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Abstract. The resource impoverished environment on mobile devicsslte
in a poor experience for users browsing the World Wide Welbxybased
middleware that transform content on the fly to better s@itrtéfsource conditions
on a user’s device provide a promising solution to this poblA key challenge
in such systems is deciding how to adapt content, especidign the same
content has multiple uses that have varying adaptatioringents. In this paper,
we show that it is possible to provide fine grain adaptatiormodti-purpose
content by detecting correlations in the adaptation requénts of past users
across multiple objects on a web site, and using this histbmake adaptation
predictions for users encountered subsequently. To eeatua technique, we
built prototype page layout and image fidelity adaptaticsteys, and used these
to gather traces from users browsing multi-purpose webetnb a laboratory
setting. Our experimental results show that using coiglatto make adaptation
predictions can significantly reduce bandwidth consunmptiorowsing time,
energy usage and user effort required to adapt content.
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1 Introduction

The severe resource constraints on mobile devices makeshrwhe World Wide
Web an unpleasant experience for users. At present, theritgajgd content on the
Web is targeted towards use on desktop computers with anggkags and high-speed
connections to the Internet. These assumptions do not hadnnobile environment,
where devices have small screens, low-bandwidth, limiteteby capacity, processing
capabilities, I/O facilities and storage. The problem oflite web access is further
complicated due to the considerable heterogeneity amdfegetit classes of devices
(laptops, PDAs, cell phones, pagers, etc.). Also, as useve mbout naturally during
the course of their activities, the mobile computers thayycaith them experience
significant variability in wireless connectivity — at one ment the user may be in range
of an accessible well-connected, lightly loaded 802.11gss point, whereas at other
times, she may only have access to a WWAN service (such as GHRSA 1X, etc.)
that charges her based on the number of kilobytes that arsféraed over the link.



A promising solution to these problems is adaptation migdhe, interposed in the
network path between the client and web server, which autioatly tailors content for
individual mobile devices [1-10]. For example, images ot \wages can be served to
the user at a reduced fidelity in order to conserve bandwidthemergy, and improve
download times. Also, the layout and size of content objésiish as images) can be
changed to better fit on a small display. However, a key chg#en such systems is
how to identify appropriate adaptations. This is a difficult lplem because optimal
adaptation depends on the usage semantics of content @hHg pigrpose vis-a-vis the
content) as well as the user’s context (characteristidse@iser's device as well as their
surroundings).

In previous work [11-13], we introduced Usage-Aware Intéve Content Adap-
tation (URICA), an automatic adaptation technique thatamizes content for mobile
devices based on the content’s usage semantics and the csetext. URICA learns
how to adapt content from implicit feedback provided by ssmrrying out their tasks.
This is achieved by having the system make an initial adiyptdecision, and allowing
users who are unsatisfied with the system’s adaptationidadis take control of the
adaptation process and make changes (e.g., increase fitg éifi@ transcoded image or
change the layout of a page). The successful adaptatiocasded and used in making
future adaptation decisions for the same and other usertCAJIRorks well when
users utilize content in a similar manner. For example, féidi{a) shows histograms of
image display sizes that satisfied users for two distincgiesan a system that scales
the dimensions of images to fit on a small screen. Here, magkiadictions using the
history of individual objects works well; we see that praganimage 1 at size 2 and
Image 2 at size 9 will satisfy the majority of users. HoweWRICA is less effective
for multi-purpose content, where objects on a web page ad fa different tasks
with varying adaptation requirements. Figure 1(b) illasts the case when users can
perform one of two tasks on a page. For the first task, theyiregusmall version of
Image 1 and a large version of Image 2, while these requirtsvage reversed in the
second task. Here, if we only consider the history of the ctifjeat is being adapted,
there is no single adaptation that will satisfy all users.

Fortunately, typical web tasks involve more than one objEis paper shows that
for web tasks that involve multiple objects, it is possibdeléverage the feedback
provided by the user on a few initial objects to narrow thetdmis used to make
subsequent predictions to include only those users who lsawdar adaptation
requirements. This is achieved by finding correlations impadtion requirements
between different objects on a web site using the history of previously encountered
users. Once these correlations are uncovered, the interéetdback provided by the
user to adapt some objects can be used to adapt other retgéstisoon the page or site.
For example, for the content depicted in Figure 1(b), we @nfeom the adaptation
history of the two images that the sizes of Image 1 and 2 aer$ely correlated. Once
this determination is made, if a user increases the size afjéri, the system can
automatically decrease the size of Image 2.

Correlation-based prediction works well for multi-purpantent because, while
users can utilize the same content in different ways, it igeglikely that there are
at least some users who use the content in each of the different ways. Correlation-
based predictions can also be useful in the case of singfgpea content when users
have different context. If the context in question affealgatation requirements, the



adaptation history of individual objects will be noisy jastin the case of multi-purpose
content. That is, a single adaptation will not satisfy usétk different context. In such
situations, adaptation based on correlations will alsodreeficial.
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Fig. 1: Histograms of image display sizes that satisfied pasts. The vertical axis shows the
number of users who desired each of the adaptations on tliwohtal axis. When content is
single-purposed), one adaptation decision works well for most users. Fotirpulrpose content
(b), there may be correlations in the adaptation requiren@nisers across objects.

