip

matches the client’s IP address, tt.sip matches the server’s IP address, and tt.tv is some
time in the past (tt.tv < cur time). If so, the server extracts the priority level (tt.prio)
from tt; otherwise the request is dropped by the firewall.

An adversary may behave benignly until it attains a high priority level and then
begin to misbehave. Consequently, the server would issue a trust token with a lower
priority level. However, the adversary may send an old trust token (with high priority
level) to the server in its future requests. If all responses from the server to the client
were tunneled via the firewall, then the firewall can record the client’s updated priority
level. However, for performance reasons, most application servers are configured in a
way that requests are tunneled via the firewall but not the responses [19]. Under such a
scenario, we prevent a DoS attack by computing the effective priority level as follows.

The server uses the request’s priority level prio, the time of cookie issue (tt.tv)
and the client’s request rate r to compute the effective priority level eprio as follows:
eprio = prio * e−δ∗max(cur time−tt.tv− 1

r
,0), where cur time denotes the current time.

The key intuition here is that if cur time− tt.tv is significantly larger than the client’s
mean inter request arrival time ( 1

r
) then the client is probably sending an old trust token.

The larger the difference between (cur time − tt.tv) and 1
r

, the more likely it is that
the client is attempting to send an old token. Hence, we drop the effective priority
level eprio exponentially with the difference between (cur time − tt.tv) and 1

r
. Note

that the fair queuing filter estimates the client’s request rate r for performing weighted
probabilistic fair queuing.

Having validated the trust token and extracted its priority level, the server uses eprio

to perform weighted probabilistic fair queuing on all incoming HTTP requests from
the client. Fair queuing limits the maximum request rate from a client to its fair share.
Hence, requests from an attacker attempting to send requests at a rate larger than its
fair share is dropped by the firewall. We set a client’s fair share to be in proportion to
its effective priority level (eprio). Hence, if a client has a low priority level, then only
a very small number of requests from the client actually reach the web server. In the
following portions of this section, we propose techniques to ensure that DoS attackers
are assigned low priority levels, while the legitimate clients are assigned higher priority
levels.

Server Side Application Layer. Once the request is accepted by the IP layer packet
filter, the request is forwarded to the application. When the server sends a response to
the client, it updates the client’s priority level based on several application specific rules
and parameters. For this purpose we use a benefit function B(rq) that estimates the
benefit of a client’s request rq. The benefit of a request takes into account the utility
of the request and the resources expended in handling that request. For instance, if
the request rq is a credit card transaction, then the utility of request rq could be the
monetary profit the server obtains from the transaction. We also define a priority update
function G that updates the priority level of a client based on the benefit B(rq).



In our first prototype, we propose to use a utility based benefit function B(rq) =
F (rt, ut), where rq denotes the client’s request, rt is the time taken by the server to
generate a response for the request rq, and ut denotes the utility of rq. We use a simple
benefit function B(rq) = ut − γ ∗ rt, where γ is a tunable parameter. The response
time rt is used as a crude approximation of the effort expended by the server to handle
the request rq. Observe that in computing the benefit B(rq), the response time rt (that
denotes the effort expended by the server) is subtracted from the request’s utility ut.

The new priority level nprio could be computed as nprio = G(eprio, B(rq)), where
eprio is the current effective priority level of the client. In our first prototype, we use
an additive increase and multiplicative decrease strategy to update the priority level as
follows: If B(rq) ≥ 0, then nprio = eprio + α ∗ B(rq), and nprio = eprio

β∗(1−B(rq)) oth-
erwise. The additive increase strategy ensures that the priority level slowly increases as
the client behaves benignly; while the multiplicative decrease strategy ensures that the
priority level drops very quickly upon detecting a DoS attack from the client.

In summary, we perform request filtering at the server side IP layer or firewall. As we
have pointed out earlier, filtering requests at the firewall minimizes the amount of server
resources expended on them. However, the parameter that determines this filtering pro-
cess (the client’s priority level) is set by the application. This approach is highly flexible,
since it is possible to exploit application specific semantics and domain knowledge in
computing the client’s priority level.

3.3 Implementation

Client Side. Our implementation neither requires changes to the client side software
nor requires super user privileges at the client. We implement trust tokens using stan-
dard HTTP cookies. Hence, the client can use standard web browsers like Microsoft IE
or FireFox to browse a DoS protected website in the same manner that it browses an
unprotected website. An automated client side script with support for handling HTTP
cookies is assumed; such scripts are commonly used on the web today.

