A Cost-Effective Distributed File Service
with QoS Guarantees

Kien Le, Ricardo Bianchini, Thu D. Nguyen
Department of Computer Science, Rutgers University
{l'eki en, ricardob, tdnguyen}@s.rutgers.edu

Abstract. Large-scale, value-added Internet services composed of indepien
cooperating or competing services will soon become common placergev
groups have addressed the performance, communication, digcamdrdescrip-
tion aspects of these services. However, little work has been doneemtivedfy
composing paid services and the quality-of-service (QoS) guaratitaethey
provide. We address these issues in the context of distributed file storttus
paper. In particular, we propose, implement, and evaluate a costreffeQoS-
aware distributed file service comprising a front-end file service ank-ead
(third-party) storage services. Our front-end service uses matlainaodeling
and optimization to provide performance and availability guarantees atdetv ¢
by carefully orchestrating the accesses to the back-end servicesifgptal re-
sults from our prototype implementation validate our modeling and optimization.
We conclude that our approach for providing QoS at low cost shoulgsbfil to
future composite Internet services.

Keywords: Distributed storage, quality of service, cost optimization.

1 Introduction

Large-scale, value-added Internet services composeddepandent cooperating or
competing services will soon become common place. We refbesse services @m-
posite servicesTwo technology trends suggest this new class of servibespitogress
toward ubiquitous Internet connectivity even from deviegth limited resources, and
the increasing adoption of service communication, disggvand description stan-
dards, such as the Simple Object Access Protocol (SOAP)tiheersal Description,
Discovery and Integration Service (UDDI), and the Web Senbefinition Language
(WSDL). Together, these trends are forcing functionalitgl data into the network in-
frastructure in the form of remotely accessible services.

Composite services promise anytime, anywhere access trfidwervices and vast
data sets. A composite service may use constituent sethiagsrovide complementary
functionality or data. For example, a composite stock sermight use a service that
provides stock quotes in some currency and a service timslates an amount of money
(e.g., a stock quote) in one currency into another. In cetiteacomposite service may
use services that provide the same functionality or dataekample, a composite job-
scheduler service might use multiple job-execution ses/idRegardless of type, we
expect that composite services and their constituentaEswiill provide service-level
agreements (SLAs) for a monetary charge.

In terms of structure, composite services are organizedaritont-end service and
multiple independent back-end services. The front-ends@monitors and aggregates
the back-end services, whereas the back-end services auigataiwith the front-end
service but not with each other. In the above examples, ek sind job-scheduler

services are called front-end services, whereas the spocte, currency-exchange, and
job-execution services are called the back-end services.

For several years, researchers have been studying comgesitices in one form
or another in the CORBA, Grid, and Web Service communitidese works have
mostly focused on the performance, communication progati$covery mechanisms,
and description of these composite services. Little work lbeen done on effectively
composing paid services and the quality-of-service (Qa@fantees that they provide.

In this paper, we address these issues in the context oibdistd file storage. In
particular, we propose, implement, and evaluate a cost#fe, QoS-aware composite
file service comprising a front-end file service and back-@hild-party) storage ser-
vices. The composite file service is intended to supportreafttime applications that
involve large data files, such as the visualization of lssgale scientific data (e.g., [1]).
For these applications, it is important to guarantee thiat filas will be available a large
fraction of the time, and that a large percentage of file esewill be served within a
certain amount of time.

The composite service provides “soft” availability andfpemance guarantees, i.e.
in extreme scenarios, such as a network partition sepgrétmt-end and back-end
services, the guarantees may be violated. When these wiwdaticcur, the service com-
pensates users for the violations.

Our front-end service allows users to choose the performand availability guar-
antees that they desire on a per-file basis. Based on therchueagability guarantee,
the front-end service replicates the file across the badkservices. Based on both cho-
sen guarantees, the back-end services’ behaviors, am®&thas, the front-end service
intelligently distributes the requests across the baaksenvices to provide the chosen
guarantees at low cost.

The front-end service uses mathematical modeling and atian to carefully
orchestrate the accesses to the back-end services. Manificaily, the front-end ser-
vice combines two algorithms: Base and OptWait. Base ismisegnt of traditional job
scheduling. It sends each request to one of the back-enidegihat replicate the cor-
responding file, according to a ratio determined by the nma#treal machinery to meet
the file’s performance guarantees while minimizing access ¢n contrast, OptWait is
more sophisticated. It may actually send each request topteuback-end services in
turn (starting with the cheaper ones) until the requesttisfead. The amount of time
it waits for each service to respond is determined mathealftiand depends on the
probability that the service will return a reply during thahe and on the file’s per-
formance guarantee. Because we can mathematically detitthe doest algorithm, our
composite service picks the best algorithm for each file.

Because our initial focus (and the focus of this paper) ish@réquest-distribution
aspect of our work, we have implemented a prototype of ourpomite service with a
single front-end file server. The server implements the Nfefopol and executes our
mathematical machinery. It communicates with client maekiusing a standard NFS
protocol over UDP, whereas it communicates with back-emdes using XML over
HTTP. Several Internet storage services, e.g. Amazon<&3'[2], could implement
the back-end services. However, for greater control of gpegments, we implemented
our own back-end services, which provide data blocks nargexdbbolute number.

Experimental results from our prototype implementatiolidede our modeling and
optimization approach. Our analysis of the algorithmsistideveral different parame-
ters, including the performance and availability guarastend the characteristics and
behavior of the back-end services. Our most important teshbw that our composite
service is successful at providing the guarantees thadihfges. The results also show
that, independently, Base and OptWait provide the lowest icodifferent parts of the
parameter space, whereas our combined system always psotheclowest cost.

2 Related Work

Our work builds upon previous research on service composifpoS-aware resource
management, and distributed file and storage systems.

Service composition.This has been an important research topic in the Web Services
community, e.g. [3, 4]. These works typically consider theSRaware composition of
services from constituent services that provide compleéangrmomputational function-
ality. For this reason, they do not consider request-thistion policies across the ser-
vices. Our work differs from these efforts as we study retydestribution policies that

are both QoS- and cost-aware, across functionally-eqnvaonstituent services.

QoS-aware resource managemenA large body of work has been done on this topic,
especially in the context of networks, server clusters,@itlenvironments, e.g. [5-7].
These works consider resource allocation, provisioniagenvation, and negotiation,
as well as admission-control policies in guaranteeing Qofsl 6ometimes optimizing
costs) for the systems’ users.

The extent of the performance guarantees provided by ouposite service is lim-
ited to the front-end and back-end services’ behaviors, elsag the communication
between front-end and back-end services; the compositeEEeaannot provide perfor-
mance guarantees about the communication between cliethttha front-end service.
All other works on server-side QoS guarantees have this $iamtation. We envision
combining our QoS guarantees with those of future netwark=mpletely eliminate
this limitation. Nevertheless, an easy approach to tathtegroblem with current net-
work technology is to place front-end servers on the sana-@aea network as clients.
In this approach, the front-end server could be an applidikestoday’s load balancing
or storage appliances.