We experimented with two well-known machine learning téghas that enable
correlations between objects to be uncovered automatidadicision Stumps, which
directly encodes relationships between the adaptatianinegents of objects, and the
Gaussian Mixture Model, which finds correlations impligilly clustering users with
similar adaptation requirements. Our experience showatltttese techniques only
perform well when users have an incentive to fix incorrecpéatéon decisions made by
the system. For instance, in a system that adapts the diomensf images, users have
a clear incentive to correct images that are larger or smtden what they require.
However, such incentives may not always exist. For instaimca system that adapts
image fidelity, if the initial set of images on a site is sertedhe user at a fidelity that
is greater than that required, there is little incentivetfar user to interact with these
images to lower their fidelity given that the bandwidth tosger the images would have
already been spent. For these situations, we developedarithin calledall-in that
clusters together the histories of past users with simif@pégation requirements, and
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Fig. 2: A schematic of a web page with images of MP3 playerslaptbp computers. Users
in group 1 are shopping for MP3 players, whereas those inpgoare shopping for laptop
computers. If the user improves the quality of one image dfi&3 player, it is likely that they
will want the other MP3 player images at high quality as wisle(same holds for laptop images).

as a user provides feedback, it rapidly narrows down a dudtesers with similar
adaptation preferences.

We built two prototype adaptation systems for the purposwaluation. One scaled
the dimensions of images on web pages and the other adaptefidality. We collected
traces from users browsing multi-purpose content usingpoatotypes in a laboratory
setting, and used these to evaluate the performance afaties algorithms for making
adaptation predictions. We found that making adaptatiediptions using correlations
results in significant performance improvements. For imsgging, we observed that
using correlations to make predictions required 66% fevsar unteractions. In the
case of image fidelity adaptation, we observed that corogldiased predictions reduce
bandwidth consumption by 63%, user interactions by 48%rggrensumption by 17%
and time to completion by 20%.

The rest of this paper is organized as follows. Section 2rilesss algorithms for
multi-purpose content adaptation. Section 3 provides arg#®n of our experiments.
Section 4 presents the result of our evaluation. FinallgtiSe 5 discusses related work,
and Section 6 concludes the paper and suggests avenuetufenfork.

2 Adapting Multi-Purpose Content

When the same content can be used for multiple purposes os®r have varying
adaptation requirements for the same object based on ttieybartask they are trying
to perform on a web page or site. For example, Figure 2 shosvsadhematic of a web
page that contains six images and represents the front geaye anline retailer that
sells MP3 players and laptop computers. The first three imagehe page show MP3
players and the next three show laptop computers. A user ahe for downloads by
the kilobyte will most likely not want to see all images atiniguality - users shopping
for MP3 players will want to see the top three images at a higbelity than the others



(and vice versa). In this case, the varying adaptation rements of different users
leads to a noisy history for every object - no single adamawiill satisfy all users.

Fortunately, typical web tasks involve more than one objantd when there is
correlation in the adaptation requirements of these obj¢lse feedback provided by
users on a few objects can be used to adapt others. Contiouimngrevious example,
the system can determine that users who want any one of thepldy8r images at
high quality will likely want the other two at a high qualitg avell (the same holds for
laptop images). The adaptation system would initially sealv images at low quality,
and as soon as the user requests an improvement for one ofidiges (say, an image
of an MP3 player), the system can improve the quality of nst fbat image, but also
the quality of other images whose quality levels are higllgrelated (the other images
of MP3 Players).

It is important to note that objects do not have to be tagged any meta-data by
the content creator for this approach to work. Nor are useysired to explicitly specify
the task they are performing. The only information requigeithe history of how users
have adapted objects on the page in the past, which is gdthatematically by the
system at run-time.

In this section, we start by describing the two types of icipfieedback that can
be provided by users in interactive adaptation systeéms:sided feedback and one-
sided feedback. The type of feedback available plays a crucial role in theigteand
performance of algorithms that predict adaptation reauoémets. We then describe three
algorithms for taking advantage of correlations in usefgrences.

2.1 Type of Feedback

The type of adaptation being performed influences the natuieedback provided by
users. In some cases, the constrained resource cannoblenstt when an adaptation
decision results in overconsumption. In such situatiorsgral have no incentive to
provide additional feedback to the adaptation system. Tdhatisers only provide
feedback until the adapted object is “good enough”. We &édl dne-sided feedback.
For example, in image fidelity adaptation, if the system egran image at a fidelity
that is lower than what is desired by the user, we can expecdiskr to interact with
the system to obtain a higher fidelity representation. Hara¥ the system provides
a representation that is of a higher fidelity than that whiehequired, the user has
no incentive to provide feedback. This is because the codbwhloading the higher
quality representation has already been incurred. Thttsg ifystem provides an image
at some initial fidelity level (say, level 5, where there abdfitielity levels in total) and
the user does not improve the object, we cannot say for odttat the user required
fidelity 5. We only know that the user may have desired a figéldtween 1 and 5.

In other cases, where overused resources can be reclaised,are motivated to
keep interactively adapting an object until it has been apipately customized. We call
this two-sided feedback. For example, in image screen size adaptation, if the system
overuses the screen real-estate resource, it can be redldifaers have an incentive to
shrink and enlarge images until they are suitable for theippse.