Server Side IP Layer. On the server side, we use NetFilters [1] for filtering requests
at the IP layer. NetFilters is a framework inside the Linux kernel that enables packet
filtering, network address translation and other packet mangling. We use NetFilters to
hook onto packet processing at the IP layer. Given an IP packet we check if it is a HTTP
request and check if it has the tt cookie in the HTTP request header. If so we extract
the trust token tt, check its validity and extract the priority level embedded in the token.
We compute the effective priority level eprio from its priority level prio and the request
rate r from the client. We have implemented a simple weighted probabilistic fair queu-
ing filter to rate limit requests from a client using its effective priority level (eprio).

Server Side Application Layer. We use Apache Tomcat filters to hook on HTTP re-
quest processing before an incoming request is forwarded to the servlet engine. This
filter is used to record the time at which request processing starts. Similarly, a filter
on an outgoing response is used to record the time at which the request processing
ended. This filter provides the application programmers the following API to use ap-
plication specific rules and domain knowledge to update the client’s priority level af-
ter processing a request rq: priority updatePrio (priority oldPrio,



URL requestURLHistory, responseTime rt), where oldPrio denotes
the client’s priority level before it issued the request rq, requestURLHistory de-
notes a finite history of requests sent from the client, and rt denotes the server response
time for request rq. Additionally, this filter encrypts the trust token tt and embeds it as
a cookie in the HTTP response.

Sample API Implementations. We now describe three sample implementations of our
API to demonstrate its flexibility.

Resource Consumption. In Section 3.2 we presented a technique to update a client’s
priority level based on its request’s response time and utility. Utility of the request can
be computed typically from the requesting URL using application specific semantics
and domain knowledge; note that client supplied parameters are available as part of the
request URL. The response time for a request is automatically measured by our server
side instrumentation.

Input Semantics. Many e-commerce applications require inputs from users to follow
certain implicit semantics. For example, a field that requests a client’s age would ex-
pect a value between 1 and 100. One can use the client supplied parameters (that are
available as a part of the request URL) to estimate the likelihood that a given request
URL is a DoS attack or not. Naive DoS attack scripts that lack complete domain knowl-
edge to construct semantically correct requests (unlike a legitimate automated client
side script), may err on input parameter values.

Link Structure. In many web applications and web servers the semantics of the service
may require the user to follow a certain link structure. Given that a client has accessed
a page P , one can identify a set of possible next pages P1, P2, · · · , Pk along with
probabilities tp1, tp2, · · · , tpk, where tpi denotes the probability that a legitimate client
accesses page Pi immediately after the client has accessed page P . The server could
lower a client’s priority level if it observes that the client has significantly deviated
from the expected behavior. Note that tracking a client’s link structure based behavior
requires a finite history of URLs requested by the client.

While heuristics like Input Semantics and Link Structure can guard the web server
from several classes of application level DoS attacks, one should note that these heuris-
tics may not be sufficient to mitigate all application level DoS attacks. For example, a
DoS attacker may use requests whose cost is an arbitrarily complex function of the pa-
rameters embedded in the request. Nonetheless the Resource Consumption based tech-
nique provides a solution to this problem by actually measuring the cost of a request,
rather than attempting to infer a DoS attack based on the request.

Challenge Server. We have implemented an adaptive challenge mechanism that is sim-
ilar to the one described in [40]. Client side implementation of the challenge solver
is implemented using Java applets, while the challenge generator and solution verifier
at the server were implemented using C. Although using Java applets is transparent to
most client side browsers (using the standard browser plug-in for Java VM), it may not
be transparent to an automated client side script. However, a client side script can use
its own mechanism to solve the challenge without having to rely on the Java applet
framework.



Our experiments showed that the challenge server can generate about one million
challenges per second and check about one million challenges per second. The chal-
lenge server can generate up to one million trust tokens per second. This rate is pri-
marily limited by the cost of computing a message authentication code (MAC) on a 16
Byte input using HMAC-SHA1 (0.91µs). Given that the challenge server can handle
very high request rates and it serves only two types of requests (challenge generation
and solution verification) it would be very hard for an adversary to launch application
level DoS attacks on the challenge server. Further, one can adaptively vary the cost of
solving the challenge by changing the hardness parameter m. For example, setting the
challenge hardness parameter m = 20 ensures that a client expends one million units
(=2m) of effort to solve the challenge and the server expends only one unit of effort to
check a solution’s correctness.

