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Abstract. It is obvious that big, complex enterprise systems are hard to manage.
What is not obvious is how to make them more manageable. Although there is
a growing body of research into system self-management, many techniques are
either too narrow, focusing on a single component rather than the entire system,
or not robust enough, failing to scale or respond to the full range of an adminis-
trator’s needs. In our iManage system we have developed a policy-driven system
modeling framework that aims to bridge the gap between manageable compo-
nents and manageable systems. In particular, iManage provides: (1) system state-
space partitioning, which divides a large system state-space into partitions that
are more amenable to constructing system models and developing policies, (2)
online model and policy adaptation to allow the self-management infrastructure
to deal gracefully with changes in operating environment, system configuration,
and workload, and (3) tractability and trust, where tractability allows an admin-
istrator to understand why the system chose a particular policy and also influence
that decision, and trust allows an administrator to understand the system’s confi-
dence in a proposed, automated action. Simulations driven by scenarios given to
us by our industrial collaborators demonstrate that iManage is effective both at
constructing useful system models and in using those models to drive automated
system management.
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1 Introduction

Consider large systems that are integral parts of an enterprise’s IT infrastructure. Exam-
ples of such systems include those supporting enterprise websites, or inventory manage-
ment subsystems, or even the distributed information systems supporting a company’s
daily operations. Administrators managing these systems are not only expected to keep
them running, but in addition, many such systems must meet certain processing con-
straints, be highly available, offer differentiated levels of Quality of Service (QoS), meet
certain Service Level Agreements (SLAs), and may be subject to unforeseen demands.
Unfortunately, even the occurrence of seemingly routine events like load changes, node
and link failures, software patches, or modifications of certain environmental param-
eters can cause such systems to behave in unexpected ways, often resulting in their



failure to meet current objectives. Given these facts and acknowledging enterprises’
growing reliance on their computing infrastructures, solutions must be found for sys-
tem self-management. These solutions must be driven by high level business goals,
be open and receptive to administrators, cope with dynamic changes in requirements
and conditions, and scale from small, tightly managed individual subsystems to large
company-wide support infrastructures.

The existing tools and techniques for enabling self-management of enterprise-scale
systems are insufficient because they are either too general or are too specific. For
instance, the state-of-the-art system management tools deployed at large enterprises
include software suites like IBM’s Tivoli, which is a systems management platform
and HP’s OpenView (now combined with Mercury), which can be used for managing
large-scale systems and networks1. These tools are equipped with methods for system
monitoring and for graphically displaying system status to administrators. However,
their functionality for automated symptom determination, reasoning about symptom
causes, and taking appropriate corrective actions remains rudimentary, in part due to
the lack of standards and more importantly, due to the general nature of these tools.
In contrast, researchers have successfully embedded self-managing capabilities into
specific well-defined subsystems like database backends [28], request schedulers for
multi-tier web services [8] and others. To complement the self-management work be-
ing done for specific subsystems, several researchers have been focusing on issues like
policy-specification language [11], model building techniques [4] and efficient moni-
toring schemes [1]. Similarly, there has been some excellent research in the domain of
automating specific tasks that are required for enabling self-management. A particular
effort of note is the work on automated problem diagnosis, presented in [9, 32]. The
work focuses on using the monitoring data gathered from a system to detect service
level objective violations and correlating the violation to earlier violations for gaining
useful insights. While automating subsystems and problem diagnosis is important, these
specific techniques must be combined into a comprehensive framework in order to be
effective for complex systems.

The goal of our research is to develop abstractions and methods that help bridge the
gap between (i) the excellent progress made in the general domain of self-management,
like automation of well-defined subsystems or specialized techniques for self-management
tasks vs. (ii) the more general challenges posed by managing more complex and/or
larger IT infrastructures and applications. Toward this end, we build on such prior work
for online system management, we adopt the use of online monitoring and behavior
detection tools and techniques [10], and we endorse the use of ECA policies to describe
and build our self-management framework. To also address the broader management
challenges posed by complex and dynamic IT applications and infrastructures, how-
ever, we propose a novel representation of the system state-space that is geared towards
policy-based self-management, and we develop new techniques for dealing with the
problems of scale, dynamism, tractability and trust. Tractability here refers to an ad-
ministrator’s ability to understand current management actions undertaken by the sys-
tem and to the system’s ability to expose its reasoning for those actions. To achieve the
goal of system manageability, our system, iManage, offers the following tools:

1 IBM, Tivoli, HP, OpenView and Mercury are registered trademarks of their respective owners



– A system modeling framework - iManage collects system parameters and metrics
(collectively called system variables) into a single representation of the system
state-space, and identifies which actions are available to change the system state.

– A scheme for reducing the complexity of the system model - Since a typical system
model is too complex to be used or even properly constructed, our tools provide
mechanisms to partition the state-space into smaller units that are easier to deal
with. These micro-models allow us to more precisely model critical aspects of the
system, and to more effectively develop policies.

– Techniques for evolving system models - Policies that are appropriate under one
set of conditions may become invalid as operating conditions and the environment
changes. iManage provides techniques for evolving system models and policies,
including methods to learn new policies and incorporate human knowledge and
experience to refine the policies.

– Techniques for quantifying our confidence in a system model - In order for our sys-
tem models to be useful, the system administrator must be able to trust them. iMan-
age associates a confidence value with each self-management policy, and allows
the administrator to both understand and use this confidence value when deciding
whether to let the system manage itself.

In the following section we motivate the iManage approach by describing certain sub-
systems and properties of the operational information system deployed by Delta Air
Lines, one of our industry partners. Our interactions with the administrators and devel-
opers at that site have motivated much of this work.