2.2 Prediction Algorithms

We initially investigated two standard techniques from hiae learning that enable
correlation-based predictions: Decision Stumps, whickally encodes relationships
between the adaptation requirements of objects, and theszewMixture Model,
which finds correlations implicitly by clustering users lwgimilar adaptation require-
ments. We observed these techniques to perform well whens psevide two-sided
feedback. However, when only one-sided feedback is avejléfiese algorithms can
perform badly if the system over-predicts on the initial @ebbjects on the page. For
example, in a system that adapts image fidelity, if the ihg&t of images on a site
is served to the user at a high fidelity, there is little indenfor the user to interact
with these images to lower their fidelity, and the system oamwccurately gauge the
user’s adaptation requirements. This problem can be operdry under-predicting on
the initial set of objects as a way pifobing for the user’s true adaptation requirements.
However, this can require the user to frequently interath wbjects. To address this
problem, we developed an algorithm calltiin that under-predicts without causing
an excessive number of interactions.

Decision Stumps In order to investigate the effectiveness of directly clatieg the
adaptation requirements of different images, a methodyuddtisions stumps [14] for
predicting adaptation requirements was implemented. Asetstump is a decision
tree with only a single branch. In reference to the motiyat:xample, it encodes a
decision of the form: Was the required fidelity for ima§fe< 5? If yes, then a fidelity
of 5 is sufficient for imageY’; otherwise5 is not sufficient forY. Several decision
stumps (alternatively, they may be thought ofales) are weighted and combined into
a final model, which is used to make predictions. Each detisiomp in this model
represents some relationship between the object whos¢atidapequirement is being
predicted and some other object. The weighting of the datistumps is calculated
during training in order to minimize error; it may be thoughas specifying the relative
predictive ability of each relationship. Due to the muktiplecision stumps that compose
a single model, more than one relationship can be captukthammulti-purpose nature
of any given object preserved.

For each object (call this the target object) and every dudigiee non-target objects,
a distinct prediction model is generated. This model is geted by feeding the history
of all user adaptation requirements for the given set of tanget objects along with the
corresponding adaptation requirements for the targetcobjéo a training procedure.
This training procedure uses boosting [15] which genemaset of decision stumps and
weights that predict adaptation requirements with a lowrerate. A model for each
subset must be generated because, as we are encodingtomrsalirectly, a prediction
for an imageX may be based on different images, depending on the set oftelife
which the user has provided some feedback.

Predictions are made by selecting the appropriate modehétarget image, and
providing as input the already-specified set of requiredifids. For example, suppose
we are generating predictions for the electronics retaged in the motivating example
of this section. Suppose the user has seen and possiblgdtedrwith two imagesX
andA, and we must now predict a fidelity for the imageFirst, we retrieve our model
that was trained with adaptation requirementsXoand A and predicts”. Based on



the current user’s requirements firand A, we predict an appropriate requirement for
Y. Since this model is a combination of decision stumps thailire rules regarding
the required fidelities o and A, we can simply evaluate them all and determine a
final score. This final score corresponds to the predictedired, fidelity. This process

is repeated with all remaining images other thgras predicted images are loaded and
the user provides feedback.

In the evaluation section, the use of this model with both-sided and two-sided
feedback is explored. This method may encode many complatiaieships between
objects, and requires no specification of parameters inredvésuch as number of
clusters). Unfortunately, the cost of training and geriegahe large number of models
for this method may be high, although there could exist ojttions to alleviate this
problem. Another disadvantage of this method is that it nlag have a tendency to
over-fit training data, especially for users with non-tygiadaptation requirements.
This may manifest itself as a single out-of-character negmént given by a user
throwing off several predictions due to over-emphasis oaréiqular image.

For our implementation of this method, we used the MultiBdas] algorithm
implemented by the Weka [14] toolkit. The MultiBoost alghm combines Ad-
aBoost [16] with wagging, and it was shown to be more effectivreducing error
than either of its constituent techniques [15].

Gaussian Mixture Model In a Gaussian mixture model, all sets of adaptation
requirements are assumed to be sampled from a set of Guaksidhutions spread
throughout the space of all possible adaptation requirésn&iven a set of training
data, the parameters of the distributions are set by rurarirexpectation-maximization
(EM) algorithm in order to maximize the likelihood that thiwen data was sampled
from the mixture of distributions. As input for this traigrprocedure, all available
history of user adaptation requirements is provided. Thaber of distributions must
be selected a priori, however.

For prediction, based on a user’s currently specified setlapttion requirements
and the training distributions, a candidate distributian fthe user is selected by
computing the likelihood of her belonging to each distribnt then selecting the
most probable. The mean of this candidate distribution éslue provide any missing
adaptation requirements. If this mean is insufficient far tiser for some particular
object, the most probable distribution with a higher adémarequirement is selected
for that object instead. Eventually, these adaptationireqents which are not well-
represented may lead to the selection of a better candidstidtion.