Our experiments showed that a client side challenge solver using a C program, a Java
applet and JavaScript requires 1 second, 1.1 seconds and 1012 seconds (respectively) to
solve a challenge with hardness m=20. A JavaScript based challenge solver is unfair to
the legitimate clients since the attackers can use any mechanism (including a non-client
transparent C program) to solve the challenge. Therefore, we chose to adopt the client
transparent Java applet based challenge solver whose performance is comparable to that
of a C program based challenge solver.

No DoS Protection Pre-auth IPSec Challenge IP level tt Filter App level tt Filter
Mix 1 (in WIPs) 4.68 4.67 (0.11%) 4.63 (1.11%) 1.87 (60%) 4.63 (1.11%) 4.59 (1.92%)
Mix 2 (in WIPs) 12.43 12.42 (0.06%) 4.67 (0.18%) 9.35 (24.8%) 12.37 (0.49%) 12.32 (0.89%)
Mix 3 (in WIPs) 10.04 10.04 (0.03%) 10.00 (0.37%) 6.19 (38.3%) 9.98 (0.61%) 9.91 (1.33%)

HTTPD (in WPPs) 100 100 (0.5%) 71.75 (3.2%) 0.3 (99.7%) 97.5 (2.4%) 96.25 (3.7%)
Table 1: Overhead

Servlet Admin Admin Best Buy Buy Exec Home New Order Order Prod Search Shop
Name Req Resp Seller Conf Req Search Prod Disp Inq Detail Req Cart

Latency (ms) 2.87 4666.63 2222.09 81.66 5.93 97.86 2.93 14.41 9.75 0.70 0.88 0.55 0.83
Frequency 0.11 0.09 5.00 1.21 2.63 17.20 16.30 5.10 0.69 0.73 18.00 21.00 11.60

Utility 0 0 3 10 4 0 0 0 2 1 1 0 2
Table 2: TPCW Servlet Mean Execution Time (ms), Servlet Execution Frequency (percentage) and Servlet Utility

S1 always attack
S2 behave good and attack after

reaching the highest Priority level
Table 3: Attack Strategies

T1 request flooding
T2 low utility requests
T3 old tt
T4 invalid tt
Table 4: Attack Types

A1 Apache HTTPD
A2 TPCW
Table 5: Applications

4 Evaluation

In this section, we present two sets of experiments. The first set of experiments quanti-
fies the overhead of our trust token filter. The second set of experiments demonstrates
the effectiveness of our approach against application level DoS attacks.

All our experiments have been performed on a 1.7GHz Intel Pentium 4 processor
running Debian Linux 3.0. We used two types of application services in our exper-
iments. The first service is a bandwidth intensive Apache HTTPD service [2]. The
HTTPD server was used to serve 10K randomly generated static web pages each of
size 4 KB. The client side software was a regular web browser from Mozilla Fire-
Fox [14] running on Linux. The web browser was instrumented to programmatically



send requests to the server using JavaScripts [29]. We measured the average client side
throughput in web pages per second (WPPs) as the performance metric. We have also
conducted experiments using Microsoft IE running on Microsoft Windows XP. The re-
sults obtained were qualitatively similar to that obtained using FireFox on Linux, amply
demonstrating the portability of our approach.

The second service is a database intensive web transaction processing benchmark
TPCW 1.0 [37]. We used a Java based workload generator from PHARM [31]. We
used Apache Tomcat 5.5 [3] as our web server and IBM DB2 8.1 [20] as the DBMS. We
performed three experiments using TPCW. Each of these experiments included a 100
second ramp up time, 1,000 seconds of execution, and 100 seconds of ramp down time.
There were 144,000 customers, 10,000 items in the database, 30 entity beans (EBs)
and the think time was set to zero (to generate maximum load). The three experiments
correspond to three workload mixes built into the client load generator: the browsing
mix, the shopping mix and the ordering mix. The TPCW workload generator outputs
the number of website interactions per second (WIPs) as the performance metric.