Although we can benefit from previous QoS works in managirggrésources of
our front-end service and by leveraging network QoS, thigepdocuses on request
distribution across the black-box back-end services, whidow us no control over
their resource allocation. In fact, the back-end serviegstbemselves be distributed.
The only information about them that we rely upon is their SLA

Distributed file and storage systemsMost of the research in distributed file and stor-
age systems has been focused on cluster or local-area ketmaronments, in which
resources are dedicated to the system and owned by the samrestchtive entity, e.g.
[8—10]. Due to their low communication latencies, theseaeys are amenable to small
data and meta-data transfers. In contrast, peer-to-peeariil storage systems have
also become prominent in recent years, e.g. [11-13]. Thesksvhave typically con-
centrated on achieving extreme performance scalabiliyaamilability in the presence
of high churn in the online membership of constituent nodes.

Although our composite file service can be seen as a peezdpgystem in the
strictest sense, it lacks a few defining characteristics®fipus systems, such as peers
that often become unavailable. Further, we are interestpdshing the boundaries of
traditional distributed file systems, such as NFS, by udigrt across the wide area.
Two papers have addressed the effect of high latencies osykem traffic [14, 15],
but neither of them considered QoS or costs. We expect kitbtack-storage services
to become widespread in the future, as protocols such ad is&&8me more popular.

Summary of contributions. As far as we know, this paper is unique in a few respects.
First, our work seems to be the first to focus on cost- and QuSerequest distribu-
tion across third-party services. Second, our OptWaitestydistribution algorithm de-
parts from traditional scheduling policies by potentiahsigning a request to multiple
back-end services in turn. Finally, our approach of congidethe entire set of recent
response times from each back-end service, rather thag aisimgle metric such as the
recent average response time or the maximum recent resporesén mathematically
determining request distributions is also novel.

3 Our Composite File Service

In this section, we discuss the basic principles behind oarposite file service, our
request-distribution algorithms, and our current implatagon.

3.1 Basic Principles

Overview. As already mentioned, our composite file service compridesd-end file
service and a number of back-end block-storage servicesfroht-end service trans-
lates the file system API, e.g. create, read, write, unlintg block accesses that are
forwarded to one or more back-end services. The front-endcgecomposes the user-
requested guarantees from the back-end services at lowlodact, even if a single
storage service could provide the required guaranteestlyit® the user (who could
use a local file system and iSCSI, for example, bypassingrtré-énd service), the
composite file service could still provide them for a lowest@.g. by forwarding some
of the requests to a back-end service with lower cost persaagbenever possible.

In our design, the front-end service is implemented by a remaf distributed
servers for both performance and availability. Each usamtsthe file system through
one of the front-end servers, which is chosen using a sep#/ab interface listing all
available front-end servers and their geographical looati The same file system can
be mounted concurrently at different front-end serverswvéler, the front-end service
provides no consistency guarantees when read-write ane-write file sharing is not
done on the same front-end server. When the same front-evet $eused, strong con-
sistency is guaranteed. To guarantee high availabilityfaoli tolerance, all data and
meta-data are replicated across several back-end serfAgegbermore, the front-end
servers only store soft state, such as a disk cache of mtdaatad keep write-ahead
logs of updates in the back-end. All files are accessible faonmode-map stored at a
few specific back-end services (and cached on the disks &fdhtend servers). Thus,
if a front-end server fails, the user can mount the file systewugh another front-end
server, which can take over for the failed server using iiterahead log.

Notation Definition
Afront Availability of the front-end service
A; Availability guarantee provided by back-end service
(P, L) Performance guarantee provided by back-end seivice
When service is availablé?, % of requests should be servedlintime
(ci, e, c; Read, write, and storage costs of back-end service
Af Availability requested by the creator of fije
(Py, Ly) Performance requested by the creator of file
When service is availablé?; % of requests should be servedin time|

Hy Set of back-end services that store file
Sy Size of file f
TE, Wy Expected percentage of reads and writes toffile
Ry, Wy Actual percentage of reads and writes to file
Pi, Py Percentage of reads and writes to filéhat complete irL; time
CDF;(L) Percentage of requests served by back-end seiick time
Di Probability of sending a request to back-end servi@@ptimized by Base)
(Li, ps) Length of wait at back-end serviéeand expected percentage of

requests served byduring the wait (optimized by OptWait)
Cost(f) Expected monetary cost of serving fife
AccessCost:(f)|Actual monetary cost of serving filg during intervalt
TotalCost(f) |Actual monetary cost of serving filg over all intervals

Table 1. Notation and definitions.

The back-end block-storage services may be provided bgrdift service providers.
Although our front-end service treats the back-end sesvdse'black boxes”, we do as-
sume that each back-end service is bounded by an SLA witlrahé-énd file service.
In particular, each back-end servicpromises to meet an availability guaranteedgf
and a performance guarantee &%,(L;) at a cost of ¢/, ¢}, ¢{). The two guarantees
specify that service will be servicing access requests% of the time and, when it is
available,P;% of the accesses will complete within tinhe. The SLAs are defined over
a long period of time, say one month, so that short-livedqrerAnce anomalies do not
cause SLA violations. The cost tuplél (¢, c;) specifies that each read access costs
¢}, each write access cosf$, and each unit of storage per unit of time castsTable 1
summarizes the notation used in our modeling.

In computing request distributions, the front-end servises the availability and
cost information from the SLAs with the back-end servicestéad of relying on the
performance guarantees provided by the back-end serviaasnputing distributions,
we use the latency of requests as observed at the front-evidesto encompass the la-
tency of the wide-area network. Specifically, the front-eadvice monitors the latency
of block accesses to each back-end service over two perfa loours per day. The
request distributions computed during a period of 12 hoteshased on the cumula-
tive distribution function (CDF) of the latencies obserkating the same period of the
day before. For example, the request distributions contpbdteing the afternoon on
Wednesday are based on the latencies observed during énecafh on Tuesday. This
approach is motivated by the cyclical workloads of manyrméservices [5]. We plan
to investigate more sophisticated approaches for corsgleiock access latencies as
future work.

File creation and accessWhen a filef is first created, the user can specify a desired

availability guarantee oft ; and a performance guarantee &% (L ;). (Files for which

the user requests no guarantees are stored at a single hdcleiwice and served on

a best-effort basis.) These desired characteristicscéed by the front-end service,

determine that it must be able to serve access requegtsitdo of the time and that

P;% of the requests must complete within timg, when the service is available. If

a file access request involves> 1 blocks, the target latency for the request becomes

nL¢. Again, these guarantees are defined over a long period ef &rg. one month.
Obviously, we can only meet the requested availabilityéffitont-end service itself

is more available thar ;. If that is the case, it will choose a set of back-end services

Hy to hostf that meets (or exceedd);. The front-end service randomly selects back-

end services from three classes — inexpensive, medium,qethsgive — one at a time

in round-robin fashion. These classes are likely to cordfto services with generally

high, medium, and low response times, respectively, afhdbat is not a requirement.

Assuming that failures are independent, the front-endicewill select a set of back-

end services that satisfies the following inequality:

Afront X (1 - H (1 - Az)) Z Af (1)

i€Hy

where A¢,.,: is the availability of the front-end service. This formudat assumes
that the back-end services are always reachable from thédra service across the
network. However, it can be easily replaced by more somlaitsd formulations without
affecting the rest of the system.

