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Abstract. As the complexity of IT systems increases, performance gemant
and capacity planning become the largest and most diffigpitses to control.
New methodologies and modeling techniques that explagetaystem behavior
and help predict their future performance are now neededfé¢otizely tackle
the emerging performance issues. With the multi-tier aechirre paradigm be-
coming an industry standard for developing scalable clkenver applications,
it is important to design effective and accurate perforneaprediction mod-
els of multi-tier applications under an enterprise proaurcenvironment and a
real workload mix. To accurately answer performance gaestfor an existing
production system with a real workload mix, we design andlémgnt a new
capacity planning and anomaly detection tool, cale@apricciq that is based
on the following three component3:aWorkload Profilerthat exploits locality in
existing enterprise web workloads and extracts a smallfsaost popular, core
client transactions responsible for the majority of clieequests in the system;
i) a Regression-based Solveirat is used for deriving the CPU demand of each
core transaction on a given hardware; @ijdan Analytical Modelthat is based
on a network of queues that models a multi-tier system. TidasdR-Capricciq
we conduct a detailed case study using the access logs frorhdterogeneous
production servers that represent customized client aese® a popular and
actively used HP Open View Service Desk application.

1 Introduction

As IT and application infrastructures become more compgleglicting and controlling
the issues surrounding system performance and capacipipibecome a difficult
and overwhelming task. For larger IT projects, it is not uncmon for the cost fac-
tors related to performance tuning, performance managgraed capacity planning
to result in the largest and least controlled expense. &pptin performance issues
have an immediate impact on customer satisfaction. A sudiiewdown can affect a
large population of customers, can lead to delayed prqjantbultimately can result in
company financial loss. It is not unusual for a piece of nevdivare to be added into
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the infrastructure to alleviate performance issues witligdly understanding where the
problem really is.

With complexity of systems increasing and customer requéngs for QoS grow-
ing, the research challenge is to design an integrated fwankeof measurement and
system modeling techniques to support performance asabfscomplex enterprise
systems in order to explain large-system behavior. Piiedieind planing future perfor-
mance is of paramount importance for the commercial suafessterprise systems.

Large-scale enterprise development projects are relyorgand more on th&ervice-
Oriented ArchitecturdSOA) design. This approach provides a collection of mecha-
nisms and interfaces for a dynamic enterprise IT enviroriteenonnect applications
where classic, data-processing legacy systems can bedtedgvith agile, web-based
front-end applications. Application servers provide andedized platform for devel-
oping and deploying scalable enterprise systems. As at i&fdhis, application servers
are a core component of an enterprise system and an integtalf@ new trend towards
building service-oriented architectures. Today, thvee-tier architecturgparadigm has
become an industry standard for building scalable clientex applications.

In multi-tier systems, frequent calls to application sesvand databases place a
heavy load on resources and may cause throughput bottemeckhigh server-side
processing latency. Typically, preliminary system catyagstimates are done by using
synthetic workloads or benchmarks which are created toctedlétypical application
behavior” for “typical client requests”. While capacityapining based on synthetic
workloads or benchmarks can be useful at the initial stagetesign and develop-
ment of a future system, it may not be adequate for answermg specific questions
about an existing production system. Often, a service dendoes need to answer the
following questions:

— How many additional clients can be supported by the exisiragemi) while still
providing the same performance guarantees, e.g., respionsender 8 sec., and
i) assuming that new clients perform similar activities asadiy existing clients in
the system, i.e., the system processes the same type ofoadfkl

— If the client activities and behaviors change over time ipecfied way, how is the
performance of the system affected?

In this work, we propose a new capacity planning framewoaked R-Capricciq
for practical capacity evaluation of existing productigstems under “live” workloads
that can provide answers to all of the above questidi€Capricciocan assist in pro-
viding answers for advanced “what-if” scenarios in systepacity analysis where the
evaluated system operates under a diverse workloadRa&apricciois comprised of
the following key components:

— Workload profiler The profiler extracts a set of most popular client transastj
called core transactions, to characterize the overall site workload #ye most
popular client sessions at the site.