1.1 Motivating Example

The Passenger Information Delivery System – PIDS (shown in Figure 1) – is a middle-
ware developed at Delta Technology, Inc. to serve two important needs of the airline.
First, it is responsible for managing the passenger data sourced from the airline’s TPF
mainframe. Second, it provides access to passenger information via events and service
interfaces. The PIDS middleware, which according to estimates by Delta Technology
processes around 9.5 billion events annually, ensures near real-time delivery of pro-
cessed events to ‘consumers’ – programs that need to receive the events – and to a
database of current booking and flight information used in activities like those in sup-
port of Delta’s web site. PIDS collects data from all over the airline. While much of
its information comes out of the airline’s TPF-based Deltamatic Reservation and Op-
erational Support System (OSS), additional inputs like gate information, information
about weather, etc. arrive from airports throughout Delta’s worldwide system. Further
passenger information is provided by the reservation system. Finally, most planes gen-
erate and transmit their own landing time, which is provided to PIDS via FPES (the
flight progress event system).

There are hundreds of variables associated with the PIDS system that capture the
current state of the PIDS servers, the current load conditions, client specific metrics and
several others. Some of these variables are enumerated in Table 1. A system administra-
tor manages the system by virtue of having the ability to modify some of these variables,
examples including the number of client service threads or the number of workflow ser-
vice threads. More specifically, such modifications of state variables constitute the set
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Fig. 1. Some Interactions in the PIDS Middleware System

of actions allowed for managing the system. The actions of a system administrator to
respond to an event (like increased workflow processing delay) are based on his wisdom
(mental model of the system behavior) and the prevailing conditions (values of differ-
ent variables representing the current state). However, partial (and sometimes complete)
failures of PIDS middleware are not uncommon, often resulting in delayed and/or can-
celed flights, and eventually leading to loss of revenue. Such failures can be attributed
to the scale of the PIDS middleware and to the dynamic load conditions posed by the
application domain.

The above example justifies our focus on the issue of scalability when designing our
self-management framework. Moreover, in order to deal with the dynamic load condi-
tions experienced by the PIDS middleware one must make use of self-management
techniques that can continuously evolve. Finally, our interaction with the system ad-
ministrators running the PIDS middleware motivated the need to keep the humans in
the self-management loop and in control of the adaptation actions which translated to
the requirements for tractability and trust.

1.2 Road Map

The rest of this paper is organized as follows. In Section 2 we present an overview
of the overall approach, introduce the system state-space model used by the iManage
framework and describe the requirements for policy enablement. Section 3 focuses on
the specifics of our approach by describing the algorithms and techniques used by our
framework, these include - the partitioning algorithm, the model building technique and
the specifics of policy learning, adaptation and the confidence attribute. In Section 4
we present the evaluation of our techniques. Section 5 discusses the related work and
finally, we conclude in Section 6 with some open problems for further research in this
area.



Table 1. Some variables associated with the PIDS middleware

Variable Description
Global Variables

E2EL The end-to-end latency introduced by the processing workflow.
ELPP The average queuing delay at individual PIDS processing nodes.
CLIE Number of cache access clients being served at any time.
ETTR Expected time to recover from a failure.
EDRR Events dropped in last 100,00,000 events.
CSTH Client service threads at individual PIDS processing nodes.
WSTH Workflow service threads at individual PIDS processing nodes.
NGAG Number of active boarding gates
NBCA Number of active baggage claim
NCIC Number of active check-in counters
NOVR Number of active overhead displays

Gate Agent Variables
TTFD Time to flight departure
DEST Identifies whether a flight is domestic or international
NPAS Number of passengers scheduled to board the flight

2 Overview & State-Space Model

In this section we present an overview of our solution approach, which is followed by a
formal description of iManage’s system state-space model and thereafter we present the
requirements for policy-enablement of an enterprise-system. The formal model is used
in the following sections to formally describe the various algorithms and techniques
used by the iManage framework.

2.1 Solution Overview
The iManage framework for policy-driven self-management of enterprise-scale systems
provides an abstraction of a system state-space, where each axis represents an identi-
fiable system variable (e.g., end-to-end delay, throughput, etc.). The state-space model
specifically identifies two sets of variables - one set contains the variables that deter-
mine the operational status of the system and the other set contains the variables that
can be modified to affect the state of the system. The first set is used for specifying
the goals or SLAs and the second set is used to determine ‘actions’ that later become
part of ECA policies for the system. In order to manage the system one needs to es-
tablish a model that connects the set of action variables to the set of goal variables.
However, given the scale of the state-space for enterprise-scale systems and the fact
that the system can exhibit different behaviors in different state sub-spaces, modeling
the state-space is not straight-forward. The iManage framework utilizes a novel state-
space partitioning scheme to deal with the problems of scale and heterogeneous sys-
tem behavior. iManage then makes use of tree augmented naive Bayesian networks or
TANs to build ‘micro-models’ for each partitioned sub-space that results from the state-
space partitioning algorithm. As a result, the system model becomes a collection of the
‘micro-models’ constructed for each sub-space. In case some goal violation is detected,
the system model is consulted to arrive at new values for the set of action variables. In
terms of policy the goal violation becomes the event, the value of system variables at



the time of violation become the condition and the assignment of new values to the set
of action variables becomes the action. Since, probabilistic models are used to arrive
at a solution in case of goal violation, even the suggested policy actions are associated
with a certain probability of bringing the system to a state of non-violation, this proba-
bility acts as the confidence attribute for the policy. A policy is enforced only when the
confidence attribute exceeds the threshold set by a system administrator.