The front-end will choose a minimal sBt; in the sense that, if any back-end service
is removed fromH ¢, the remaining set would no longer be able to mégt OnceH f
has been chosen, the front-end service will solve a cogtgattion problem for the
two algorithms and choose the one that produces the lowsstargf.

At this point, file f can be accessed by clients. On a read, tthe front-end service
will forward a request to a subset &f; for each needed block according to the chosen
algorithm. On a write, the front-end will forward the requesall back-end services in
H to maintain the target data availability, while concurhgmiriting to the write-ahead
log if necessary. The front-end service only waits for thegilsle write ahead and one
back-end service to process the write before respondirtggtalient. In the background,
the front-end service will ensure that the write is procddsgethe other back-end ser-
vices in Hy as well. When write sharing is done through the same frontsamnder,
this approach to processing writes favors lower latencheut compromising strong
consistency; the pending writes can be checked before &guést read is forwarded
to the back-end.

Optimizing costs. Our request-distribution algorithms, Base and OptWaé,ran by
the front-end service to minimize the cost of accessing #ukiend services ifl ;. As
mentioned above, their respective optimization probleressalved at first during file
creation, but they may need to be solved again multiple tioves the file’s lifetime. In
particular, whenever the file is opened, a new distributtondmputed but only if the
current distribution is stale, i.e. it was not computed base the same period of the
day before. After the back-end services are selected anddjoest distribution is com-

puted, the front-end service can inform the client abouttist of each byte of storage
and the (initial) average cost of each block access, givendtiuested guarantees. Note
that the cost of accessing the write-ahead logs is not iedud the cost computations;
this cost is covered by our service fees (discussed below).

Because we select thié; back-end services randomly from three classes of ser-
vices, our cost optimization produces a “locally” optimalst it is possible that this
cost will not be the lowest possible cost (i.e., the “gloyadiptimal cost) for a system
with a large number of back-end services. Attempting to peedthe lowest possible
cost would involve searching an exponentially large spdd®ok-end service group-
ings, which could take hours/days of compute time to expioeaningfully, even if a
heuristic algorithm were to be used. We plan to explore #s8é in our future work.

The front-end accumulates the access costs accrued dhengetiods of stable
request distribution, i.e. in between consecutive chatmt® request distribution. The
overall cost of the composite service is then the sum of tisésdor each stable period.
Periodically, say every month, the front-end service chsuganch of its users based on
how many accesses and how much storage the front-end sezgigieed of its back-end
services on behalf of the user. Formally, the total cost toHzeged is:

TotalCostf) = » _ AccessCostf) + Sy > ¢ 2)

Vi 1€Hy

whereAccessCost(f) is the access cost of each periaaf stable request distributions
since the last calculation @fotalCost(f) andS; is the maximum size of the file since
the last calculation df'otalCost(f). We defineAccessCost.(f) exactly below.

Service fees and compensatiorkinally, note that the costs incurred by the front-end
service are actually higher than the sumTotalCostf) for all files. As mentioned
above, the cost of accessing the write-ahead logs is natdedl inTotalCos{ f). In
addition, when the client load is low, the front-end servitay need to send additional
accesses to the back-end services to properly assess thintcperformance (and
availability). These extra accesses increase costs fofrthé-end service; the extra
cost can be amortized across the set of users as a “service fee

Further, there may be situations in which the guaranteegiged by the front-
end service are violated. For example, the network betweerrbnt-end service and
some of the back-end services may become unusually slowcsrdrad services may
start violating their SLAs. As mentioned above, the frontteervice responds to these
situations by recomputing its request distributions agdicmly, but the recomputations
may not occur early enough. Nevertheless, in case of badkSém violations, the
front-end service will be compensated for them and the cosgtéons can be passed
on to its users. In case of network problems, the front-emd can use its service
fees to compensate users.

3.2 Base

In Base, a read request to a fflés forwarded to a single back-end service H; with
probability p;. (Writes are sent to all back-end servicesHn.) Base computes these
probabilities so as to minimize the cost of servicing acegssf while respecting the

performance guarantees requested for the file. Formalbg Baeds to minimize:

Cos(f) =ry Z pic; +ws Z ci’ 3)

i€Hy i€Hy
subject to the following two constraints:
1.Vier,pi20andei:1 2.TfP}'+wa}U > Py

wherer; is the fraction of read block accessesftow; is the fraction of write block
accesses tg, P} is the percentage of read accesses that complete withiand P}’
is the percentage of write accesses that complete within

Equation 3 computes the average cost of reads and writesctiefl the read-to-
write ratio ¢y : wy), and the fact that each read incurs the cost of only 1 badk-en
access according to the probabilitigghencep;c;), while each write incurs the cost of
accessing all back-end services. Constraint 1 stateshbairbbabilities of accessing
each back-end service iH; have to be non-negative and add up to 1. Constraint 2
requires that the percentage of reads and writes that ctenplthin L ; time must be
at leastP; to meet the guarantees requested by the user.

We then define’; and P}’ as:

P; =Y piCDF;(Ly) Pf = max(CDF;(Ly)) (4)
i€H; !
where theCDF; (L) operator produces the percentage of requests satisfidd withme
by back-end servicg as observed at the front-end servi¥. is determined by the best
performing back-end service because the front-end forsveadh write in parallel to all
back-end services and replies to the client when the firston®letes.

Equations 3 and 4 together with the two constraints comigletefine Base’s op-
timization problem, except for how to determing andw,. The user can optionally
estimatery andw; and pass them as parameters at file creation time. If the ossr d
not provide this information, we split constraint 2 abovtitwo parts,P; > Py and
Py > Py, and instantiate Equation 3 with the assumption that= 1 andw; = 0.
This approach correctly but conservatively ensures tleasthution to the optimization
problem provides the required guaranteesffdfor details on this point, please refer to
the longer, technical report version of this paper [16].

After each period of stable request distributions computed by Base, we coenput
the cost of accessing thié; back-end services during the period as:

AccessCosty(f) = Ry Z pic; +W;y Z ¢ (5)
i€Hy i€H

whereR; is the number of read requests ait is the number of write requests ser-
viced during period.

Finally, note that a malicious client is not able to lowerdtsess costs by providing
fake values for; andwy, since these costs are computed based on the actual requests
made by the client during each period of time.

3.3 OptWait

In OptWait, the front-end service takes the different apptoof possibly forwarding
a read request to more than one back-end service. In panti¢chie front-end service
forwards each read request to the back-end services in segjuieom least to most
expensive, waiting for a bounded amount of time for eachisero respond before
trying the next service.

The basic idea behind 100 ———— —
OptWait is illustrated in Fig- % ?f
ure 1, which shows three 80 | ﬁé F .
performance CDFs for three 270 Fal
back-end services. Let us as- & 60 gﬁ
sume that the left-most curve § 50 i
represents the most expensive & 40 i
service, whereas the right- 30 i ;
most curve represents the least 20 Low Cost 5
expensive service. OptWait 10 Me%mhggii .
would first forward a request 0 !