— Regression-based solveysing statistical regression, the solver approximates th
resource cost (CPU demand) of each core transaction on a garelware. Thus
a real workload mix can be directly mapped into the corredpanCPU demand
requirements.

— Analytical model For capacity planning of multi-tier applications with sem-
based workloads, an analytic model based on a network ofeguisudeveloped,
where each queue represents a tier of the application.

Another important problem that needs to be addressed islinprary analysis of
performance issues that often occur during the applicatjpates and new software



releases: this is also known asomaly detectionTypically, when a new software re-
lease is introduced and unexpected performance problesrabaerved, it is important
to separate performance issues that are caused by a higleflaacbming workload
from the performance issues caused by possible errorsféiciaecies in the upgraded
software. R-Capriccio can be used to distinguish the pevémce issues that are not
caused by the existing system workload and essentially é@ as an alarm to identify
anomalies in the system operation.

For most production multi-tier services the 1/O traffic (batetwork and disk) is
not a system bottleneck. The memory requirements incraasarly with the number
of concurrent users in the system [2] and can be computedtmiglstforward way. In
this work, we concentrate on systems with CPU bottleneckisesaluate the capacity
requirements for support of a given workload with a specifiedstraint on the latency
of user response times. This additional latency constraiies this modeling problem
non-trivial and challenging.

A prerequisite for applying our framework is that a servicevider collects the
following information:
— the application server access log that reflects all prodedignt requests and client
activities at the site, and
— CPU utilization at all tiers of the evaluated system.
Thus theproblemis to approximate th€PU costsof different client transactions at
different tiers, and then use these cost functions to etalili@ resource requirement
of scaled or modified transaction workload mix in order toumately size the future
system. In this work, we continue developing the approach it based on linear
regression for approximating the CPU transaction cost ipstes running the TPC-
W benchmark [25]. However, it is much more challenging tolg@md validate this
modeling approach with real, live workloads that exhibitanumore complex and
diverse behavior than the synthetic TPC-W benchmark.

To validate our approach, we use a 1-month long access lah€Bb utilization
data from two heterogeneous application servers that geasistomized client access
to a popular and actively used HP service: Open View ServieskQlOVSD). We
demonstrate that the proposed regression method provilesse, but powerful solu-
tion to accurately approximate CPU transaction costs ftn beterogeneous applica-
tion servers under study. We use the results of the regresséthod to parameterize an
analytic model of queues. We then use the analytic modelrtgpbete the last step of the
capacity planning process and derive the maximum numbédiesits that the studied
application servers can support for a given workload mixasrdifferent constraints on
transaction response times.

The rest of the paper is organized as follows. Section 2 desva detailed workload
analysis and a workload profiler. Section 3 introduces ogiregsion-based method for
deriving the CPU cost of the site transactions. Section dgmes the analytic model for
predicting multi-tier application performance. Sectioprgsents related work. Finally,
a summary and conclusions are given in Section 6.

2 Workload Characterization

In this section, we analyze a 1-month trace collected franh#terogeneous application
servers at the OVSD business portal during July 2006. Thiethas a detailed infor-
mation about each processed request, including its aaivdldeparture time, request
URL, and client session ID.



2.1 Units of Client/Server Activities

Since often service providers are interested in capac#éprphg rules for their pro-
duction systems under live, real workloads, we need to wtaled properties of these
workloads, and identify a set of workload characteristieg tire essential for a capacity
planning framework.

We first defineclient activityas follows. Typically, a client communicates with a
web service (deployed as a multi-tier application) via a wéérface, where the unit of
activity at the client-side corresponds to a download of & page. In general, a web
page is composed of an HTML file and embedded objects suchagebn Typically,
the HTML page is dynamically generated by the applicationesge and depending on
the application and its business logic, the page generataninvolve issuing multiple
(or none) database calls. A browser retrieves a web pagesbinga series of HTTP
requests for all objects: first it retrieves the main HTML filed after parsing it, the
browser retrieves all the embedded images. Thus, at thersgde, a web page retrieval
corresponds to processing of multiple smaller objects that be retrieved either in
sequence or via multiple concurrent connections. It is comthat a web server and
application server reside on the same hardware, and shesedrces are used by the
application and web servers to generate main HTML files a$ ageto retrieve page
embedded object In the access logs that we obtained from the OVSD applicatio
server, there are both types of entries: web page requedtsudrsequent entries for
embedded images. The HTTP protocol does not provide any sieatelimit the be-
ginning or the end of a web page: this is why it is very diffidoliaccurately measure
the aggregate resources consumed due to web page procagsiegerver side. In this
work, we define d@ransactionas aweb pageaccessed by the client (also callegb
page viewk