2.2 System State-Space Model

The following convention is used to describe the system state-space model. We use
boldface capital letters such as, V,Vφ to denote sets, and assignment of values to vari-
ables in these sets are denoted by regular capital letters such as V1, V2. Similarly, we
use boldface lower case letters such as, vi,vj to represent variables that occur in the
sets, and regular lower case letters such as, v1, v2 denote specific values taken by those
variables.

We consider a system whose state can be represented by a set V of n variables
{v1, ...,vn}, which are not necessarily independent. Out of these n variables the sys-
tem’s operational status (like failed, stable, unstable, etc.) can be determined by using
only a subset Vφ (an example of such variable would be the delay experienced by the
users of an enterprise’s website) of the state variables in V. Therefore, Vφ is the set of
variables of interest as far as the system’s operational status is concerned.

Furthermore, we associate the system with a set A of m action interfaces {a1, ...,am},
such that an instance a1 of action interface variable ai represents an action that can be
invoked on the system. The invocation of an action a1 on a system state V1 is denoted by
Ω(a1, V1), which possibly translates the system to a new state. The effect of invocation
of action a1 on an instance of a system state-space variable v1 is similarly represented
using ω(a1, v1). The above discussion is used to arrive at the following definition of a
deterministic action-variable pair.

Definition 1. A tuple (ai,vi) is said to be a deterministic action-variable pair if ω(aj , vk)
is known for all instances (aj , vk) of ai and vi.

The set of all deterministic action-variable pairs of a system constitutes the set D, and
the set of all state-space variables that occur in any tuple in the set D constitute the
set Vα, also called the set of actionable variables. The following lemma holds for all
members of the set Vα.

Lemma 1. If v1 and v2 are two possible values of the state-space variable vi
α ∈ Vα

then there exists an instance a of ai such that (ai,vi
α) ∈ D and ω(a, v1) = v2.

In order to manage a system, and affect its status, one needs to be able to deter-
ministically modify the value of variables contained in Vφ. However, we only know
of ways to deterministically modify the value of variables contained in Vα. Therefore,
if one could discover a function χ that maps the space of variables of interest, Vφ to
the space of actionable variables, Vα then one would be able to manage the system as
described next. Let, Vcurrent represent the current state of a system and Vcurrent

φ and
Vcurrent

α represent values of the corresponding sets of variables Vφ and Vα. Now, if the



system needs to be translated to a new feasible state such that the variables of interest
take the value Vgoal

φ , then one should be able to determine Vgoal
α using the function χ

and then use the set D to determine the actions required to change the value of variables
in Vφ from Vcurrent

α to Vgoal
α .

Note that the set of variables in V − (Vφ ∪ Vα) are not redundant and as we
shall see in Section 3.1 they play an important role in determining the function χ. An
example of such variable would be a measurement of number of disk-operations - such
a variable is usually not a member of Vφ, which is used to determine acceptable system
operational status; and this metric, in general, cannot be deterministically affected by
allowed system actions (e.g. allocating another disk-array). However, such variables
may give hints about the actions to be taken to remedy a certain problem.

To put the above discussion in context, such a system model can be readily applied
to the example discussed in Section 1.1. For example, the list of variables, enumerated in
Table 1, constitute the set V of state variables for the PIDS system. The set of variables
{E2EL, CLIE} are the variables of interest as far as the operational status of the PIDS
middleware is concerned and therefore constitute the set Vφ (this corresponds to two
of the several requirements imposed on the PIDS middleware -the processing workflow
should not introduce a delay of more than 1 second and the system should be able to
handle 3000 concurrent requests from the clients). The set Vα = {CSTH, WSTH}
constitutes the set of variables that have action associations.

Limitations. In the above discussion we assumed that all the variables that constitute
the system state-space are known. This is not true for several systems where due to con-
siderations like monitoring overhead and complexity some of these variables might not
be monitored. However, the probabilistic modeling techniques used by our framework
are able to perform sufficiently well even when some of the variables are not listed as
members of the system state-space, or are not monitored by the system. One must note
that failure to include some important state-space constituents may lead to a system
model which might not be manageable.

The second limitation arises from the fact that the function χ might return multiple
possible instances of the set Vα corresponding to the goal state represented by Vgoal

φ .
For example, if Vgoal

φ corresponds to reduction in end-to-end delay for a three tier web-
server then there may exist multiple actions like increasing the number of front-end
servers or upgrading the backend database server that may lead to reduction in end-to-
end delay. Our probabilistic techniques will suggest the solution which has the highest
probability of resolving the problem without any guarantees about the efficiency or
optimality of the solution. This opens up the possibility of a difference between ‘man-
ageable’ and ‘efficiently’ or ‘optimally’ manageable system. However, in this paper we
will limit ourselves to the concept of manageability.

2.3 Enabling Policies
There are certain requirements that should be met by any system to become eligible
for policy-driven self-management. Firstly, the system should be able to measure and
export the current value of variables that constitute the state-space for the system. One
can think of this as ‘dials’ on a control dashboard used for managing a very large sys-
tem. Secondly, the ability to modify some of the variables is also central to the idea of



policy enablement. One can similarly think of this capability as the ‘knobs’, which can
deterministically change the value displayed on some ‘dials’. In terms of our system
state-space model, the variables represented by ‘dials’ are the variables in the set V.
The variables which have an associated ‘knob’ constitute the set Vα. The ‘knobs’ can
in turn be used to take actions specified using ω(ai, v

j
α).