Similar to the scenario given for decision stumps, suppbst Wwe are serving
images for users browsing the online electronics retdilee. user has seen and possibly
interacted with the imageX¥ and A and we must now predict imagé. Based on their
required fidelities forX and A, the probability of the user belonging to each Gaussian
distributiond, p(d), is computed. This is a calculation over only the images tvite
user has seerX{ and A), in this case given by

o N>
pd)=as ] (ilmexp(—(xl%;éj)g)) )
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for each distributionl with means:,(7), standard deviations,(:) and priora, (all set
by the EM training procedure). The distribution with the égtp(d) is selected, call



this dpes, and the means af,.,; are used to provide a prediction for the adaptation
requirements of other images. In this case, since we neeckthcpY’, we would use
td,.., (Y), the mean of the distributiodh,.; for the imageY”.

Logically, these distributions can be thought of as theeeoit clusters. During the
training procedure, they will tend to each cover differerdups of users’ adaptation
requirements. This model is representable in a compactamayhas the advantage that
each distribution, or cluster, has an explicit variancegfach object. This is useful for
intentional overprediction and underprediction, basedsar preference. For example,
the user may favour underprediction in order to conservelwatth. Also, since the
identification of a candidate cluster is based on all objextsingle odd requirement
from a user is likely to have less of an impact on other praglistthan in the case of
decision stumps.

The all-in Algorithm We designed thall-in algorithm' for use when only one-sided
feedback is available, and investigate it in the contextwge fidelity adaptation. The
algorithm starts off by using the standard K-means clusteslgorithm to partition
users into multiple groups. The idea is that users withiroagshare similar adaptation
requirements - not just for a single object but rather acatisshjects on a web page or
web site. Once we have a set of clusters, the system tramsitito prediction mode.
The system then uses an online classification algorithm teerpeedictions.

The goal of theall-in algorithm is to rapidly classify the user into a single chuist
For each user, the adaptation decisions made by the systdynoeaare aggressive
in that they may be wasteful. However, once the system is abtmrrectly classify
the user, it starts making moderate predictions, such aimgethe mean of the image
fidelities that was requested by other users within a cluster

At the outset, the algorithm assumes that the user can bé&bosgy cluster. Also,
it computes an upper and lower threshold for each object aryecluster. These
thresholds correspond to the range of values where an @bfbegired fidelity may
lie, for users belonging to this cluster. We take the higleast lowest fidelity that
was previously observed as the upper and lower threshaipeativelyy. When serving
an image initially, the algorithm makes an aggressive ptax: it serves the image
at the lowest upper threshold across all clusters. If the igseot satisfied with this
adaptation, she will request an improvement and the systi#innemove the cluster
whose upper thresholds are violated. The process is repaati the user no longer
requests improvements to an object, and moves on to a diff@age or object. In
this case, the system checks if there exist any clusters evlovger thresholds are
violated, and removes them. Once the system has classifiesén into a single cluster,
the algorithm behaves less aggressively, and serves slgethe mean of the image
fidelities that were requested by other users within thetetus

It is possible for the system to reach a point where there isluster that the user
can belong to. This can occur for two reasons: first, therelmeayo cluster that captures
the current user’s preferences or second, we may have rehttoseiser from a cluster

! The phrase “all-in” is taken from poker where a player begsehitire stake on a hand. When
there are only two players, this move forces the opponenvatuate her hand and make a
decision on whether to accept the bet (“call”) or give up thad(“fold”).

2 Other alternatives are possible, such as taking the engpoiithe 5-95 percentile range. This
would help eliminate outliers in a production system.



that she would otherwise have fit into because her adaptatefarence on some prior
object was radically different. With regards to making adéipn predictions for this
particular user, we can do nothing about the first possibibwever, we can address
the second by making all clusters valid again for the usertheparticular object under
consideration, we give up, and serve it without any adagratin a production system,
we can take the first possibility into account as well. Anydithe system runs into
a large number of users who cannot be classified, it can tram&nto training mode
again, and regenerate the clusters.

2.3 Practical Considerations

Parameters, such as the number of clusters to use imltha algorithm, can be
automatically determined in a production system. Once jtstem has encountered
some number of users (say specified by the operator of the adaptation proxy),
it can run profiling experiments that compare the perforreatiat would have
been experienced by the previously encountered users feretit conditions. The
experiments may compute a variety of performance metricgifferent parameter
settings, and the system can set parameters to be the vhatesesult in the best
performance. A single metric or a composition thereof camused for this purpose,
based on the goals of the proxy operator or the preferenceser$. Indeed, if users
specify different goals to the adaptation system, it carvige them with varying
predictions tailored to their requirements based on theedastory.

3 Experimental Methodology

To evaluate our prediction algorithms, we considered twiesyof adaptation: page
layout and image fidelity. For each type of adaptation, waterka prototype that allows
users to interactively adapt content. We used the protstypgerform experiments
in which participants adapted content in a laboratory rsgttihe traces of the user’s
adaptation decisions were then used to evaluate the padatgorithms.

In this section, we first describe our trace gathering expents. We then discuss
the methodology used to evaluate the prediction algorithmthe collected traces.

3.1 Gathering User Traces

We conducted our experiments in a laboratory at the Unityersi Toronto. For
the experiments we recruited three groups of participams fthe general student
population. The first group adapted the layout of web pagb#ewhe second and third
groups adapted the fidelity of images on web pages. Table inswizes the setup of
the experiments. During the experiments, the predictiongmment of the adaptation
system was disabled so that participants would have toactevith images in order to
achieve an appropriate adaptation. That is, the systematithke advantage of past
interactions of the current or previous users. This forcadigpants to reveal their
true adaptation preferences as well as avoiding any eféeisisig from the ordering of
participants in our study.