Client access to a web service occurs in the formsgssiorconsisting of multiple
individual transactions (web pages). For example, in aprarerce site, placing an
order through the web site involves further requests rajato selecting a product,
providing shipping information, arranging payment agreatand finally receiving a
confirmation. Thus, for a customer trying to place an ordeg, etailer trying to make
a sale, the real measure of such a web service performanteasility to process
the entire sequence of individual transactions neededntptie a higher-level logical
transaction. The number of such concurrent client sessi@mis multi-tier system can
support without violating transaction response time is asnee of system capacity.

In this section, we present the analysis of OVSD workloadiguered by ouWork-
load Profiler.
— first, it characterizes a set of client transactions andaetdrthe distribution of
transactions over time;
— second, it characterizes a set of user activities by amadyand extracting the
session characteristics over time.

2.2 Transactions

In our analysis, we consider a reduced trace that contailysm@mmsactions (web page
views) as discussed above. We omit all embedded images séigkts, and other format-
related primitives. Moreover, we further distinguish a setiniquetransaction types

3 1t is common for applications in many production systemslémented using the PHP web-
scripting/application development language [15].
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and a set of client accesses to them. For static web pagedRhainiquely defines
a file accessed by clients. For dynamic pages the requestsdifterent users to the
same web page URL may appear as requests to different URLts theeclient-specific
extension or a corresponding parameter list. We carefutigr fhut these client-specific
extensions in the reduced trace.

There are 984,505 transactions in the reduced trace. Higsfrates the number of
transactions in each hour. It reflects a typical enterpiiisendl access pattern, i.e., high
loads during work hours, and low loads during nights and wadk. In addition, the
studied workload exhibits a regular and predictable lodtepa

Overall, in the reduced trace, there are 756 different untcansactions (or transac-
tion types). Fig. 2 shows the cumulative distribution fuoct(CDF) of client accesses
to different transaction types ranked by the transactiqgrufgrity. The transaction with
rank 1 represents the most popular transaction type. Fig. 2 reflbett the studied
workload exhibits a very high degree of reference locality., a small subset of site
transactions is responsible for a very high percentagderitchccesses, e.g.,

— the top 10 transaction types accumulate 79.1% of all thetcliecesses;
— the top 20 transaction types are responsible for 93.6% dfitb@ccesses;
— the top 100 transaction types account for 99.8% of all sitesses.

This characterization is consistent with earlier works/[Bthat have demonstrated that
web server and e-commerce workloads exhibit a high degreefefence locality.
Complementary to the characterization of the most freduextcessed files, we also
see that the percentage of the files that are requested oply tinies over an entire
month is very high for this site. These rarely accessed fileg ptay a less important
role in the capacity planning framework, as we demonstedé.|
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Fig. 1: Arrival rate of transactions for each hour
in July, 2006. Fig. 2: CDF of the transaction types.

Fig. 3 shows the arrival rates of the transactions for the 6trpopular types over
time, and Fig. 4 shows the percentages of these transagpes in the workload mix
over time. Each point in these figures corresponds to one-$tatistics. The figure
shows that the transaction mix is not stationary over tinoe.dxample, the most pop-
ular, rank 1 transaction can cotribute to 15% to 40% in thekload depending on the
hour of the day. Similar observations apply to other tratisas as well.