0 500 £ 1000 % 1500 2000

to the least expensive service, Block Access Time (ms)

waiting for an amount of time

l1. This would allow OptWait Fig. 1. Performance CDFs for three services. An Opt-
to take advantage of the perwait distribution might specify that a request should
centage of requestgy() that be forwarded to multiple back-end services in turn.
complete fairly quickly. If the

request did not complete withihh time, OptWait would then forward the request to
the medium-cost service and wait for some wait timeAgain, the goal would be to
leverage the steep part of the medium-cost service's CDE&ftHrl; + [, time, the re-
quest still had not completed at either back-end servicé\Wagp would then forward
the request to the most expensive service and wait for theestdo complete at any of
the three back-end services.

The key to OptWait is setting appropriatetimes. Like in Base, we do so by op-
timizing the access cost under the performance constrianussed by the guarantees
requested by the user. Assumiflg with 3 back-end services, our problem is to mini-
mize the following equation:

Cost(f) = r¢[p1C1
+((1 — CDFl(ll + l2))p2 + CDF; (ll + l2) — pl)(Cl + CQ)
+(1 = (1 = CDFy(ly + l3))p2 — CDFy(l1 4 13))(Cy + Co + Cs)]
Fwr Y ien, i
(6)
wherep; = CDF;(l;), CDF;(l) = 0 when service is not being used for reads (i.e.,
[; = 0), C; = 0 when service is not being used for reads antl = ¢ when it is, and
l; = oo when: is the last service being used for reads. (We only presertghation for
the restricted case of 3 back-end services for clarity amalree of space constraints.
We refer the interested reader to [16] for the general foatior.)
Equation 6 computes the cost of writes in the same mannee&stke cost function

(Equation 3), as the two algorithms treat writes in the sarag Wore interestingly, it

computes the cost of reads by summing up the multiplicatioth@ probability that
each back-end service will need to be accessed by the cosingf go. For example, if
services 1 and 2 are used for reads, the first two lines of thatex compute the cost,
whereas the third line becomes 0. The first line multipliesghobability that service 1
replies withinl; time (p;) by the cost of accessing service 1. For the requests that are
not serviced by service 1 withii, service 2 would be activated. Thus, the second line
of the equation sums up the probability that service 1 doesapdy withinl; + I5 time
but service 2 does reply withia time (1 — CDF ({1 +12))p2), and the probability that
service 1 replies aftéi but beforel; + 15 time (CDFy(I; + I2) — p1). The second part
of the cost is obtained by multiplying this probability byetbost of making one access
to service 1 and one access to service 2.

Equation 6 should be minimized subject to the following ¢oaiats:

1.Vie Hy,l; >0 2.7‘fP}'+wa}U2Pf

where constraint 1 simply states that times have to be ngative and constraint 2 is
the same as that for Base. (Just as for Base, the front-evidesean break constraint 2
into two parts and compute costs figr = 1 andw; = 0, if the user does not provide
information abouty andw; as a parameter.) We defid&}” just the same as for Base,
since the two algorithms handle writes in the same way. Itrash P; is defined as:

P} = CDF,(Ly)
+(1 = CDFy(Ly))CDFy(Ly — 1) (7)
+(1 — CDFy(Ly))(1 — CDFo(Ly — 13))CDFs(Ls — Iy — Iy)

where agairCDF; (1) = 0 when service is not being used for reads.
In plain English, the first additive component of Equatiorefresents the probabil-
ity that the least-expensive service will reply in a timelpmner (withinL ; time) if it
is used, the second component is the probability that segjiéf used, will reply in a
timely manner (given that a request is only forwarded totirdf time) but not service
1, and so on. (Again, because the general formulation amtbged form [16] are hard
to read, we only present the equation for a system with ex&8dtlack-end services.)
After each period of stable request distributions computed by OptWait, we-com
pute the cost of accessing tlhi& back-end services during the period by replacipg
andwy in Equation 6 byRy andW;, respectively.

3.4 Implementation

We have implemented a prototype front-end file service ddfigurehead to explore
our request-distribution algorithms in real systems wéhl workloads. Although Fig-
urehead should be supported by multiple geographicaltyiliged servers in practice,
it is currently based on a single node as a proof-of-coneeplimentation.
Figurehead consists of four components: an NFS version&iéathat allows the
file service to be accessed through standard NFS clients, sytem that supports the
NFS facade and uses remote back-end block services fogetaa optimization mod-
ule that computes the best request distribution strategy,aamodule that constantly
monitors the performance of the back-end services. All comepts were written in
Java and run in user space. Relevant details about thesedimymonents are as follows.

NFS facade.The multi-threaded NFS facade accepts NFS remote procediisevia
UDP. It implements the NFS version 2 protocol almost congiyethe only calls that
have not been implemented are those dealing with symbaoks li

The one complication that the NFS protocol poses for Figemelis that opens and
closes are not sent through to the server. Thus, whenevé¥Refacade receives a
create or the first access to an unopened file, it opens thanflleaches the opened-file
object returned by the file system. A cached opened-file bijatosed and discarded
after it has not been accessed for 5 minutes.

File system.The file system behind our NFS facade uses the same metactiatae
to represent a file as the Linux ext2 file system. The inode wasiged to include
information about the availability and performance guteas requested by the creator
of a file. An inode-map maps each inode to the set of back-emites that is hosting
the file. All data and meta-data except for the inode-map tmed at the back-end
services in 8-KByte blocks. The file system communicateh #ie back-end services
over a Web Service interface, namely the RPC implementétion Apache Axis [17].

When a file is first created, the file system chooses a set of édlservices to
host the file as described in Section 3.1. It then allocatéa@de, saves the availabil-
ity and performance guarantees for the file in the inode ¢plwith other traditional
file-system information, such as owner and time of creatienjers the mapping of
inode-number— H; into its inode-map, and writes the inode to the appropriatekb
end services. The file system also opens the file.

When a file is opened, the file system extracts the set of badkservices that
is hosting the file f/¢) from the inode-map, obtains their access time CDFs from the
monitoring module, reads the inode to obtain the perforre@uarantees, and asks the
request distribution module to compute the best requestilmison strategy for the
file. This last step is not necessary when the file is beingpexed and the current
request distribution was computed based on the same peribe day before. To de-
termine whether to recompute a request distribution, elgead maintains information
about when each distribution is computed. When a previousestglistribution exists
but a new computation is required, the computation is peréar in the background
and adopted when completed. When client requests arrivéijehsystem uses the file
meta-data to identify the corresponding blocks and forwaing appropriate block op-
erations to the back-end services. Reads are handled augdodthe current request
distribution, whereas writes are forwarded to all back-sebices inf.

The file system maintains a write buffer to ensure that eadte W a file f even-
tually reaches all of the nodes ;. When a write request arrives, the file system
assigns a thread per back-end servicé/inthe task of ensuring that the write eventu-
ally reaches a particular back-end. Each write is then dischfrom the write buffer
once it has propagated to all back-endddp. We assume that the back-end services
can handle small “overwrites;” that is, a write that onlytaly overwrites a previously
written block can be sent directly to the back-end servicilsout having to read the
old data and compose a new complete-block write. This avoalséng small overwrites
more expensive than a complete-block write because of thé tweread the block.