Page Layout Adaptation Experiment The goal of our first experiment was to
investigate a scenario in which users naturally provide$wed feedback. We created a
prototype page layout adaptation system that allowed tsénsrease and decrease the
screen dimensions of images on a web page. While all of thejpants in this study
were given the same task to perform, we varied the device tsédowse the web
across individuals. Thus, the primary source of variatiothe adaptation requirements
of users is the difference in device context.

The experiment consisted of four web pages, each contathirege images of
postage stamps. For each page, participants were askeddifynie dimensions of
the images in a manner such that it would be easy to identifgrdinces between two
images and find details on a third image. We obtained traces &0 participants who
were randomly divided into three sub-groups which usedbdbffit simulated displays:
a PocketPC SmartPhone, a PocketPC PDA and a Toyota GBooguleshierminal.
The setups for these traces are referred to in Table 1 as Bhoae, PDA and GBook,
respectively.

Image Fidelity Adaptation Experiments The goal of our second and third experiment
was to consider a case where users are only motivated toderovie-sided feedback.
To this end, we created an image fidelity adaptation systewhinh the images on a
web page are initially served at low fidelity (for faster ddead), and users can click on
individual images to improve their fidelity. In these stugidifferent participants were
given varying tasks. However, all of the participants perfed their assigned tasks on
the same device. As such, variations in the adaptation remeints of users stem from
differences in their assigned task.

For these experiment, we designed two image-rich sitesfifdiea movie posters
site, had images of popular movie posters. The second, a iteghad a map of the
University of Toronto’s campus represented in a grid of 6 méges. For each site, we
designed three tasks, and each participant performed omybthose tasks. For the
movie posters site, each task consisted of detailed quastiertaining to a different
subset of the posters. For example, participants were dskddntify the director, title
and release date of some of the movies. For the map sitecipartts were asked to
provide directions from one given building to another witthe university’s campus.
To accomplish these tasks, participants had to increaskdildy of relevant images
until sufficient details were visible. Participants werdeato adjust image fidelities on
a scale between 1 and 10. The tasks were designed so thaigzarts would find some
images in a web page relevant while others not as much.

For these experiments, participants used a laptop equipjtbdour adaptation
system and an available network bandwidth of 56kbps, whichreasonable approxi-
mation of a GPRS WWAN connection. We recruited 231 participavho were divided
in six sub-groups of 37 to 40 individuals. Our setup is désatiin Table 1.

3.2 Trace-Based Evaluation

In order to determine the effectiveness of each algorithnsicered, we evaluated them
using the traces collected from the participants in our grpents. For the page layout
experiment, we collected for each participant, their rezplimage dimensions for every



# of Pages Images per Page Total Images Setup # of Users
Page Layout

Postage Stamps 4 3 12 SmartPhone Display 10
PDA Display 10
GBook Display 10

Image Fidelity

Movie Posters 9 1 9 Task-1 37
Task-2 37
Task-3 37

Map 1 36 36 Path-1 40
Path-2 40
Path-3 40

Table 1: Summary of experiments

image. From the fidelity experiment, we obtained for eachigipant their minimum
required fidelity for every image.

To test each algorithm, we used leave-one-out cross-validaThat is, each
algorithm was trained with the traces of all users except @he algorithm was then
used to predict the dimensions or fidelities of the imagegeskto the user, depending
on the experiment.

For this testing, we created a user simulator. At the stiagt prediction algorithm
provides an adapted version of each image on a page. Theasaduliser, based
on the collected traces, goes through each of the imageseopape in turn and
provides an “interaction” for the first image it finds that st properly adapted. When
the simulated user provides an interaction, the predicsilgorithm recalculates an
appropriate adaptation for all of the images on the page ssgbpts it to the simulated
user once again. This process is repeated until all of thgésare adapted according
to the user’s preferences.

For the page layout adaptation experiment, the primaryimaged to evaluate
the different algorithms is the number of user interactidiiewever, for the fidelity
experiments, a number of metrics are used for evaluatientimber of user interac-
tions required, fulfillment time, wasted bandwidth and gyezonsumed. Number of
interactions is the number of times a user had to interadt thi¢ images in order to
achieve her desired adaptation. Fulfillment time is the eggpe of interaction time
(the time users spend interacting with images until theielfig requirements are
met) and download time. Wasted bandwidth is calculated esthount of bandwidth
used beyond what would be required by the user if all image® werved at their
exact required fidelity immediately. Energy consumed issthergy measure, in Joules,
consumed by the device for viewing and downloading content.

In order to compute fulfilment time and energy consumptidthwur simulator, we
measured the average interaction time from one of our usdiest (2388 milliseconds).
We then ran several experiments on an HP iPAQ h6325 PDA inrdodeneasure
download speeds and energy characteristics of real haedwWéth a GPRS connection,
we observed effective download speeds of approximatelp@S8RNVhen the device was
idle, it consumed 0.67 Joules/second (with GPRS radio ackligat on) and when the
device was downloading, it consumed 1.59 Joules/second.