Traditional capacity planning methodologies usually eixenpeak loads and sys-
tem utilization to conclude on the number of clients that barhandled by the system.
These methods aim to accommodate variations in load whilenaimg that the set of
workload transactions is stationary, i.e., that the distion of different transaction
types is fixed. Many of industry standard benchmarks aré tsiihg this principle [3, 4].
But real workloads rarely exhibit this feature as shown leyghalysis above. Therefore,
instead of focusing on loads solely, a robust capacity ptapmethodology must also
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consider the changing workload mix since the system capdiitctly depends on the

types of user activities.
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Fig. 3: Arrival rate of the first 6 most popular transactionsoas time.
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Fig. 4: Portions of the transactions belonging to the top@uper transactions across time.

2.3 Sessions

Percentage (%)

0 5

10 15
Time (days)

(b) Top 4-6 transactions

20

35

Understanding user activities at the session level is éissdar capacity planning,
asthe number of concurrent sessioimsthe trace is actually a representationtiog
number of concurrent clientsandled by the system. Fig. 5 displays the arrival rate
of new sessions over time, which follows the same trends esgréimsaction arrivals.
Additionally, it indicates that the high load of transactsoduring peak time is mainly
due to the increased number of customers.

Fig. 6 shows the CDF of client session durations. A sessigatidu is defined as
the time between the beginning of the first transaction aeetid of the last transaction
with the same session ID. The most typical session durati@ndund 600 seconds. It
is related to theéimeoutparameter in the application server: if a session is inadtv

600 seconds it is timed out by the server.

Fig. 7 gives the CDF of the session length, i.e., the numbéraosactions within
each session. Most sessions have a small nhumber of transadtie., 93.1% of the
sessions have less than 10 transactions, and 37.6% of giersekave only one trans-

action.

Since the traces are collected independently at two apiglicaervers supported by
heterogeneous machines with different CPU speeds, we duimetworkload in each
server to further understand the session-based behavisecs.
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Fig. 7: CDF of the session length.
2.4 Workloads of Different Servers

In this sub-section, we present the workload and utilizatinalysis of each of the two
application servers, which then is used by our capacitymitanframework to show
that the framework can effectively support heterogeneesisurces.

The two application servers handle client requests aftevad balancing point.
Fig. 8 shows that the load balancing in this system works.weBimilar number of
transactions are dispatched to each of the two servers,athakhibit the characteris-
tics of the entire workload as described abdvBerver 2 has a faster CPU. As a result,
its CPU utilization is lower compared to server 1 (see FigMyst of the time, CPU
utilization in both servers is under 10%. Note that for eaeekend, there is a spike of
CPU utilization which is related to administrator back-apKs.
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Fig. 8: Arrival rate of transactions of eacRig. 9: Average CPU utilization of each appli-
application server. cation server.

4 The workload mixes and the transaction popularity rankingaeh server are similar to the
entire system. We do not report the figures here due to spadation.



Fig. 10 shows the average number of concurrent sessiongimeprocessed sep-
arately by server 1 and by server 2. During peak time, thexeahout 60 concurrent
sessions for each server, but during the weekends, the mwhbencurrent sessions
decreases to 10.
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Fig. 10: Average number of concurrent sessions of eachcgtigh server.

When server 2 receives a slightly higher number of requésts server 1 (since
server 2 has a faster CPU, and its typical CPU utilizatioowgelr), this leads to a slightly
higher number of concurrent sessions hosted by the sengesi2aavn in Fig. 10.

2.5 Summary of Workload Analysis

To summarize, the following observations have to be takenancount for an accurate
capacity planning and performance evaluation of prodactigstems with live work-
loads:

— The transaction mix varies over time and hence can not beettes a fixed, sta-
tionary distribution.

— The workloads exhibit a strong locality property, i.e., ealmumber of transaction
types are responsible for a large fraction of client recgiest

— Most of users have a high think time.

The Workload Profilercollects a set of the following metrics over tinigthe average
CPU utilization,ii) the number of different transactioni) the number of concurrent
sessions, ant}) the client think times. These metrics are collected for d¢anb win-
dow of 1 hour (this is a tunable tool parameter) and for eagliGation server. These
metrics can then be used to parameterize the analytic mo&eldtion 4.