The file system implements two levels of meta-data cachimgt,fll meta-data is
currently cached on a local disk (and is never evicted) uaiBgrkeley database [18].

This cache reduces the number of accesses to the back-encksdny eliminating
repeated remote meta-data accesses. In fact, the cachs thakeeta-data accesses
to the back-end services relatively infrequent for the ddite applications we target
(dominated by reads and/or overwrites), so these accessemtcurrently reflected
in our mathematical machinery. Second, file-specific meta;d.e. inodes and indirect
blocks, are cached in memory for open files as the meta-datecessed. This avoids
repeatedly accessing the cache on disk for a stream of asctesthe same file. Meta-
data of an open file that is cached in memory is evicted wheifiilthés closed. Our
policy of holding a file opened in the NFS facade for 5 minutegdnd its last access
implies that meta-data for an open file is also cached in mgtmpthe file system for
the same amount of time.

Finally, since the NFS clients cache data themselves, ausyistem (in fact, the
entire front-end service) does not cache data at all.

Request-distribution module.This module solves the optimization problems posed by
Base and OptWait, and chooses the algorithm that produedswest cost. The Base
optimization problem is solved using the linear prograngrsnlver Ipsolve [19] and
produces the; probabilities with a precision of a few decimal places. Uhfnately,
minimizing cost in OptWait is not a linear programming pr@tfol. To solve it, we con-
sider all feasible combinations of the probabilitigss (in steps of 1% in our current
implementation) for the back-end servicesHnp to compute the besi’s wait times.
Even though this is essentially a brute force approach gsdwt take long to compute
as the size off; is small (typically two or three), even for high; requirements. We
report running times for this module in Section 4.

Monitoring module. This module is responsible for monitoring each back-endicer

in terms of its performance as seen at the front-end ser8igecifically, this module
probes each back-end service periodically with regulaclbércesses (every 5 seconds
in our current implementation). With the access times meakfrom these accesses,
this module constructs the performance CDF for the service.

Figurehead limitations. Currently, Figurehead has three limitations. First, as veam
tioned above, it is implemented by a single server, rathar thcollection of geograph-
ically distributed servers. Second, we have not yet implaete the write-ahead log
for crash recovery. Third, the monitoring module currerttyes not use information
from regular accesses to the back-end services, alwaysgssdditional block accesses
to assess their performance (and availability). Theseedcesses increase costs and
would not be required when the regular load on the back-endcgs is high enough.
We are currently addressing these limitations.

4 Evaluation

In this section, we first explore and compare the two requisstlelition algorithms over
the space of different costs and back-end service behaVilerthen study the impact of
using past access time data to predict current behaviohedfdck-end servers. Finally,
we evaluate our prototype Figurehead implementation, atidate that it provides the
performance guarantees computed by the mathematical neaghi

Ideally, we would like to study our system using actual baokl- services on the
Internet. However, at this point, there are not enough ahthe provide a large range

of data. Thus, we have collected access times over a perietbsé to one month
from 50 PlanetLab machines to support our evaluation. Thasz were collected by
running a simple block-storage service on each machineylatipg each service with
5120 blocks, and randomly accessing a block according tess@&oprocess with mean
inter-access time of 1 second from a client machine locatedrssite.

4.1 Base vs. OptWait

We first compare Base and OptWait mathematically assumied ficcess time CDFs
for the back-end services. In particular, we chose data fitm@e PlanetLab nodes,
pl anet | ab2. cs. umass. edu, pl anetl abl. cs. unibo.it, and

pl anet -1 ab. i ki . rssi . ru,whose CDFs are shown in Figure 1. We study a set of
three nodes because they provide a sufficiently rich spaaaderstand the behaviors
of the two algorithms, yet is not overly complicated to expla

Overall results. Figure 2 16
plots the average coLost f)) b
achieved by Base and OptWait b '\

for a read-only workload as a

function of the per-file guar- 10 \“’ *ﬂw%

—

anteed latency I(;), with a & s %
per-file percentage guarantee ¢

(Py) of 95%. (The results are 4 Opmgﬁ{g:mg% — |
similar for other P; values.) i optk\ﬁ;iet{gﬁgﬁg% |
Each of the curves represents oppasclools) —=—

a diﬁ:erent Combiﬂation Of al_ 0400 600 800 1000 12‘00 14‘00 1600

gorithm and per-access cost L

for each back-end service. For. . .
example, the curve Iabelerlg'z' Costs achieved by Base and OptWait g,

OptWait [5,10,15] representsassumlng a read-only workload ate} = 95%.

the cost computed by OptWait whefi = 5, ¢, = 10, andch = 15 fractions of dollar
per access (what fraction exactly is irrelevant to our studigble 2 lists the optimized
costs and request distributions for Base and OptWait faisdés10,15].

From these figures, we can see that neither Base nor Opt\Viditays better than
the other. At the extremes, i.e. at very low or very high layeguarantees, the two
algorithms behave the same because there is no room foripatiom. For very low
latency guarantees, the only choice is to use the most eixpeservice all the time (if
it is possible to meet the guarantee at all). For very higénley guarantees, the obvious
best choice is to use the cheapest service all the time.

In between these extremes, the relative behavior of Bas®atid/ait depends on
the shapes of the access time CDFs of the back-end services|las their costs. For
example, consider the costs achieved by Base and OptWain$bf5, 10, 15] at latency
guarantees of 500ms and 600ms. At 500ms, Base achieves ¢osethan OptWait
because it is able to use the medium-cost service 17% ofriies tvhereas OptWait
cannot yet use the medium-cost service (see Table 2). Ircéisis, forps in OptWait
to be greater than @; would have to be at least 365ms, leaving insufficient time for
accessing the high-cost service should the request fadrmptete at the medium-cost

[L; (ms)] Base Cost| Base Dist [OptWait Cost] OptWait Dist |

500 14.17 | [0,17,83] 15.00 [(0,0),(0,0),60,100)]
600 1250 | [0,50,50] 11.65 | [(0,0),(511,89)0,100)]
700 10.00 | [0,100,0] 10.00 [(0,0),(c0,100),(0,0)]
800 10.00 | [0,100,0] 10.00 [(0,0),(0,100),(0,0)]
900 9.83 [3,97,0] 10.00 [(0,0),(c0,100),(0,0)]
1000 | 9.66 [7,93,0] 10.00 [(0,0),(c0,100),(0,0)]
1100 | 9.46 [11,89,0] 9.80 | [(923,68),(0,0),60,100)]
1200 | 9.40 | [12,88,0] 9.80 | [(923,68),(0,0),60,100)]
1300 | 9.21 [16,84,0] 8.80 | [(794,62),60,100),(0,0)]
1400 | 8.85 | [23,77,0] 820 | [(923,68),60,100),(0,0)]
1500 | 7.86 [43,57,0] 7.10 |[(1404,86),(0,0)0,100)]
1600 | 5.00 | [100,0,0] 5.00 [(c0,100),(0,0),(0,0)]

Table 2. Costs and distributions with back-end service costs = [5,10,15] Bpd= 95%. The
Base distributions are listed a®{, p2, ps], whereas the OptWait distributions are listed as
[(I1,p1), (I2,p2), (I3,p3)]. l1, 12,13 are given in ms.

service withinly. At 600ms, OptWait does better than Base because its gresdenf
the medium-cost service, 89% vs 50%, more than offsets tedfthe time that it has
to use both the medium-cost and high-cost service.