We simulated two types of clients: one good client and up to a hundred DoS attackers
connected via a 100 Mbps LAN to the server. The firewall functionality described in
Section 3.3 is implemented on the server. The good client was used to measure the
throughput of the web server under a DoS attack. The intensity of the DoS attack is
characterized by the rate at which attack requests are sent out by the DoS attackers. We
measure the performance of the server under the same DoS attack intensity for various
DoS filters. Our experiments were run till the breakdown point. The breakdown point
for a DoS filter is defined as the attack intensity beyond which the throughput of the
server (as measured by the good client) drops below 10% of its throughput under no
attack. In the following experiments we show that under application level DoS attacks,
the breakdown point for the trust token filter (tt) is much larger than that for other state
of the art DoS filters.

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  64

G
oo

d 
C

lie
nt

 W
P

P
s

Attack Requests Per Second (x 1000)

’pre-auth’
’ipsec’

’challenge’
’tt-ip’

’tt-app’

Fig. 4: 〈S1, T1, A1〉

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1  2  4  8  16  32  64

G
oo

d 
C

lie
nt

 W
IP

s

Attack Requests Per Second (x 1000)

’pre-auth’
’ipsec’

’challenge’
’tt-ip’

’tt-app’

Fig. 5: 〈S1, T1, A2〉

4.1 Performance Overhead

Table 1 compares the overhead of our DoS filter (‘tt’) with other techniques. ‘pre-auth’
refers to a technique wherein only a certain set of client IP addresses are alone preau-
thorized to access the service. The ‘pre-auth’ filter filters packets based on the packet’s
source IP address. ‘IPSec’ refers to a more sophisticated preauthorization technique,
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wherein the preauthorized clients are given a secret key to access the service. All pack-
ets from a preauthorized client are tunneled via IPSec using the shared secret key. The
‘pre-auth’ and ‘IPSec’ filters assume that all preauthorized clients are benign. Recall
that the trust token approach does not require clients to be preauthorized and is thus
more general than ‘pre-auth’ and ‘IPSec’. Nonetheless, Table 1 shows that the overhead
of our trust token filter is comparable to the overhead of the less general ‘pre-auth’ and
‘IPSec’ approaches. The cryptographic challenge mechanism has significantly higher
overhead than the other approaches since it requires both the good and the bad clients
to solve cryptographic puzzles each time they send a HTTP request to the server.

We also experimented with two implementations of the trust token filter: ‘tt-ip’ uses
an IP layer implementation of the trust token filter, while ‘tt-app’ uses an application
layer implementation of the same. ‘tt-ip’ offers performance benefits by filtering re-
quests at the IP layer, while ‘tt-app’ offers the advantage of not modifying the server
side kernel. Table 1 shows that the overhead of these two implementations are compara-
ble; however, in section 4.2 we show that ‘tt-ip’ offers better resilience to DoS attacks.

4.2 Resilience to DoS Attacks

In this section, we study the resilience of our trust token filter against application level
DoS attacks. We characterize an attack scenario along three dimensions: attack strategy
S (Table 3), attack type T (Table 4) and application A (Table 5). The attack scenarios
include all the elements in the cross product S × T × A. For example, a scenario
〈S1, T2, A1〉 represents: always attack using low utility requests on
Apache HTTPD. Note that these attacks cannot be implemented using standard well-



behaved web browsers. Nonetheless, an adversary can use a non-standard malicious
browser or browser emulators to launch these attacks.

For experimental purposes, we have assigned utilities to different TPCW servlets
based on the application’s domain knowledge (see Table 2). For HTTPD we assign
utilities to the static web pages as follows. We assume that the popularity of the web
pages hosted by the server follows a Zipf like distribution [44]. We assign the utility of
a request to be in proportion to the popularity of the requested web page. A legitimate
client accesses the web pages according to their popularity distribution. However, DoS
attackers may attempt to attack the system by requesting unpopular web pages. In a
realistic scenario, low popularity web pages are not cached in the server’s main memory
and thus require an expensive disk I/O operation to serve them. Further, the adversary
may succeed in thrashing the server cache by requesting low popularity web pages.