3 CPU Cost of Transactions

In this section, we use a statistical regression-baseaappifor an efficient approxima-
tion of CPU demands of different transaction types. We hatreduced this approach
in our earlier paper [25], where we evaluated it by using ¢btsb of a multi-tier e-

commerce site that simulates the operation of an on-lin&dtoce, according to the
classic TPC-W benchmark [24]. The challenge is to apply alidlate this technique
with real, live workloads that exhibit much more complex atigderse behavior than
synthetic ones. With the knowledge of CPU demands of trdimgecone can easily
compose the resource requirement of scaled or modifiedattioa mixes. Thus, this
methodology can be directly applied to production systenascan be used to explain
large-scale system behavior and predict future systenopesaice. In this section, we



analyze challenges of applying this method to productiatesys operating under live,
real workloads, and introduce an optimization technigag émables an efficient use of
the proposed approach.

3.1 Regression Methodology

To capture the changes in server workload we observe a nwohthiéfierent transactions
over fixed length time intervals, denotedrasnitoring windowsThe transaction mix
and system utilization are recorded at the end of each momgtavindow.

Assuming that there are totallyf transaction types processed by the server, we use
the following notations:

— T is the length of the monitoring window;

— N, is the number of transactions of tih type, wherd < < M;

— Ucpuy,» is the average CPU utilization at thetier during this monitoring window;

— D, ,, is the average service time of transactions ofithfetype, at the:-tier of the
systems, wherg < i < M.

- Dy, is the average CPU overhead related to activities that “keesystem up”.
There are operating system processes or background jabsotieume CPU time
even when there is no transaction in the system.

From the utilization law, one can easily obtain Eq. (1) fozlemonitoring window [8]:

Dyg,p + ZNi “Dj ., =Ucpun-T. (1)

Because it is practically infeasible to get accurate sertimesD; ,, (since it is an
over-constrained problem), we l€} ,, denote the approximated CPU costiof,, for
0 <i < M. Then an approximated utilizatidiy, p;; ,, can be calculated as

Utsper, = St 2 N o, @

To solve forC; ,,, one can choose a regression method from a variety of knovilmoue

in the literature. Finding the best fitting method is outsidehe scope of this paper.
In all experiments, we use the Non-negative Least SquargeeB&on (Non-negative
LSQ) provided by MATLAB to get’; ,,. This non-negative LSQ regression minimizes

the error
€= \/Z(U/CPUWL - UCPU.,n)? )
J

such that”; ,, > 0, wherej is the index of the monitoring window over time.

3.2 Applying Regression to a Production System with Live Wadkload

We use the one-month trace analyzed in Section 2 to evalbatadcuracy of the
regression-based method described above. We had to limratidation exercise to the
application server tier because we could not get relevakt @H#ization measurements
at the database tier.

For each 1-hour time window the Workload Profilerprovides the average CPU
utilization as well as the number of transactiavisfor thei-th transaction type, where
1 < i < M. The OVSD trace profile has the format shown in Table 1.

% In [25], we showed that a larger monitoring window improvls tccuracy of regression
results. For the production system under study a monitosimgiow of 1 hour produced the
best results.



Table 1: An example of transaction profile in server 1

Time (hour] N1 [N2[N3[Ny]- - - [Nzs6[Ucru (%)

1 21(15|21}16|---| O | 13.3201
2 2416|185 0 | 8.4306
3 18| 2|54 0 | 7.4107
4 222|247 0 | 6.4274
5 38567 0 | 7.5458

When we first introduced and applied the regression-basbditgue for evaluating
the transaction cost in [25], there were only 14 differeahsaction types in TPC-W.
The analysis of OVSD workload revealed that the real wortidoaften have a much
higher number of transaction types, e.g., OVSD workloadates over 756 different
transaction types. In order to apply the regression teckntq OVSD workload we
would need to collect more than 756 samples of 1-hour meamnts. Such a collection
would require to observe this workload for more than 1-mdmsfore we would collect
enough “equations” for evaluating the OVSD transactiorn.cos

The workload analysis presented in Section 2.2 shows tleastidied workload
exhibits a very high degree of reference locality, i.e., albsubset of site transactions
is responsible for a very high percentage of client accessgs the 100 most popular
transactions already cover 99.8% of all client accessesnFne other side, there is a
high percentage of transactions that are rarely accessedso called, “one-timers”.
We divided the original 1-month trace in two halves. The dddal workload analysis
revealed that there are 203 transactions that are accesednze in the first half of
the trace, and which are not accessed in the second half e Similarly, there are
189 transactions that are accessed only once in the sectraf tiee trace, and which
are not accessed in the first half of the trace. The non-negla8Q regression used in
this paper returns “0” as a typical value for “rare” variafjlsince there is not enough
information in the original set of equations to produce aemocurate solution.