For any particular algorithm, there is a clear trade-offAleetn wasted bandwidth
and the number of interactions: under-predicting the figakequired for an image
will lead to more user interactions and over-predictingftbelity will lead to wasted
bandwidth. However, good algorithms can perform well ahlsnultaneously. Indeed,
a perfect prediction algorithm that knows the exact adaptaequired by users (we call
this oracle) would not waste any bandwidth, nor would it require anyriattions by
the user.

4 Experimental Results

In this section, we provide the results of our evaluation. &t by considering the
case of two-sided feedback, which occurs naturally dutiegburse of our page layout
experiment. Next, we consider the performance of diffeadgdrithms when only one-
sided feedback is available, as is the case in our fidelitptatian experiments.

All of the results presented in this section are mean resaltsraged across
individual users over the entire web site for any given ekpent. The algorithm that
we use as our baseline for performance is dimgle object history (SOH) prediction
algorithm from our previous work [12,13]. This algorithm kes adaptation predictions
for each object by considering its adaptation history idagon. For image fidelity
adaptation, the SOH algorithm initially serves an imagéathean value of the fidelity
that was desired by previously encountered users. If thimissatisfactory, the SOH
algorithm provides a subsequent prediction by ignoringdibsired fidelities below that
which was just served, and recomputing the mean. For pagatagaptation, the initial
prediction of the SOH algorithm is computed in the same wakifig the mean of the
desired image sizes of previously encountered users). tywehen a user decides to
increase or decrease an image, the algorithm removes f@higtory all of the desired
image sizes of previous users that are less than or greaerthle size that was just
provided, respectively. SOH makes the next prediction bypmating the mean value
from the remaining history.

4.1 Two-Sided Feedback

We tested both the decision stump algorithm and the Gaussitnre model algorithm
on the postage stamp experiment, where users were reqoirdapt images by re-
sizing them. For this experiment, feedback was providegfedictions that were too
high or too low. Because the images were already downlodderk was no notion of
bandwidth wasted for this experiment. Using the SOH alparjtthe mean number of
interactions required of a user during the experiment wa8{ feveraging correlations
between adaptation requirements however, the decisionpstalgorithm achieved a
mean of 5.1 interactions, while the Gaussian mixture modklezed 5.9 (with six
distributions), both demonstrate a vast improvement osirguonly SOH.

These results demonstrate that using correlation basetichom methods for
cases where two-sided feedback is available is an excetleat and that standard
machine learning techniques work well. After all, this aystraight-forward prediction
problem.



4.2 One-Sided Feedback

One-sided feedback introduces a twist to the predictiorblpro. We compare the
performance of our different algorithms and explore theafbf under-prediction on
the movie posters experiment. We show thatdHen algorithm leverages this effect
and provides strong performance across all studies whdyeooe-sided feedback is
available. Finally, we evaluate the algorithms on the m@asters experiment using
two metrics of practical interest: fulfilment time and egeusage.

Without any adaptation, 2.70MB are transferred to downlibed9 images in the
movie posters experiment. However, if an oracle were ta exish that we were able to
provide users with their desired fidelity, only 1.29MB wollave been downloaded on
average. That is, without adaptation, an average of 1.41 MBuedwidth is consumed
needlessly. Making predictions using single object histesults in an average wastage
of only 378KB of bandwidth; this occurs at an average cost.4fidteractions. When
we consider how interactions are distributed across imagesbserve that the users
must interact with approximately two-thirds of the imagegioe web site.

In the case of image fidelity adaptation, only one-sided lieel is available.
However, in order to establish the validity of the methodgeémeral, we first consider
the performance they achieve if users provided perfectiaekl For perfect feedback,
we assume the algorithm knows by how much each image waspoedieted, without
incurring any additional interactions (under-predictatill result in interactions). We
then show results for the case where users provide onefgddback.

Variation # of InteractionsBandwidth Wasted (KB)
Perfect Feedback 2.50 200.74
One-Sided Feedback 0.32 830.19
Under-prediction on FirstImage  6.71 113.67
with One-Sided Feedback

Table 2: The performance of several variations of decisiomps on the movie poster dataset.
We observe that significantly more bandwidth is wasted witk-sided feedbackifie 2) than in
the hypothetical case of perfect feedbalihg 1). We also observe that under-prediction greatly
reduces wasted bandwidth but comes at the cost of more dtitara required of the useliige 3).

The first line of Table 2 shows the result of making predictiarsing decision
stumps when perfect feedback is provided. We see that, blegfun single object
history case, the amount of wasted bandwidth is reduced By. 4@ addition, the
number of interactions is decreased from 5.4 to only 2.5. él@n for image fidelity
adaptation as the problem is made manifest (only one-sidedbiack is available),
the wastage increases significantly. The second line ofeT@bkhows the result
of making predictions under these conditions. Although nlnenber of interactions
required is minimal, the wasted bandwidth is significanilyhier (830KB) than using
the predictions generated by the single object history ote(878KB).