In order the enable policies in a policy-ready system we need to have a way for
representing the policies, mechanisms that discover and learn policies at runtime, ways
to enforce policies and techniques for keeping the policies updated for the current sys-
tem environment. The following sub-sections briefly describe our approach to handling
these issues. Some of these issues will later be dealt in detail in Section 3

Policy Specification - We use a modified form of the well accepted event-condition-
action (ECA) format for specifying the policies. The ECA specification is very useful
when it comes to enforcing policies for any system. We however, extend the specifi-
cation to include a confidence-attribute that is related to the probability of the policy
having a desired effect when the action specified as part of the policy is taken under
appropriate conditions. The event in our policy description is a change in the value of
some variable(s) in Vφ. The condition that triggers the action associated with the pol-
icy is specified over the set of variables in V. The action is similarly specified as the
modification in the value of some variables contained in Vα.

Policy Discovery - We believe that all policies cannot be specified and that the system
may need to discover some policies on the fly. We use a novel state-space partitioning
scheme, described in Section 3.1 to first reduce the system state-space under considera-
tion at any instant. Then for each partition we make use of greedy algorithm to discover
the most important variables from the set Vα (i.e. the right knobs). We finally make
use of Bayesian networks to build ‘micro-models’ of the the state-space corresponding
to each partition, thereby enabling us to find the values to which the ‘knobs’ should be
adjusted to. We elaborate on these techniques in the following sections.

Policy Enforcement - The interfaces that export the current value of system variables are
continuously monitored for any changes. These changes in the value of some variables
may cause some policy to evaluate its condition and if the condition evaluates to true the
action specified as part of the policy is taken. In simple words, when a problem occurs
(i.e. the value on some dials signals something bad) the self-management subsystem
tries to (1) find the ‘right-knobs’ and then (2) adjusts them to some appropriate new
values. The enforcement of any policy is also contingent on the confidence-attribute,
which should be more than a system-wide threshold set by the system administrator.
This gives the administrator a control over the degree of self-management.

Policy Refinement - Policies that are either specified or are learnt by the system may
need to be changed because the conditions under which such policies are valid may
change with time. An instance of this would be the addition of more nodes to the
network underlying the operational information system. Such instances may lead to
changes in threshold values that trigger an action specified as part of the policy. Our
techniques are able to keep track of such changes in the environment and in response,
they suitably modify the policies.



3 Solution Approach

The system state-space model proposed in Section 2.2 showed that V, Vφ, Vα, A,
D and χ are the parameters that should be known for arriving at a self-management
solution for a system. One can safely assume that for most of the systems the sets
V, Vφ, Vα, A and D are known apriori. This implies that the system variables, the
variables of interest and the deterministically modifiable variables along with the ways
to modify them are known. This is true for enterprise-scale systems where the system
variables like number of network nodes, link capacities, etc. are known, similarly the
variables of interest like end-to-end delay are also known apriori and lastly one knows
of variables like allocated buffer-length at network nodes which can be deterministically
modified by changing some system parameters. The problem is to find the function χ,
and this means that we need to find a way to model the system. Remember that the
function χ relates the variables in Vφ to the variables in Vα and the function χ can
change for different values of variables in V − (Vφ ∪ Vα). Once the function χ has
been determined for the system state-space, one can easily find and/or adapt the actions
that form part of the policy specification.

However, building a model (i.e. determining χ) for understanding the behavior of
an enterprise-scale system is a tough task. This can be attributed to the fact that in
such systems there are a large number of variables (e.g., bandwidth, workload, queue
length at servers, etc.), each one of which can potentially affect the state of the system
and more often than not these variables also interact amongst themselves. For example,
in a certain sub-space of the system’s state-space the bandwidth between participating
nodes may be the bottleneck and any modification to the priority of processes may have
little or no effect on the observed performance. The situation may similarly be reverse
for some other system state sub-space where server capacity may be the bottleneck
and any modification to the inter-node bandwidths may have no effect on the observed
performance. The two insights that follow from the above discussion are that -

1. Finding a single function to model the entire state-space of an enterprise-scale sys-
tem might lead to very crude and incorrect system models.

2. There exists system state sub-spaces where the effect of certain variables can es-
sentially be ignored from the system model.

The above discussion motivates the need to partition the system state-space. The fol-
lowing sub-section elaborates on the specific requirements for the partitioning scheme
and then describes the partitioning algorithm in detail.

3.1 System State-Space Partitioning

The aim of our partitioning scheme is to create system state-space partitions such that -

– the involved system variables exhibit some homogeneity in their behavior inside
the partition, which is beneficial for building the system model.

– the number of ‘knobs’ required to manage the system within the partition is min-
imized, which is beneficial for the purpose of learning and adapting the actions
specified as part of policy.



To incorporate the concept of partition homogeneity we create partitions such that op-
erational states contained in the partition are close to each other. Note that partition
homogeneity corresponds to macro-level states of the system, for instance in one parti-
tion the underlying network may be the bottleneck (making server capacity redundant)
while in some other partition the server capacity may be the bottleneck (similarly mak-
ing the network capacity redundant). In order to minimize the ‘knobs’ we want to ensure
the partitions are created such that the ‘knobs’ needed in one partition are possibly not
needed in the other. This corresponds to making partitions which are orthogonal to each
other. The partitioning algorithm employed by our framework is described next.

The Partitioning Algorithm A system state can be defined as the binding of appro-
priate values to the variables contained in the set V. The partitioning algorithm aims to
partition many such observed system states to achieve the objective mentioned in the
previous section. We define a partition to be a collection of observed system states. A
partition inherits the sets V and Vφ from the system state-space but the sets Vα, A and
D can vary between the partitions.