So, the question is whether accurate performance resuitbeabtained by ap-
proximating the CPU cost of a much smaller set of popudard) transactions. In other
words, if we use regression to find the CPU cost of a small nuteEoretransactions,
can this small set be useful for an accurate evaluation ditiaee CPU demands in the
system?

Following this idea, we only use the column§ to Nx andUcpy in Table 1
to approximateC; for 1 < ¢ < K. The approximated/(,;, of every hour is then
computed by thes®; to Nx andC; to Ck values.

We also consider the results produced by the non-negati@regression method
when K is equal to 10, 20, 60 and 100 transactions respectively. $&ethe relative
error of the approximated utilization as the metric to val@lthe regression accuracy.
For every hour, the relative error of the approximatedasiiion is defined as

|Utpy — Ucpu]

Errorg =
Ucpu

3)

We divide the OVSD trace into two parts. The first half is used &raining set to solve
for the CPU cost’; using the non-negative LSQ regression method. The secdhd ha
is treated as a validation set. Because the administratios guring weekends might
introduce a significant noise to the CPU utilization, thénireg set for the regression
consists of data from workdays only.



The regression method produces similar results for the #terbgeneous applica-
tion servers in the system. Figs. 11-12 show the CDF of tradivel errors for training
and validating sets for servers 1 and 2, respectively.

The regression results can be summarized as follows:

— Overall, the non-negative LSQ regression achieves goadtsefor all examined
values ofK, i.e., when the regression method is applied to approxitheatePU
cost of the top 10, 20, 60, or 100 most popular transactiomstHe training set, at
least 60% of the points have relative errors less than 10%haaleast 90% of the
points have relative errors less than 20% (see Figs. 11¢)&6a)). The method’s
accuracy for the validating set is only slightly worse (segFL(b), 12(b)).

— Larger K achieves a higher accuracy for the training set. Howevés,ihprove-
ment is not significant: fofl{ = 100 there is only a 4% improvement compared to
the results with the top 10 transactions.

— The larger values o, e.g., K = 100, show a worse prediction accuracy for
the validating set compared #6 equal to 10 or 20 core transactions as shown in
Fig. 11 - 12. These results again can be explained by the wadiiroperties. While
we consider 100 most popular transactions, the last 80 of thrdy responsible for
6% of the client requests. These transactions have an iaregecess pattern. Some
of those transactions appear only in the first or second lhaffeotrace (while not
being a “one-timer”). As a result, computing the individgakt of these transac-
tions does not help to evaluate the future CPU demands, ardlutes a higher
error compared to the regression based on a smaller tréosaet.

Regression produces the best results when a represersetioécore transactions
is used and rarely accessed transactions are omitted. Sinoe of the rarely accessed
transactions might only appear in the first half of the tradeile some different rarely
accessed transactions may only appear in the second h&ié aface, it is beneficial
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Fig. 11: Server 1. CDF of relative errors under a differenthbar of of core transactions chosen
for a regression method: (a) training set, (b) validating se
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Fig. 12: Server 2. CDF of relative errors under a differentber of core transactions chosen for
a regression method: (a) training set, (b) validating set.



to use only core transactions in linear regression as welh dee overall capacity
planning. The additional CPU overhead that is due to thdyraceessed transactions is
“absorbed” by the CPU cost of the core transactions. Coresgtyla small additional
CPU usage by the distinct and rarely accessed transacti@sounted via the CPU
cost of the most frequently and consistently accessed mamedctions.