Figure 3(a) shows the performance achieved when makingigbi@ts using a
mixture of Gaussians when perfect feedback is available ¥Haxis in the graph
indicates the number of distributions that are createddasethe observed training
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Fig. 3: The performance of the Gaussian Mixture Model on tbeimposters dataset with perfect
and one-sided feedback. We observe that significantly mame\eidth is wasted with one-sided
feedback i) than in the hypothetical case of perfect feedbalk(

data. The y-axis on the left indicates the mean number ofant®ns required by
each user and the y-axis on the right provides the mean wdsiadwidth per
user. We observe that after about four distributions, tgerithm achieves consistent
performance. With six distributions, users waste 212KBwit4 interactions. Like the
decision stumps method, this represents a significant ingpnent over the predictions
generated with only single object history which wastes 388tth 5.4 interactions.
When only one-sided feedback is given, the number of intenasremains consistently
low, however, the wasted bandwidth climbs above 700KB. FgB(b) shows the
performance of the Gaussian Mixture Model in this case.

We conclude that when only one-sided feedback is availab&e two standard
techniques that we considered suffer from poor performance

Effect of Under-prediction In situations where users only provide one-sided feedback,
the performance of prediction algorithms that use cori@iatcan be improved by
purposely under-predicting on the initial set of images omed page. We now show
the performance of the decision stumps and Gaussian mixtade! algorithms for the
movie posters dataset when we under-predict on the firstémag

The third line of Table 2 shows the result of making preditsiausing decision
stumps, but with a purposeful under-prediction on the fireige served. We see that
the amount of wasted bandwidth is reduced by nearly 70% coedpa the case where
only single object history is used. However, this comesattist of more interactions,
6.7 versus 5.4 in the case of single object history.

Figure 4(a) shows the performance of the Gaussian mixtuaehwith one-sided
feedback for the case of six clusters. Due to the nature ofrtbdel, it is natural to
under-predict on images by some standard deviation of theined fidelities of the
object. The x-axis indicates the amount of under-predicio terms of the number
of standard deviations). Similar to Figure 3, the y-axis b left and right indicate
the average number of interactions required per user ancatbeage amount of
wasted bandwidth per user, respectively. If the algoritimehas-predicts by 3.3 standard
deviations, compared to using single object history fodmtions, users waste 45%
less bandwidth and require 1.4 fewer interactions. Fig(iog ghows the performance
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Fig. 4: The effect of under-prediction on the Gaussian mxtnodel on the movie posters dataset.
We observe that wasted bandwidth decreases as we undétpvéd more standard deviations
(a). For e.g., -4 on the x-axis refers to under-predicting treamby four standard deviations.
Alternatively, for a fixed amount of under-prediction, wesebve that GMM has far less wasted
bandwidth b) compared to GMM with no under-prediction.

of the Gaussian Mixture Model when under-predicting by 3a®dard deviations for
various numbers of distributions.

From these results, we conclude that under-predictionlteesn a significant
reduction in the amount of wasted bandwidth. However, dsimgnay result in more
interactions required of the user.
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Fig. 5: The performance of thal-in algorithm on the studies where only one-sided feedback
is provided. We observe thatl-in performs consistently well on all datasets for both wasted
bandwidth and number of interactions.

Performance of theall-in Algorithm Figure 5(a) shows the performance achieved
when making predictions using thadl-in algorithm for the movie posters data set.
The x-axis indicates the number of clusters into which useag be classified. These
clusters are created using the observed training datale®itnithe previous figure, the



y-axes on the left and right indicate the mean number of att#ons required by each
user and the mean amount of wasted bandwidth per user, teghedVith respect to
the number of interactions required, the algorithm perfooptimally when there are
three clusters. In this case, users waste only 138KB (a teauaf 63% compared to
using single object history) at the cost of just 2.6 inteoacd (2.8 interactions less than
single object history).

The all-in algorithm also performs well on the map experiment 5(b). Whe
compare the performance of the three methods, we find thail ke algorithm has
the best performance. One of the key features ofathén algorithm is that until the
user is isolated into a single cluster, the initial predietmade for each object is lower
than the average fidelity required by users. When doing [ativae-based adaptation
with one-sided feedback, purposeful under-predictiorierfirst few objects provides
significant benefit. This is because when the algorithm updedicts, it forces the user
to interact. This leads to an accurate history for a smalb§etbjects, which can be
leveraged to provide better quality predictions for theaarder of the objects on a web
site.
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Fig. 6: The average fulfillment time and energy consumptien yser for several adaptation
technigues on the movie posters dataset.

Energy and Fulfilment Time To characterize the exact benefits that the different
methods may provide in practice, we evaluated all of themsawtral baseline and
naive approaches with respect to fulfillment time and eneaysumption. Figure 6
shows the fulfillment time and energy consumption for a nunobadaptation policies:
no adaptation (NA), single object histories (SOH), decisstumps (DS), decision
stumps with under-prediction (DSU), Gaussian mixture nh(@M), Gaussian mixture
model with under-prediction (GMUXll-in (Al) and oracle (OR). Oracle, discussed
earlier, is able to exactly predict the user’s required figelvasting no bandwidth nor
requiring any interaction. It gives an upper bound on thdguerance of prediction
algorithms.

For both fulfilment time and energy, we see that under-mtauh results in
significant improvement for both decision stumps and Gaunssiixture modelall-
in performs the best for both fulfillment time and energy congtiom, and performs



close to oracle. In all cases, the correlation based appesabat use under-prediction
offer both better fulfilment time and energy usage. Of alttim howeverall-in also
requires the fewest interactions.