In general, we observe that Base can typically start usingren-cost back-end
service before OptWait as the guaranteed response tinesises. This is because Base
never resends requests. However, eventually, OptWait sarthe lower-cost service
more aggressively because it can avoid the tail of the CDefsending requests to the
more expensive services as needed.

Impact of the back-end service costsObserve that Base’s distribution of requests
is independent of the ratio between the costs of the threle-&ad services. That is,
as long as > ¢; > ¢!, Base will choose the same set of distribution probaldlitie
(p1, p2, p3) regardless of the ratios :co:c3. OptWait, on the other hand, may alter
its distribution strategy based on the cost ratios. For gtantonsider in Table 3 the
distributions computed fok ; within the interval [1200ms, 1400ms] for costs [5, 6, 15]
vs. [5, 10, 15]. For [5, 10, 15], OptWait chooses to use eithelow- and medium-cost
or low- and high-cost services. For [5, 6, 15], OptWait ortposes to use the medium-
cost service. This is because the medium-cost service ysstightly more expensive
than the low-cost service; immediately choosing it is lesstlg than potentially having
to forward the request to two services.

Impact of the shape of the CDFs.Base and OptWait also behave differently with
respect to the shapes of the CDFs. In general, Base’s beltwpends on the three key
points CDF; (L), CDFy(Ly), andCDF3(Ly), whereas OptWait's behavior depends
on the shape of all CDFs between 0% &IdF;(L). These dependencies can be seen
clearly in Figures 3(a) and (b). Figure 3(a) shows the CDIstfback-end services
from which we derived two sets of three servigésv-cost-1, medium-cost, high-cgst
and{low-cost-2, medium-cost, high-cgst

Figure 3(b) shows that OptWait behaves significantly bettezn using low-cost-2
in the interval [600ms, 1600ms] because low-cost-2 is suhigllly “steeper” than low-

Ly |Back-End|Base Base OptWait OptWait

(ms)| Costs |Cost Dist Cost Distribution

12049 [5,10,15]|9.40| [12,88,0] 9.80 |[(923,68),(0,0),60,100)]
120Q [5,6,15] | 5.88| [12,88,0] 6.00 [(0,0),(c0,100),(0,0)]

120Q [5,14,15]|12.92 [12,88,0] 9.80 |[[(923,68),(0,0),80,100)]
1300 [5,10,15]| 9.21|[15.79,84.21,0] 8.80 |[(794,62),60,100),(0,0)]
130Q [5,6,15] | 5.84|[15.79,84.21,0] 6.00 [(0,0),(c0,100),(0,0)]

1304 [5,14,15]|12.58[15.79,84.21,0] 9.50 [[(1064,70),(0,0)40,100)]
140qQ [5,10,15]| 8.85|[23.08,76.92,0] 8.20 |[(923,68),60,100),(0,0)]
1409 [5,6,15] | 5.77|[23.08,76.92,0] 6.00 [(0,0),(c0,100),(0,0)]

1404 [5,14,15]|11.92[23.08,76.92,0] 8.30 [[(1285,78),(0,0)40,100)]

|
|
|
|
|
|

Table 3.Costs and distributions witl?; = 95%, as a function of_; and back-end service costs.
The Base distributions are listed agi| p2, p3], whereas the OptWait distributions are listed as
[(I1,p1), (I2, p2), (I3,p3)]. l1, 12,13 are given in ms.

100 16 ' Base‘-Low Costi —
i A Base-Low Cost 2 —x—
90 14 X OptWait-Low Cost 1 —*— -
80 i g OptWait-Low Cost2 —&—
ol | TN
“é, 60 § W 10 \ \,ﬁ\b
E 50 3 g
o § © \K
& 40 é 6
30
20 Low Cost-1 —*— | 4
Low Cost-2 —&—
10 Medium Cost —=— 2
High Cpsl —o—
0
0 500 1000 1500 2000 %00 600 800 1000 1200 1400 1600 1800
Block Access Time (ms) L
@) (b)

Fig. 3. (a) CDFs for 4 back-end services. (b) Access cost achieved iy &ab OptWait when
using two different sets of three back-end serviflesv-cost-1, medium-cost, high-cpsand
{low-cost-2, medium-cost, high-csBoth with cost [5,10,15] an@®; = 95%.

cost-1. Base is also able to leverage low-cost-2’s betteader to improve its cost, but
less so than OptWait. The reason is that Base only leveragefact that low-cost-2
gives a betteCDF, (L) than low-cost-1, rather than the fact that low-cost-2 giaes
additional 30% of requests completing under 700ms overdost-1 in this interval.

4.2 Validating the Mathematical Machinery

We now validate our mathematical approach when servicitgghéle system work-

loads. We also validate that the prediction of back-endiserehaviors using past
access time data do not significantly degrade our QoS gusnFirst, we use sim-
ulation to analyze the mathematical approach independethieadetails of an actual
implementation. Next, we evaluate our prototype impleratorn.

Workloads. We use two realistic workloads. The first models an intevactisual-
ization application, where the user is navigating througharge amount of data—for
example, a large rendering model or large scientific datarsét application is exactly
the type of soft real-time application that Figurehead &igiged to support.

V-B S-B V-O S-0
Expected Simulated| Expected Simulated| Expected Simulated Expected Simulated
Min 95 95.06 95 95.28 95.2 95.61 95 95.56
Max 95 95.89 95 97.28 97.36 97.89 97.33 98.56
Avg 95 95.48 95 96.07 96.22 96.57 95.7 96.78

Table 4. Simulation results witd Py, L) = (95%, 600ms) and costs [5,10,15]V denotes the
visualization workloads the scientific workloadB the Base algorithm, an® the OptWait al-
gorithm. Expectedis the percentage of requests expected to complete b&fors computed

by the algorithmSimulated is the actual percentage of requests that completed bdfprm a
simulation run.Min, Max, Avg are the minimum, maximum, and average values across 18 runs
using 18 half-day traces from the PlanetLab machines.

This workload is constructed based on publications on lisat#on systems [20—
22], and has the following attributes: a random Poisson agadss stream with a mean
interarrival time of 50ms on a large data file. It currentlyedaot make a difference
to Figurehead whether a read stream is random or sequesitie Figurehead does
not currently do any prefetching or caching. We assume aorarmgad access stream
because these accesses are dependent on the user’siirgeracigation.

The second workload models a scientific application runnimg grid environment.
Although this is not a classical soft real-time applicafistill constitutes an interest-
ing workload because predictability of data access carifgigntly reduce the burden
of resource management and coordination of the stages ofltastage application
such as the one described in [23].