Trust token filter is resilient to the always attack strategy: 〈S1, T1, A1〉 and
〈S1, T1, A2〉. Figures 4 and 5 show the performance of our trust token filter under
the attack scenarios 〈S1, T1, A1〉 and 〈S1, T1, A2〉 respectively. For preauthorization
based mechanisms this experiment assumes that only the good clients are preauthorized.
In a realistic scenario, it may not be feasible to a priori identify the set of good clients,
so the preauthorization based mechanism will not always be sufficient. If a bad client
always attacks the system (strategy S1) then performance of the trust token filter is
almost as good as the performance of preauthorization based mechanisms (‘pre-auth’
and ‘IPSec’). This is because, when a client always misbehaves, its priority level would
drop to level zero, at which stage all requests from that client are dropped by the server’s
firewall. Note that with 64K attack requests per second all the DoS filters fail. The
average size of our HTTP requests was 184 Bytes; hence, at 64K requests per second it
would consume 94.2 Mbps thereby exhausting all the network bandwidth available to
the web server. Under such bandwidth exhaustion based DoS attacks, the server needs
to use network level DoS protection mechanisms like IP trace back [33][45] and ingress
filtering [13].

Trust token filter is resilient to application level DoS attacks: 〈S1, T2, A1〉 and
〈S1, T2, A2〉. Table 2 shows the mean execution time for all TPCW servlets. Some
servlets like ‘admin response’ and ‘best seller’ are expensive (because they involve
complex database operations), while other servlets like ‘home’ and ‘product detail’
are cheap. Figures 6 and 7 show an application level attack on HTTPD and TPCW
respectively. In this experiment we assume that only 10% of the preauthorized clients
are malicious. Figures 6 and 7 show the inability of network level filters to handle
application level DoS attacks and demonstrate the superiority of our trust token filter.
One can also observe from figures 6 and 7 that HTTPD can tolerate a much larger
attack rate than TPCW. Indeed, the effectiveness of an application level DoS attack on
a HTTPD server serving static web pages is likely to be much lower than a complex
database intensive application like TPCW.

Several key conclusions that could be drawn from Figures 4, 5, 6 and 7 are as fol-
lows: (i) ‘IPSec’ and ‘pre-auth’ work well only when preauthorization for all clients
is acceptable and if all preauthorized clients are well behaved. Even in this scenario,
the performance of ‘tt-ip’ is comparable to that of ‘IPSec’ and ‘pre-auth’. (ii) Even if
preauthorization for all clients is acceptable and a small fraction (10% in this example)



of the clients is malicious, then ‘IPSec’ and ‘pre-auth’ are clearly inferior to the trust
token filter. (iii) If preauthorization for all clients is not a feasible option then ‘IPSec’
and ‘pre-auth’ do not even offer a valid solution, while the trust token filter does. (iv)
The challenge based mechanisms incur overhead on both good and bad clients and thus
significantly throttle the throughput for the good clients as well, unlike the trust token
filter that selectively throttles the throughput for the bad clients.

4.3 Attacks on Trust Token Filter

In Section 4.2 we have studied the resilience of the trust token filter against DoS attacks.
In this section, we study attacks that target the functioning of the trust token filter.

Additive increase and multiplicative decrease parameters α and β: 〈S2, T1, A1〉
and 〈S2, T1, A2〉. Figures 8 and 9 show the throughput for a good client for various
values of α and β using applications HTTPD and TPCW respectively. Recall that α and
β are the parameters used for the additive increase and multiplicative decrease policy
for updating a client’s priority level (see Section 3). The strategy S2 attempts to attack
the trust token filter by oscillating between behaving well and attacking the application
after the adversary attains the highest priority level. The figures show that one can obtain
optimal values for the filter parameters α and β that maximize the average throughput
for a good client. Note that the average throughput for a client is measured over the
entire duration of the experiment, including the duration in which the adversary behaves
well to obtain a high priority level and the duration in which the adversary uses the high
priority level to launch a DoS attack on the web server. For HTTPD these optimal
filter parameters ensure that the drop in throughput is within 4-12% of the throughput
obtained under scenario 〈S1, T2〉; while the drop in throughput for TPCW is 8-17%.
These percentiles are much smaller than the drop in throughput using preauthorization
or challenge based DoS protection mechanisms (see Figures 6 and 7).

Figure 10 shows the average client throughput when the adversary is launching a
DoS attack on the web server. When the application is under a DoS attack, large values
of α and β maximize the throughput for a good client. Note that a large α boosts the
priority level for good clients while a large β penalizes the bad clients heavily. This
suggests that one may dynamically vary the values of α and β depending on the server
load.