Let, S be the observed operational states contained in the initial system state-space
partition for which D defines the association of action interfaces in A with the variables
in Vα. For simplicity the discussion here assumes that it is possible to define a mea-
sure of normalized distance between any two operational states. Techniques for doing
such operations exist and interested readers may refer to well-known techniques like
Mahalanobis distance [24]. We define an operator δR over a pair of operational states
from a partition, which finds the normalized distance between the two operational states
considering only the dimensions contained in the set R, where R ⊆ V. We also define
the operation θ over a pair of operational states from a partition. The operation θ finds
the number of places in which the two states differ, considering only the dimensions
corresponding to the set Vα for the partition under investigation. Finally, we define

υ(s1, s2) = η × δV(s1, s2) + µ× θ(s1, s2) (1)

where, η and µ can take values from the range [0,1] and these are used to configure
υ for weighted distance and orthogonality. To evaluate if we need to partition a given
system state-space P , we try find a subset V′

α of Vα such that∑
∀si,sj∈S

δVα−V′
α
(si, sj) ≤ ∆max (2)

|V′
α| ≤ f (3)

where ∆max is a user defined parameter that represents the maximum allowed rep-
resentation error for the actionable variables and f represents the maximum number
of actions that can be used to manage the system in the given partition. We employ a
greedy approach for finding V′

α, i.e. we add the member of Vα to V′
α which causes the

greatest reduction in the L.H.S. of the equation 2. We repeat the above process until the
L.H.S. becomes lesser than ∆max, at this point we look at the cardinality of the set V′

α

- if the cardinality is less than f we do not partition the system state-space, otherwise
we proceed to partition the system state-space. The V′

α so determined becomes the Vα



for the partition. We start by finding a pair of states s1 and s2 from the set of all such
pairs contained in the set S such that υ(s1, s2) is maximized. The pair s1 and s2 acts
as the seed for the two new system state sub-spaces S1 and S2 that will be created. We
then iterate through the remaining operational states in the set S, adding the operational
state si to S1 if δV(si, s1) ≤ δV(si, s2). One can alternatively use the centroid of ex-
isting operational states in the evolving partitions to determine the membership. Once
the two new partitions S1 and S2 have been created, we find the set Vα for them using
the greedy approach described above. If the criteria defined by ∆max and f is not met
by any partition then we repeat the above scheme for that partition. We now enumer-
ate the advantages of the partitioning scheme for the purpose of enabling policy-driven
self-management.

– Simplifies Policy Learning. Our approach intelligently reduces the space of possi-
ble actions that could be taken in response to an event. This greatly simplifies the
process of correlating the events to actions for the purpose of determining ECA
policies.

– Assists in Problem Diagnosis. The system might migrate through a series of system
state ‘partitions’ before ending in an unacceptable state (e.g. SLA violation). The
path followed by a system before a failure may contain information about the events
that may have led to a failure, and can therefore assist in problem diagnosis and
constructing complex policies.

– Simplifies Problem Resolution. If a system enters an unacceptable state during its
operation then the model corresponding to the partition to which this unacceptable
state belongs can possibly be used to arrive at a resolution to the problem.

– Reducing Monitoring Overhead. The partitions that are created by our algorithm
allow us to ignore a subset of variables when the system is operating in that parti-
tion. This can potentially allow us to monitor such variables at reduced frequencies.
However, we have not fully explored this possibility.

Once the system state-space has been partitioned we build a system micro-model corre-
sponding to each partitioned sub-space. A system model in our framework consists of
several micro-models each one of which models a sub-space of possible system states.
The micro-model to be applied is determined based on the current state of the system.
Since, we attempt to model only a small partition of the entire system state-space at a
time we are able to build models even for systems with a very high number of variables.
This makes our approach highly scalable. A similar approach was presented in [32],
which made use of an ensemble of probabilistic models to detect SLO violations, and
was shown to perform significantly better than the approach which used a single mono-
lithic model to detect violations. The approach works by adding new models when the
existing models do not accurately capture the current system behavior.

3.2 Building System Micro-Models
We want to create micro-models such that they can predict the the values for the vari-
ables in Vα given the values for the variables in V −Vα. Here we take advantage of
the fact that our system state sub-spaces have a reduced dimension in terms of action-
able variables. For all the variables in Vα we exhaustively enumerate all the possible



values and create a new variable c which can take values corresponding to such an ex-
haustive enumeration. For example, if |Vα| = 2 and each variable in Vα can take 3
discrete values then c can take 9 distinct enumerated values. We assume that the ac-
tionable variables take discrete values and if the variable is continuous, one can use
existing techniques to discretize continuous data (actually the Bayesian modeling tech-
niques, which are referred to in this paper make use of such techniques). The system
state space V can now be represented as {c} ∪ (V −Vα).

To find the best value from the variable c which helps translate the system to a
desired state we resort to making using of probabilistic modeling techniques. We use a
variant of Bayesian network [16] called the Tree Augmented Naive Bayes [15] or TANs
to probabilistically model the system state-space. A Bayesian network is represented as
an acyclic graph whose vertices encode random variables and the edges represent sta-
tistical dependence relations among the variables and local probability distributions for
each variable given values of its parents. The main advantage of using a Bayesian net-
work (or one of its variants) is that their representation provides and easy way to inspect
the relationships between the involved variables. This allows an expert to embed his
knowledge or the common wisdom into the self-management framework by proposing
an initial model, which can be further refined using learning techniques. Furthermore,
by simple inspection an expert can single out any faults in the learnt system model.
Our choice for making use of TANs was driven by the fact that unrestricted forms of
Bayesian network are computationally very costly to build as they need to evaluate all
the dependencies amongst the set of random variables. A TAN, on the other hand allows
only a tree structured dependence amongst the set of random variables (other than the
class variable) and is therefore cheaper to build and has been shown to perform almost
as well as the unrestricted version. A TAN model when used as a classifier is able to
determine the following probability

p = Pr(x|a1,a2, ...,an) (4)

for the set {a1,a2, ...,an,x}, from a given training set. The variable x assumes a special
status in this equation and is called the class variable and the other variables are called
the attributes.