4.3 Summary of Results

We first considered the performance of our prediction atbors on an adaptation
problem where two-sided feedback is available. We found, tima this case, all
correlation-based techniques perform better than if weew@make predictions using
only SOH. We then considered the algorithms’ performancthéincase where only
one-sided feedback is available and found that for both th&stn stumps and
Gaussian mixture model algorithms, over-predictions anitiitial set of objects lead
to poor predictions for later objects. We modified these @tlgms to perform under-
prediction, which while reducing wasted bandwidth sigifity, burdened the user
by requiring more interactions. Tta#l-in algorithm performed consistently well, even
when only one-sided feedback was available, due to its agiyee under-prediction.
Finally, we considered the fulfillment time and energy caoned during the movie
posters experiment by each of the algorithms. We found thatall-in algorithm
outperformed all others, and provides effective fine-geadaptation even in the case
of multi-purpose content.

5 Related Work

There is significant research on content adaptation for laaevices [1-6, 8-10, 17—
20], and even a few commercial adaptation systems have legdoyed [1, 21].

Content providers have traditionally adapted content ralyy by offering device
specific versions of their content. This approach placesfsignt overhead on content
providers as they need to maintain multiple versions oftbentent.

There has also been research on systems which automatidalby content on-the-
fly. Most automatic systems generate adaptation polictegebased on rules [1, 6, 7,
20, 22] or constraints [4, 7,19, 23]. In both approachesptd@n policies are defined
using high-level programming languages or mathematicatfitas [22,23]. Rule-based
systems rely on high-level rules to guide the adaptatiortgs®. When adapting an
object, the system determines the subset of rules that apulyadapts accordingly
(e.g., convert images larger than 50 KB to progressive JRE&)és). Constraint-
based adaptation extends rule-based adaptation to enealimifs between possible
adaptation strategies. A constraint captures, in a mattiesmhformula, the relationship
between resource consumption and user satisfaction foreeifgpadaptation. An
automatic solver adapts content by finding a solution thaetmell constraints,
minimizes resource consumption, and maximizes user aetish. Unfortunately,
content providers cannot be expected to provide conssraintules for every data
object, as this imposes significant onus. As a result, sretsl af rules apply to broad
sets of content (e.g., all JPEG images are adapted the saynimdependent of their
purpose or value to the user). Moreover, determining thatiogiship between user
satisfaction and content metrics, such as resolution ondraate, is hard and often
depends on the semantics of the content being adapted andéie task, which is
rarely taken into consideration in these approaches.



In contrast, in our approach, end-users provide feedbaakrfly a small subset of
the content of web pages (by clicking on the objects), andyktem is able to correctly
adapt the larger set of content by considering the coroglati adaptation requirements
of users. Also, because the end-user has control over theale§ adaptation, the
system is guaranteed to provide adaptations that areasztisy to the user.

End-user adaptation is also explored in [24, 25], howeVerse systems provide
solutions specific to the layout of web pages on small scremms as such do not
explore correlations in user adaptation requirements.

Our work is related to previous efforts on recommendatiasedl systems. Most
recommendation systems [26—29] use collaborative filggrim which people collab-
orate to help one another perform filtering by recordingrtheactions to documents
they read. Balabanovic et al. [30] add the ability to evaduatd provide feedback in
order to learn and improve on the recommendations. A cadlectf histories [31] can
be created and then mined to recommend to the user a set aflasntlnctions and
to detect users’ erroneous behavior. Semantics can be adadiltl a model of the
user [32] such as that used by online retailers like Amazon,avhich can then be
used to recommend other items in the same class of products.

In our previous work, we introduced the URICA technique, ebhadapts single-
purpose content based on the history of previously encoemhtesers [12], and
considers the context of those adaptations [13]. In thizpape have shown how to
provide fine-grain adaptation in the more challenging cdsawti-purpose content.
This is achieved by finding correlations in user adaptatiequirementsbetween
different objectson a web site, and leveraging a user’s feedback across teutipects.

6 Conclusions and Future Work

In this paper, we showed that correlations in user adaptatouirements across
different objects can be used to provide fine-grain adaptator multi-purpose
content. We considered two techniques from machine legthiat enable correlation-
based predictions: decision stumps, which directly ensoditionships between the
adaptation requirements of objects, and the Gaussian maixtwodel, which finds
correlations implicitly by clustering users with similadaptation requirements. These
techniques do not perform well when users have no incentigertrect over-predictions
made by the system. We provide an algorithm cadliédn, which groups together users
with similar adaptation requirements and then makes ptiediein a way that rapidly
classifies users into a single cluster. We showed that forsatesl feedback, thall-

in algorithm performs significantly better than other teclueisjwhen considering key
metrics such as bandwidth usage, number of user interactfatiillment time, and
energy consumption.

In the future, we intend to do a large scale, real-world dgplent of an image
fidelity adaptation system. The goal of this endeavor is éaoreabout the behavior of
users performing interactive adaptation on web contersideia lab environment, and
over an extended period of time. A version of this system &wicks that can run the
Firefox browser has already been made publicly availab®, [@nd versions for the
Minimo and Pocket Internet Explorer web browsers are ctiyd&ging tested.
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