Server resource utilization parameter γ: 〈S2, T2, A1〉 and 〈S2, T2, A2〉. Figures
11 and 12 show the average throughput for the good clients under the scenario 〈S2, T2,
A1〉 and 〈S2, T2, A2〉 respectively. These experiments show the effect of varying the
trust token filter parameter γ. Recall that we use the parameter γ to weigh a request’s
response time against the request’s utility (see Section 3). If γ is very small, the filter
ignores the response time which captures the amount of server resources consumed by
a client’s request. On the other hand, if γ is large, the utility of a request is ignored. This
would particularly harm high utility requests that are resource intensive. For instance,
a high utility request like ‘buy confirm’ has a response time that is significantly larger
than the median servlet response times (see Table 2). The figures show that one can
obtain optimal values for the filter parameter γ that maximizes the average throughput
for a good client. The optimal value for parameter γ ensures that the drop in throughput



’s2-t1-a2-dos’

 0  0.2  0.4  0.6  0.8  1
alpha  1

 1.2
 1.4

 1.6
 1.8

 2
 2.2

beta

 0
 1
 2
 3
 4
 5

Throughput (WIPs)

Fig. 10: 〈S2, T1, A2〉

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1  2  4  8  16  32  64

Th
ro

ug
hp

ut
 (W

P
P

s)

Attack Rate (x 1000)

’gamma=0.6’
’gamma=0.9’
’gamma=1.2’
’gamma=1.5’
’gamma=1.8’

Fig. 11: 〈S2, T2, A1〉

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1  2  4  8  16  32  64

Th
ro

ug
hp

ut
 (W

IP
s)

Attack Rate (x 1000)

’gamma=0.6’
’gamma=1.0’
’gamma=1.4’
’gamma=1.8’

Fig. 12: 〈S2, T2, A2〉

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1  2  4  8  16  32  64

Th
ro

ug
hp

ut
 (W

P
P

s)

Attack Rate (x 1000)

’delta=0.0’
’delta=0.4’
’delta=0.8’
’delta=1.2’
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for HTTPD and TPCW is within 7-11% of throughput measured under scenario 〈S1,
T2〉.

Attacking the trust token filter using old trust tokens: 〈S2, T3, A1〉 and
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〈S2, T3, A2〉. Figures 13 and 14 shows the resilience of our trust token filter against
attacks that use old trust tokens. An attacker uses strategy S2 to behave well and thus
obtain a token with high priority level. Now, the attacker may attack the server using this
high priority old token. These experiments capture the effect of varying the trust token
filter parameter δ, which is used to penalize (possibly) old trust tokens. A small value
of δ permits attackers to use older tokens while a large value of δ may result in rejecting
requests even from well behaving clients. The figures show that one can obtain optimal
values for the filter parameter δ that maximize the average throughput for a good client.
Using the optimal value for parameter δ we observed that the drop in throughput for



HTTPD and TPCW is within 3-7% of throughputs measured under scenario 〈S1, T2〉.

Attacking the filter using invalid (spoofed) trust tokens: 〈S1, T4, A1〉 and
〈S1, T4, A2〉. Figure 15 shows the effect of attacking the trust token filter by send-
ing invalid cookies for both HTTPD and TPCW. Note that if the verification process for
the trust token were to be expensive, then an attacker can launch a DoS attack directly
on the verification process itself. We have already shown in Table 1 that the overhead
of our trust token filter is comparable to that of the network layer DoS filters. This
experiment shows that the drop in throughput on sending invalid tokens is compara-
ble to sending packets with invalid authentication headers using IPSec. Observe from
the figure that the drop in throughput for the IP layer implementation of the trust to-
ken filter and IPSec is the same for both the applications HTTPD and TPCW. Observe
also that the throughput for the application layer implementation of the trust token filter
(‘tt-app’) is significantly poorer than the IP layer implementation (‘tt-ip’). Also, the ap-
plication layer implementation for HTTPD and TPCW show slightly different impact
on the throughput primarily because Apache HTTPD filters (written in ‘C’) are faster
than Apache Tomcat filters (written in ‘Java’).

5 Discussion

5.1 Limitations and Open Issues

In this paper, we have so far assumed that one client IP address corresponds to one
client. However, such an assumption may not hold when several clients are multiplexed
behind a network address translation (NAT) router or a HTTP proxy. In the absence of a
DoS attack there is no impact on the legitimate clients behind a NAT router or a HTTP
proxy. However, a DoS attack from a few malicious clients may result in the blockage
of all requests from the NAT router’s or the HTTP proxy’s IP address.