To create the micro-model we designate the newly formed variable c as the class
variable and the remaining variables, i.e. the set of variables in V−Vα are designated
as attributes. The resulting micro-model is able to determine the following probability.

p = Pr(c|V −Vα) (5)

The above equation determines the probability of the variable c taking a certain value
given the values of the variables in the set V − Vα. This procedure for achieving a
desirable and feasible system state is as follows. Let, Vcurrent represent the current
system state and Vgoal

φ represent the new desired values for the set Vφ. To find the
values of variables in Vα that can possibly lead to the goal state, we create the set
V′ = V−Vα. We create an instance Vgoal of the set V′ by assigning the corresponding
values from the set Vcurrent and thereafter resetting the values corresponding to the set
Vφ using the values from Vgoal

φ . We then use the instance Vgoal to find the instance cgoal

of variable c that maximizes Equation 5. The values of Vα corresponding to cgoal so
determined are used as the new values for actionable variables.



Discussion. Note that the state depicted by Vgoal may not exist in a real system. This
is because the variables that are contained in V −Vφ ∪Vα inherit their values from
the state instance Vcurrent, and it may so happen that when the system translates to the
new goal state, the values for variables other than the variables of interest and action-
able variables may also change. However, experimental results presented in Section 4
show that the predicted values of Vα are mostly able to achieve the goal state. This
can be attributed to the fact that attribute discretization adds some degree of tolerance
causing some smaller changes not to be reflected until they occur at the points where
discretization partitions the continuous data space. Another important consideration for
future work may be the consideration of the magnitude of change in the values of the
variables in Vα, a solution that requires smaller change in magnitude may sometimes
be preferred over the most probable solution.

3.3 Policy Learning, Adaptation & Confidence Attribute

The system state space model and the micro-model play a central role in supporting the
task of policy learning. The high-level directives or goal statements are described over
the set of variables contained in the set Vφ. For example, a high-level directive like
delay < 20msec can be used to learn the corresponding policy using the procedure
described next. The framework instantiates a trigger for capturing delay ≥ 20msec
which acts as the event in terms of policy. If at any time the event occurs the current
system state Vcurrent is used in conjunction with system sub-space micro-model to
arrive at a corrective action. The event, the current system state (condition) and the
corrective action is recorded as a policy. Due to space limitations we cannot give the
full details of policy construction here. Interested readers may refer to an extended
version [20] of this paper.

In a dynamic system the micro-models may evolve with time. This may cause some
learned policies to become invalid with time because the corrective actions that were
determined using an earlier version of the model may not be applicable any more. Policy
adaptation requires periodic evaluation of the actions specified as part of the learned
policies.

The confidence-attribute associated with each policy helps us to deal with the issue
of administrator’s trust in our self-management framework. The confidence-attribute
for a policy is equal to the probability p determined using the Equation 5. The system
administrator can declare a threshold value to have control over the policies that will be
enforced. Only the policies with a confidence-attribute greater than the threshold value
are autonomically enforced by the self-management framework.

3.4 Implementation

We have implemented the system state-space partitioning algorithm in C++, which
takes as input a set of data which contains actual observed values from a running (or
simulated) system and the index of variables which can be modified deterministically.
The user also needs to provide values for the partitioning parameters η, µ, ∆max and f
as defined in Section 3.1. The output from the partitioning algorithm is the set of parti-
tions and the corresponding index of variables which can be modified deterministically.
The output is generated in the well-known C4.5 format to facilitate further processing.



We then make use of jBNC [17], a java based implementation for the Bayesian net-
works to build a TAN micro-model corresponding to each partition. The TAN is then
used for finding corrective actions, policy adaptation, etc.

4 Experiments

Our goal was to study the suitability of our techniques in managing large enterprise-
scale systems where a large number of variables can potentially affect the state of the
system. In this section, we present our findings based on simulation experiments un-
der a variety of workloads and operating conditions. Our techniques, for instance, were
able to detect bottleneck nodes in our simulation of a PIDS-like middleware and were
able to avoid several SLA violations that would have otherwise occurred. We start with
a description and validation of the simulator testbed, which is followed by a brief de-
scription of the workload and evaluation metrics. We present our experimental results
starting from Section 4.3.

4.1 Simulator Testbed

We wanted to evaluate our techniques for self-management using applications that are
representative of the ones used by large enterprises. We evaluated the possibility of us-
ing well-known benchmarks and real-enterprise applications for putting our techniques
to test. However, we soon realized that the applications available to us in our lab envi-
ronment (like RUBiS [26] and an implementation of industrial middleware from Delta
Technology [12]) were not instrumented well enough to sense and actuate a sufficiently
large set of variables, and often changing any environment parameter (like maximum
number of worker threads, number of MySQL connections, memory allocations and
MySQL cache size) required restarting the application for the changes to take effect.
Of course, in order to use our techniques, these systems could be enhanced to provide
more monitoring and dynamically tunable parameters. Furthermore, it was not possible
for us to make use of such applications for a large-scale (say 500 underlying nodes)
evaluation of our techniques.