We conclude that considering the top @re transactions (i.e.X = 20) leads to
the most accurate results. Note that the top 20 transaaien®sponsible for 93.6% of
the total transactions in the analyzed trace. Therefolectieg the topK transactions
that account for 90% - 95% of all client accesses for the ssjoa method results in
a good representative subset of the entire workload. Theesspn solver produces
a solution for 200 equations with 20 variables only in 8 redliond. In general, the
common least squares algorithms have polynomial time cexitglasO(u3v) when
solvingv equations with: variables, and hence, can be efficiently used as a part of on-
line resource evaluation method [1]. Combining the knogkedf workload properties
with statistical regression provides a powerful solution fferformance evaluation of
complex production systems with real workloads.

3.3 Anomaly Detection

Shortened product development cycle, frequent softwadates, and more complex
integration dramatically increase the risk of introdugiogrly performing applications.
Consequently, another problem that needs to be addresaqatédiminary analysis of
performance issues that often occur during the applicatfmates and new software
releases: this is also known asomaly detectionTypically, when a new software
release is introduced and unexpected performance isse@bserved, it is important
to make sure that these performance issues are not caudeel tiyrtent workload, i.e.,
system overload due to a higher rate of client requests. \ilieerystem performance
can not be explained by the existing workload mix in the systié suggests that the
observed performance issues might be caused by the latesasmmodification. Thus,
it is important to evaluate the resource usage caused byxtkting transaction mix
in the system, and to generate the alarm events when sysiération significantly
deviates from the predicted utilization value computedftbe existing workload.

Using the observed workload mix we compute the expected GHikation of the
systemU/, p;; by EQ. 2 and compare it against the measured CPU utilizdfiop;
for the same time period. The service provider can set alibtég’h that defines the
acceptable deviation of expected system utilizatign,,, from the observed utilization
Ucpy. If T
—UCPU, Ucru - 1y, 4)

UCPU
then our tool generates an alarm event. We only consideiittregisns when the mea-
sured CPU utilization is significantly higher than the expdmne, since in this case,
something else besides the observed workload causesparfoe problems.

Fig. 13 demonstrates the anomaly detection feature of tiddothe OVSD trace
with T'h = 2. Our method accurately predicts CPU utilization causedismix. Over
weekends our method has generated the alarm warnings (dnaitkecircles in Fig. 13)
indicating that something else, besides the transactioogssing, happens in the sys-
tem. During these time intervals the predicted and obsautibzations are drastically
different. Our method correctly identifies a non-typicalC&tilization caused by a set
of additional administrative tasks, extensively perfotnoeer weekends (see remarks



about this in Section 2.4), and which had nothing to do withghocessed transaction
mix.

While in this paper, we defined an anomaly situation as onegavbleserved CPU
utilization significantly exceeds predicted CPU utilizaitj one can consider a sym-
metrical situation where observed CPU utilization is digantly lower than predicted
CPU utilization as a result of transaction mix, and verifg tttasons behind it: for
example, it might be related to unavailable embedded abjedthe serviced web pages
due to some storage subsystem problems. Currently, we akéngmn optimizing the
regression technique that provides a better support fédoprance anomaly detection

as well as on designing a technique for tuning the threshatdmeters that minimize
false positive alarms.

Observed—— Predicted

Utilization (%)

0 5 10 15 20 25 30

Time (day)
Fig. 13: Anomaly detection with R-Capriccio.

4 Capacity Planning

Modern Internet servers typically employ a multi-tier stiure consisting of web servers,
application servers and databases as given in Fig. 14. kaahets the requests from
its preceding tier, and may generate certain requests sud@sessor. For scalability, a
tier may consist of several replicated servers. These semay be heterogeneous, and

a dispatcher may employ a special load balancing strategligtiibuting the incoming
requests across the replicated servers.

Load = Load = Load
Balancer Balancer Balancer

Web Application
Server pé%erver

DSatabase
. . erver
Fig. 14: A multi-tier structure of a server.