This workload is constructed based on data extracted fro@23H25], and has the
following attributes: a sequential read access stream &single large file followed by
a sequential write access stream to the same file. This ratelagcess stream repre-
sents a multi-phase application with an initial read phadead input data and a final
write phase that saves the computed results. We assumetidiahédiate results gen-
erated between the initial and final phases are stored ohdtwrage rather than a file
system such as Figurehead. We further assume that thd infii# data and the final
results have the same size; thus, the read-to-write ratidid=inally, both the read and
write access streams are Poisson processes with meamrintditimes of 50ms.

Because the WAN latencies we consider are larger than 50masaume that the
access streams of both applications are generated by a nofrdmncurrent threads.

Simulation using a priori knowledge of back-end service behaviorur first ex-
periment is as follows. Take a trace of the three machinese/bwerall behaviors are
shown in Figure 1 over a period of 9 days. Construct a CDF foh éeack-end service
for each 12-hour period of the 9 days. For each 12-hour peuisel the corresponding
CDF to compute the distribution using Base and OptWaiffpe= 95%, L = 600ms,
costs [5,10,15], and” = ¢* for all back-end services. Then, simulate Figurehead’s
response time for 18000 accesses for each workload usiri@theur traces that were
used to construct the CDFs. This corresponds to statisifeaiular knowledge of the
behaviors of the back-end services.

Table 4 shows the results for 18 runs of each applicatiomifdigion algorithm pair,
where each run was performed using a distinct half-day gesfdhe 9-day trace. For

V-B S-B V-O S-O0
Expected Simulated| Expected Simulated| Expected Simulated Expected Simulated

Min 95 92.72 95 94.28 95.2 93.83 95 95.67

Max 95 97.72 95 98.33 97.36 98.83 97.33 98.61

Avg 95 95.35 95 96.11 96.24 96.42 95.76 96.8
Failures 0 5 0 6 0 5 0 0

Table 5. Simulated results fofPs, Ly) = (95%, 600ms) and costs [5,10,15] when using data
access times from 12 hours ago to predict the current behaviors &férad services. The notation
is the same as in Table Eailures is the number of 12-hour simulation runs that did not meet the
QoS guarantee.

both workloads under Base and OptWait, the simulation adwegds to exceeding the
QoS guarantee. This is because we construct and use the @RFE®nservative man-
ner. In particular, each CDF is represented by a set of 1@0etespoints, representing
the latency corresponding to each percentage point on tie B&w suppose that the
mathematical engine needs a percentage value correspaodime latency 1000ms. If
our CDF has the points (999ms, 95%) and (1001ms, 96%), themoutl return 95%,
rather than an interpolated value between 95% and 96%. Weasehthis conservative
approach because an interpolated value would be optinsistieetimes but pessimistic
other times, making the mathematical machinery less piaduli.

An additional interesting observation to make is that matdwgcally, Base always
achieves a distribution that should theoretically givedkactP; required (in this case,
95%). OptWait, on the other hand, because of our discreteapp for computing the
best distribution, typically overachieves compared tordwuired P;. (Note that, for
Ly = 600ms, OptWait achieves lower cost than Base despite this ovenasiment.)
As shall be seen, this overachievement makes OptWait mtmestavhen the CDF is
computed based on past data.

Impact of using past access times to predict current back-ehservice behaviors.
We now consider the impact of not haviagpriori information on the expected behav-
iors of the back-end services. In particular, as mention&ection 3.1, we run the same
experiments as above but use a CDF constructed from thensspiones observed in
the same 12-hour period 1 day ago to predict each back-emitessrbehavior in the
current 12-hour period (e.g., 8am-8pm from Tuesday to ptdmihavior for 8am-8pm
Wednesday). Table 5 shows the results for 16 12-hour runs@uiel not use the first
two half-day periods because they did not have any pastrhi&ioprediction).

As expected, past data is not a perfect predictor of currelnaévor. This leads to a
number of 12-hour simulation runs where Figurehead woutdeable to achieve the
QoS guarantee. In fact, approximately 35% of the runs migse@o0S guarantee under
Base. OptWait has a comparable failure rate for the Visatdin workload but was
perfect for the Scientific workload. As already mentioneg@i\@ait is somewhat more
resilient to the imperfect predictor because it typicallle@chieves compared to the
requiredP;. On the other hand, the imperfect predictor can also lead 2Agour runs
to achieve more than the QoS requirement, i.e. more fhaof the requests complete
within L time. In fact, theMax values for both Base and OptWait are larger in Table 5
than in Table 4.

However, the most important observation here is tiath request-distribution al-
gorithms provide the performance guarantees that they m®when the entire 8 day
period is considered (see the simulated) entries). (Recall that QoS guarantees are
defined over long periods of time, such as one month.) Thenegfas this result is that
the QoS requirement is exceeded during the majority of théadiz periods, which
more than compensates for the many fewer periods when th@eatent is not met.

4.3 Prototype Behavior

We now validate that our prototype, Figurehead, actuallyvioles the performance
guarantees computed by the mathematical machinery. Allteeeported below were
obtained by running on 5 PCs connected by a Gb/s Ethernattsviich PC is con-
figured with 1 hyper-threading Intel Xeon 2.8 GHz proces2dBytes of main mem-
ory, and 25 GBytes of disk space. Three of the machines we as back-end block
servers and one as the client. The other machine ran FigaotleW\e always assume that
the three back-end services are needed to meet the clipatfisd availability require-
ment. Again, all the experiments assufe= 95%, Ly = 600ms, costs [5,10,15], and
c¢" = ¢v for all back-end services. To mimic a wide-area network, mgeited delays to
the completion times of accesses to the back-end servieas@éthe same 9-day trace
as in the last subsection; the delays were randomly chosemtfie appropriate half-
day period. (We used the traces instead of running the badlservices themselves on
PlanetLab nodes for repeatability.)

Microbenchmarks. We first present results from microbenchmarks to illustitagger-
formance of Figurehead. For these microbenchmarks, we atidhiect any network
delays so that performance reflects what is achievable olt#tNa We also assume
thatr; andw; are known ahead of time; i.e:; is 1 when measuring read performance
and 0 when measuring write performance. We measured writerpgnce for appends
(rather than overwrites) to a file.

Using these microbenchmarks, we find that the times requiredad and write 1
byte of data are approximately 30ms and 66ms, respectipjyends are more expen-
sive than reads because they require writing meta-dataaVeigurehead reads and
writes are about one order of magnitude slower than on a Wis&l The higher ac-
cess latency of Figurehead arises mainly from using a Beyl@dtabase as disk cache
and the Web Services interface to access the back-end tBoadrs. These inefficien-
cies can be easily eliminated in a production-grade imptgat®n. However, the fairer
comparison is between accessing a back-end service thFaggtehead and accessing
it directly, both on a WAN. Because network trips dominatehis scenario, Figure-
head would impose a much lower overhead. For example, thestoawerage latency
we measured for the PlanetLab nodes is 165ms. Given thischgtBigurehead would
impose roughly a 30% degradation when all accesses are@gppen

Another important issue is the overhead of computing relgdisributions. The
time to solve a Base and OptWait optimization problem is agipnately 710us and
14ms, respectively. We found that, while the time to solvéV@gt does increase with
L, it does so quite modestly. The reason for the slight timeeise is that a highdr
tends to generate a larger search space in OptWait. Fittadlye optimization times do
not change significantly with changifgy and so we do not show those results here.