In order to overcome the problems mentioned above we decided to design a well
instrumented simulator for simulating a large system implementing service oriented
architecture (SOA). An implementation of SOA contains a set of services running on a
distributed network of nodes that can be invoked by sending a message to the service,
messages may or may not be generated as a result and if the messages are generated
they may be forwarded to the source, to a sink or to some other service(s). The PIDS
middleware described in Section 1.1 can be implemented as a SOA. Our SOA simulator
consists of four main components - server, service, network-link and client. A server
represents a processing facility with a limited number of cycles per second, a limited
memory, connections to other servers and ability to throttle server frequency at the
expense of more power. A service represents a software which accepts certain types
of messages, possibly generates some messages in response and determines the server
cycles that will be used to process a certain message type given the available memory.
There may be more than one service running on a server and they may have different
priorities. A network-link has an associated bandwidth, delay, and cost per unit of data
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transmitted. Finally, a client represents a source or a sink for the messages. An event
source has a rate of generating events that can vary with time. A sink measures the
incoming event-rate, the average delay for update propagation and the current delay
measured over a recent window.

A simulation can be started by providing a network topology which instantiates
the basic distributed network of servers and network-links, this is followed by addition
of some services for processing messages and some clients. The simulation is run for a
pre-specified amount of time and it dumps the state at configurable regular intervals. We
make use of these state dumps to evaluate to build system models and then use these
system models to arrive at policies for managing the simulated system. The network
topologies for the simulations were generated using the GT-ITM [30] generator.

4.2 Simulator Validation

To validate our simulator we compared the measurement we got from our simulator
with the ones we got from using the same experimental setup on Emulab [14] testbed.
Our experimental setup consisted of a 13 node topology and an event processing graph
that consisted of 3 sources, 2 services and 2 sinks. On the Emulab testbed we created
the specified 13 node topology and then made use of the IFLOW middleware [22] to
setup the event processing graph. We instantiated the same setup using our simulator.
The services were configured to take a specified amount of time for processing the in-
coming events depending upon the incoming event type, and server load. We measured
the event propagation delay between a source and a sink under a variety of variations
which included events that take different processing times, variation in event rate from
sources and change in event-size. The same event workload was used for both the Em-
ulab testbed and the simulator. The measurement of event propagation delay for both
the Emulab testbed and the simulator is shown in Figure 2. Our simulator was able to
closely follow the behavior of real emulation testbed for the same experimental setup
paving the way for simulations at a larger scale.

4.3 Microbenchmarks

We ran two simulations with 8 and 32 servers, each for 4 simulated hours. The two sim-
ulations dumped 71 and 227 state variables, respectively every 30 seconds. During the



course of simulation we kept modifying the system conditions like the event rates from
the sources, modifying the server frequencies, using alternate high or low-cost links to
the destination and changing the priorities for various services running at a server. We
also ran the simulation for another 20 minutes, dumping data at every 30 seconds to
evaluate the accuracy of generated models. We collected 3 such sets of observations.

The first experiment focused on determining the effect of partitioning parameters
∆max and f on the number of partitions that are created for a given system state-space
and the average number of actionable variables that appear across the partitions. The
results obtained by using one set of observation from the simulation described above are
shown in Table 2. The table enumerates results from two set of simulations described
above which generated 480 observed system states each. The results show that our
techniques were able to significantly reduce the average number of actionable variables.
For example our partitioning scheme was able to able to achieve a 90% reduction in
number of actionable variables per partition for a system state-space with 31 variables.
As far as the number of partitions are concerned, they are an important contributors
towards the scalability of our techniques. However, a very high number of partitions
may lead to partitions that may have a very sparse population leading to bad system
models. The number of actionable variables are required to be low for our techniques
to be effective as long as the manageability of the system partition is maintained, which
can be controlled by setting a low value for ∆max.

The next experiment was conducted to examine the effect of partitioning on the ac-
curacy of the system models. To construct a single system state-space model for the set
of observations collected earlier we proceeded as follows. We eliminated any Vα from
the set if it did not change its value during the simulation run. This reduced |Vα| to
≈ 5 and ≈ 11 for the simulations with 71 and 227 variables, respectively. Notice that
even with a discretization factor of 2 for each variable, the simulation with 227 variable
had 211 = 2048 possible values for the variable c. In the real world this translates to
the confusion of which ‘knobs’ to turn to fix the system. Using the technique described
in 3.2 we then constructed the single system models. For building micro-models corre-
sponding to the partitioned sub-spaces we did not have to perform the pruning of the set
Vα as the partitioning algorithm takes care of removing the redundant members from
the set Vα. The micro-models were then constructed for each of the partitioned sub-
space. We used the generated models to predict the value of actionable variables given
the value of other system variables from the test data set. Results reported in Table 3
show that the specialized micro-models work better than a single model at correctly
predicting the values of variables in Vα.

Table 2. Effect of partitioning parameters on
|Vα| & number of partitions

Original Partition
f ∆max |V| |Vα| avg |Vα| partition count
3 0.1

71 11
2.8 5

4 0.2 4.0 3
3 0.1

227 31
2.7 7

4 0.2 3.8 5

Table 3. Comparison between the accuracies
(in %age) of single and micro-models

Data Set Model Type
|Vα| Single Model Micro-Model
71 89.4 ± 2.8 92.3 ± 3.2

277 86.3 ± 1.9 90.7 ± 2.3
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To examine the effect of the number of observed system variables (i.e. |V|) on the
accuracy of predicting the right values for the variables in Vα we conducted the fol-
lowing experiment. We used our SOA simulator to simulate systems that had 37, 71,
150, 320 and 644 variables that could be observed. Each system was simulated under
varying workload conditions with appropriate corrective actions being taken at several
points in the simulation. The time a system was simulated for was proportional to the
number of variables being observed for that system. The smallest system with 37 vari-
ables was simulated for 1 hour simulation time. We used our techniques to build models
for each of the systems and then used 10 minutes of generated test data to calculate the
prediction accuracy corresponding to each model. We repeated the experiment 3 times.
Results shown in Figure 3 show a slight decrease in prediction accuracy with the in-
crease in number of observed system variables. However, the prediction accuracy only
shows a linear trend in decrease as the number of variables are increase exponentially.
We acknowledge that the results obtained may be highly dependent on the training set
and the test data set that were generated during the simulation.