A closer look at the client-side RFC 1631 for the IP NAT [12] shows that client-side
NAT routers use port address translation (PAT) to multiplex multiple clients on the same
IP address. PAT works by replacing the client’s private IP address and original source
port number by the NAT router’s public IP address and a uniquely identifying source
port number. Hence, one can modify the trust token as: tt = 〈prio, tv, HMK(cip, cpn,
sip, tv, prio)〉, where cip denotes the IP address of the NAT router and cpn refers to
the client’s translated port number as assigned by the NAT router.

However, HTTP proxies do not operate using port address translation (PAT). One
potential solution is to deploy a trust token filter at the HTTP proxy. The trust token filter
at a HTTP proxy gets application specific priority updates for a client’s request from
the web server. While the web server may not know the set of requests that originated
from one client, the HTTP proxy can aggregate priority updates of all requests on a per-
client basis. It can use this per-client priority information to filter future HTTP requests
from its clients. While such a solution retains client anonymity from the web server, it
requires cooperation from the HTTP proxies. An efficient proxy transparent solution to
handle application level DoS attacks is an open problem.



5.2 Related Work

Several past papers have addressed network level DoS attacks [4][33][13][18][45].
These techniques are useful in defending a server against network level bandwidth ex-
haustion attacks. However, the lack of application semantics and domain knowledge
render network level DoS filters incapable of handling application level DoS attacks.
Several tools have been proposed to perform preauthorization based DoS protection
[25][30][26]. Our experiments show that even if preauthorization based techniques were
feasible, an application level DoS attack by a small fraction of malicious preauthorized
clients can jeopardize the system. Several authors have proposed challenge based mech-
anisms for DoS protection [24][40][22][36][41][39][11]. Our experiments show that the
inability of a challenge based mechanism to selectively throttle the performance of the
bad clients can significantly harm the performance for the good clients. Crosby and
Wallach [10] present DoS attacks that target application level hash tables by introduc-
ing collisions. Section 2 provides a more detailed discussion on the above mentioned
DoS protection mechanisms.

Recently, several web applications (including Google Maps [17] and Google Mail
[16]) have adopted the Asynchronous JavaScript and XML (AJAX) model [42]. The
AJAX model aims at shifting a great deal of computation to the Web surfer’s com-
puter, so as to improve the Web page’s interactivity, speed, and usability. The AJAX
model heavily relies on JavaScripts to perform client-side computations. Just as in
the AJAX model, we use JavaScripts to perform client-side computations for handling
HTTP cookies and solving cryptographic challenges. Recent surveys indicate that at
least 97% of the client browsers support JavaScript and Java [43][38].

Jung et al. [23] characterizes the differences between flash crowds and DoS attacks.
The paper proposes to use client IP address based clustering and file reference charac-
teristics to distinguish legitimate requests from the DoS attack requests. An adversary
can thwart IP address based clustering by employing a DDoS attack wherein the zombie
machines are uniformly distributed over several IP domains. File reference character-
istics may not be sufficient to mitigate application level DoS attacks since the cost of
serving a request may be a complex function of the parameters embedded in the request.
Siris et al. [34] suggests using request traffic anomaly detection to defend against DoS
attacks. We have shown in Section 2 that an application level DoS attack may mimic
flash crowds, thereby making it hard for the server to detect a DoS attacker exclusively
using the request traffic characteristics.

Several papers have presented techniques for implementing different QoS guarantees
for serving web data [7][9][5]. A summary of past work in this area is provided in [21].
These papers are not targeted at preventing DoS attacks and do not discuss application
level DoS attacks.

6 Conclusion

In this paper we have proposed a middleware to protect a website against application
level DoS attacks. We have developed a trust token filter that allocates more resources
to the good clients, while severely restricting the amount of resources allocated to the



DoS attackers. Our approach works by adaptively setting a client’s priority level in re-
sponse to the client’s requests, in a way that incorporates application level semantics.
Our DoS protection mechanism is proactive, client transparent, and capable of mitigat-
ing application level DoS attacks that may not be known a priori. We have described a
concrete implementation of our proposal on the Linux kernel and presented a detailed
evaluation using two workloads: a bandwidth intensive Apache HTTPD benchmark and
TPCW (running on Apache Tomcat and IBM DB2). Our experiments demonstrate the
advantages of the trust token filter over other network level DoS filters in defending
against application level DoS attacks.
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