Macrobenchmarks. Finally, we ran the two workloads described in the last secti
concurrently against a running instance of our Figureheatbfype. We ran each work-
load/distribution algorithm pair 4 times, each time for stufict half-day period from the
9-day trace (the first 4 half-day periods). Overheads froensystem (e.g, computing
time inside the Figurehead front-end) led to a degradatianeéeting the QoS require-
mentP; by almost nothing to at most 1%. Detailed measurements shairntie main

sources of overheads were synchronization delays, inacesrin the sleep function
used to emulate WAN latencies, and accessing the BerkeleyDeBpite these over-
headsthe prototype consistently provides the proper guarante®sn all the periods
are considered.

5 Conclusions

In this paper, we addressed the issue of composing fundiflemguivalent, third-party
services into higher level, value-added services by deuedpa distributed file service.
In this context, we proposed two request-distribution athms that optimize costs at
the same time as providing performance and availabilityrantees. To achieve this
goal, both algorithms rely on information about the behawbthe third-party ser-
vices to mathematically determine the request distrimstidVhile one algorithm is
reminiscent of traditional scheduling policies, the ottieparts significantly from these
policies, as it may schedule the same request at multipié-gairty services in turn.

We found that both algorithms provide the guarantees tlest pnomise. Compar-
ing the algorithms, we found that neither is consistently blest. Nevertheless, using
our mathematical modeling, the system can actually sehecbést algorithm for each
file a priori. Experimental results from our prototype immplentation characterized its
performance and the optimized access costs under the twothigs.

Composite services such as the one we studied are in theohoBased on our
experience and results, we believe that these servicesarafibfrom our modeling
and optimization approach for guaranteeing quality-ofise at low cost.

References

1. Shasharina, S.G., Wang, N., Cary, J.R.: Grid Service for \fimtion and Analysis of Re-
mote Fusion Data. In: Proceedings of the International Workshop afie€biges of Large
Applications in Distributed Environments. (June 2004)

. Amazon: Amazon Simple Storage Service. http://aws.amazon.com/s3

3. Gu, X., Nahrstedt, K.: Distributed Multimedia Service Composition with StedikQoS
Assurances. IEEE Transactions on Multime8({h) (February 2005)

4. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, Barmg, H.: QoS-Aware
Middleware for Web Services Composition. IEEE Transactions on Soét&agineering
30(5) (May 2004)

5. Chase, J., Anderson, D., Thackar, P., Vahdat, A., Boyle MRanaging Energy and Server
Resources in Hosting Centers. In: Proceedings of the Symposium erai®y Systems
Principles. (October 2001)

6. Krauter, K., Buyya, R., Maheswaran, M.: A Taxonomy and 8yref Grid Resource
Management Systems for Distributed Computing. Software—PracticExetience32(2)
(February 2002)

N

10.

11.

12.

13.

14.

15.

16.

21.

22.

23.

24.

25.

. Subramanian, L., Stoica, |., Balakrishnan, H., Katz, R.: Ov&:Qm Overlay Based Ar-

chitecture for Enhancing Internet QoS. In: Proceedings of the Sgimpoon Networked
Systems Design and Implementation. (March 2004)

. Gibson, G.A., Nagle, D.F., Amiri, K., Butler, J., Chang, F.W. p@&df, H., Hardin, C., Riedel,

E., Rochberg, D., Zelenka, J.: A Cost-Effective, High-Bandwiditr&e Architecture. In:
Proceedings of the International Conference on Architectural Sufged’rogramming Lan-
guages and Operating Systems. (October 1998)

. Radkov, P., Yin, L., Goyal, P., Sarkar, P., Shenoy, P.: Ad?Pardnce Comparison of NFS

and iSCSI for IP-Networked Storage. In: Proceedings of the USEGXference on File
and Storage Technologies. (March 2004)

Thekkath, C.A., Mann, T.P., Lee, E.K.: Frangipani: A Scal&bributed File System. In:
Proceedings of the Symposium on Operating Systems Principles. (©¢@®#)

Bhagwan, R., Tati, K., Cheng, Y.C., Savage, S., Voelker,.GTbtal Recall: System Support
for Automated Availability Management. In: Proceedings of the SymposiniNetworked
Systems Design and Implementation. (March 2004)

Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., StoicdVide-Area Cooperative Storage
with CFS. In: Proceedings of the Symposium on Operating Systems Resic{pctober
2001

Rowgtron, A., Druschel, P.: Storage Management and CachiR4$T, a Large-Scale,
Persistent Peer-to-Peer Storage Utility. In: Proceedings of the Syumpas Operating
Systems Principles. (October 2001)

Martin, R., Culler, D.: NFS Sensitivity to High Performance Networks: Proceedings
of the International Conference on the Measurement and ModelingofpGter Systems.
(May 1999)

Ng, W.T., Hillyer, B., Shriver, E., Gabber, E., Ozden, B.:t&hing High Performance for
Storage Outsourcing. In: Proceedings of the USENIX Conferenééleand Storage Tech-
nologies. (January 2002)

Le, K., Bianchini, R., Nguyen, T.D.: A Cost-Effective DistributEidle Service with QoS
Guarantees. Technical Report DCS-TR-615, Department of Cem@uaience, Rutgers Uni-
versity (August 2007)

. Apache: Apache Axis. http://ws.apache.org/axis/
. Olson, M.A., Bostic, K., Seltzer, M.I.: Berkeley DB. In: Prode®ys of the USENIX Annual

Technical Conference, FREENIX Track. (June 1999)

. Berkelaar, M.: LBSolve. ftp://ftp.es.ele.tue.nl/publkolve/
. Almeida, J.M., Krueger, J., Eager, D.L., Vernon, M.K.: Msés of Educational Media

Server Workloads. In: Proceedings of the International Workshopletwork and Oper-
ating Systems Support for Digital Audio and Video. (June 2001)

Crandall, P.E., Aydt, R.A., Chien, A.A., Reed, D.A.: Input/QuitBharacteristics of Scalable
Parallel Applications. In: Proceedings of the ACM/IEEE conferenc&opercomputing.
(December 1995)

Wong, W.M.R., Muntz, R.R.: Providing Guaranteed Quality of ®erfor Interactive Visu-
alization Applications (poster). In: International Conference on Measant and Modeling
of Computer Systems. (June 2000)

Thain, D., Bent, J., Arpaci-Dusseau, A.C., Arpaci-DussBaH,, Livny, M.: Pipeline and
Batch Sharing in Grid Workloads. In: Proceedings of the IEEE SympasuHigh Perfor-
mance Distributed Computing. (June 2003)

Nieuwejaar, N., Kotz, D.: The Galley Parallel File System. In: Redoegs of the ACM
International Conference on Supercomputing. (May 1996)

Wang, F., Xin, Q., Hong, B., Brandt, S., Miller, E., Long, D., Mety, T.. File System
Workload Analysis for Large-Scale Scientific Computing Applications.Fraceedings of
the IEEE/NASA Goddard Conference. (April 2004)