4.4 Evaluation of the Self-Management Framework
The next set of experiments was conducted to evaluate the end-to-end efficiency of our
framework in managing large-scale systems. We study the impact of suggested policy
actions and the confidence attribute on the end system metrics at runtime. The simu-
lations were conducted for a system with 227 variables and consisted of 32 simulated
server nodes.

The simulation setup consisted of an event-flow that contained 3 sources, 2 services
and 1 sink, and 2 query response services which received a stream of queries from a
co-located client. Each event-flow service was located on a separate server but shared
the server with another query response service. The variables that could be modified
included the priority of the event-flow service thread, the priority of the query service
thread and the frequency of the server. The dynamic workload conditions were sim-
ulated by varying the event rates from the sources and the query clients. The metrics
of interest included delayflow and delayquery . The goals for the simulation run were
specified as delayflow < 12.5msec and delayquery < 7.5msec, and both the threads
were assigned the same priority. Figure 4 shows the delay observed at the event-flow
sink and at one of the query client with and without self-management. Our techniques
were mostly able to avoid any violations of the specified goals. The confidence thresh-
old for this experiment was set to 85.0%.



We next conducted an experiment using the above setup to examine any unwanted
behavior that may happen due to low confidence-threshold. When the confidence thresh-
old was reduced to 75.0%, we actually observed delays at the event-flow sink that
were more than the delays observed without the self-management in place. Confi-
dence thresholds even lower than 75.0% made the system behave erratically when self-
management was turned on. This was corroborated by re-examination of some of our
earlier data used for prediction accuracy experiments. 90.0% of the predictions that lead
to false predictions had a confidence-attribute lesser than 65.0%. These findings can
be attributed to the use of probabilistic models by our framework. A low-confidence
threshold means that there is possibility that a certain other assignment of values to
variables in Vα also has a high probability of occurrence. This may lead to two assign-
ments having almost the same probability of occurrence leading to a higher chance of
erroneous choice of assignment by the system.

5 Related Work
Policy Research
There has been a lot work in the domain of using policies for simplifying the man-
agement tasks associated with system administration. Over the last decade, researchers,
both in academia and industry, have focused on issues like policy specification lan-
guages [11], frameworks [5, 27] and toolkits [23]. The research presented in this pa-
per builds on the work done in the above mentioned areas and is a logical next-step,
as the focus is on applying the policy-research to the management intensive domain
of enterprise-scale systems. The policy research in the domain of automated network
management that deals with issues like security, access control and other associated
management tasks [29, 25] justifies our stand on studying the impact and application of
policy research to another rich domain. More recently, researchers have started evaluat-
ing the pros and cons of applying policy research for managing IT systems at large busi-
ness enterprises [7]. This research, which is in its nascent stages, promises to provide
systems that will manage themselves in accordance to high-level business goals [2]. The
issues concerning human expertise and policy representation have also been explored
in a recent paper [18].

Autonomic Computing & Self-Managing Systems
The task of implementing self-managing systems is a multi-step process in which poli-
cies can play an important role. Policies are a way to dictate the behavior of a self-
managing system. This is in line with the vision of autonomic computing - ‘to design
computing system that can manage themselves given high-level objectives from admin-
istrators’ - as described in [19]. There has been a lot of work in the domain of enabling
self-management for a wide variety of systems. The SLA-based approach to manage
systems has been explored by number of researchers [31]. In our prior work, we had fo-
cused on enabling self-management capabilities for distributed data stream systems [21,
22]. Some researchers have also explored the use of rule-based self-management ap-
proach for managing applications [4]. The use of utility-functions for self-management
has also been explored in specific reference to event-based systems [6] and an inter-
esting take on aggregate utility-functions is presented in [3]. It turns out that defining



utility-functions for enterprise-scale applications is a tough task because it may not be
possible to mathematically model all the factors that can potentially affect the state of
the enterprise system.

Bayesian Networks & Problem Diagnosis
Bayesian networks or the Belief networks have found applicability in a number of AI
domains and they represent one of the best classification tools available to researchers.
A tutorial on Bayesian networks is presented in [16]. Several specializations of the
Bayesian networks have been proposed in literature the most important ones being the
Naive Bayes [13] and the Tree Augmented Naive Bayes or the TANs [15]. In reference
to applying Bayesian networks for modeling computer systems, a very innovative ap-
proach for correlating instrumentation data to system states is presented in [9]. This was
later extended in [10] to develop signatures that could be used to more efficiently cor-
relate the SLA violations that may occur in a system. More recent work in this domain
makes use of an ensemble [32] of system models for the purpose of problem diag-
nosis. The work presented in this paper not only detects possible violations of higher
level goals by the system but also suggests appropriate corrective actions to arrive at a
solution for the problem.

6 Conclusions & Future Work
In this paper we described a system modeling framework that collects the system param-
eters and metrics into a unified abstraction, we call the system state-space, and identifies
the actions that can be used to manage the system. To deal with complex system state-
spaces, typical of enterprise-scale systems, we presented techniques that can be used to
reduce the complexity and to more precisely model critical aspects of the system, and
to more effectively develop policies. Additionally, iManage has capabilities for dealing
with dynamic environment and for letting the administrator incorporate human knowl-
edge and experience to refine the policies. Finally, the confidence-attribute associated
with the policies learnt by iManage framework allows the administrator to fine-tune the
enforcement of such policies. As part of the future work we are trying to address the
issues related to monitoring overhead and making use of dynamic Bayesian networks
to incorporate the consideration of time into the system model.
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