Due to the session-based client behavior, a multi-tieresyss usually modeled as
a closed system with a network of queues (see Fig. 15). Thédauof clients in the
system is fixed. When a client receives the response frometivess it issues another
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Fia? 15: Queuing network modeling of a multi-tier closedtsys.

request after certain think time. This think time is modedsdan infinite serve@), in
Fig. 15. Once the service time in each queue is obtainedctbéed system can be
solved efficiently using Mean-Value Analysis (MVA) [8].

Workload characterization of real traces in Section 2 shivasthe workload mix
changes over time, and hence the service time could not belptds a fixed dis-
tribution for the entire lifetime of the system but one casatrthe workload as fixed
during shorter time intervals (e.g., 1 hour). R-Capricaofprms the capacity planning
procedure for each monitoring time window of 1 hour and themlsines the results
across these time points to get the overall solufion

41 MVA

MVA is based on the key assumption that when a new requestseatqueue, this
request sees the same average system statistics in tha sygstathout this new request.
Fig. 16 presents a description of the detailed MVA algorif221.

The visit ratioV; (definition in Fig. 16) is controlled by the load balancindipp
For example, if the load balancing policy used is equallytipaning the transactions
across all servers, then the number of vidiisto servers in tier [ is equal tol/m;,
wherem; is the number of servers in tiér

Note that the original MVA (as in Fig. 16) takes the numberl@nts N as input,
and computes the average performance metrics for a systgniVinglients. In capac-
ity planning, the number of clients is unknown. In the contréhe model needs to
be solved for exactly this unknown variable. Here, we asstimatthe Service Level
Agreement (SLA) specifies a threshdlg (i.e., upper bound) of the average transac-
tion response time. Then the condition in sf2pf MVA is changed to the following
condition: “whileR < I'g do”".

4.2 Case Study

In this section, we demonstrate h&wCapricciohelps to answer the following capacity
planning question:

— How many clients can be supported by the existing system:

5 For the TPC-W benchmark and most production multi-tier ises/CPU is a typical system
bottleneck. However, in practice, when one needs to makeogqtion of the maximum
achievable system throughput, additional “back of the lpef computations for estimat-
ing memory and network requirements under the maximum nuwbeoncurrent clients are
required to justify this maximum throughput projection.



Inputs:

N = number of clients

Z = think time

L = number of servers

S; = service time per visit to théth queue
Vi = number of visits to theé-th queue

Outputs:

X = system throughput

Q; = average number of jobs at tii¢h queue
R; = average response time of th¢h queue
R = system response time (excluding think time)
U, = utilization of thei-th queue

1. Initialization: fori = 1to Ldo@Q; < 0
2. lterations:
forn =1to N do
a. fori =1toL do
R; = S:(14Qy)

L
b. R= Z R;V;
i=1

cC. X=——

Z+R
d. fori=1toLdoQ; = XV;R;
3. forn=1toL do
a. X, =XV,
b. U, =XS;V;

Fig. 16: The MVA algorithm [8].

e providing the desirable performance guarantees, e.gponse time undefy,
and

e assuming that the system processes a given (varying, atiorsry) type of
workload?

The detailed sequence of steps performe@®b@apricciois summarized in Fig. 17.

The first two steps of R-Capriccio that use Werkload Profiletrand theRegression-
based Solvehave been presented in the previous two sections. We usarniegork-
load as input to the third step of the analytic model. In theecstudy, we had to limit
our capacity planning exercise to the application senegr(tivhich is a bottleneck tier
in the OVSD service) because we could not get relevant CHidation measurements
at the database tier (this particular database was sharessac few different services,
and we had only access to the OVSD part of the applicatioresgxv

Since the traces are collected from the two servers indegdlyd we treat each
heterogeneous server as an independent system. Laterowehsiwv to combine the
capacity planning results from those heterogeneous setogether.

All the experiments are conducted for the top 20 most popuenrsaction types,
i.e., K is set to 20. Following stef.a.in Fig. 17, we approximate the average service
time for each 1-hour time interval for both servers as shawfig. 18. Because server 2
has a faster CPU, it is expected that it has a smaller seimiecthan server 1. For each
time interval there is a vector of parameters representirgatzerage think time, the



1. Workload prdfiler:

For each monitoring window, and each servex:

a. collect the number of transaction$ s ., of each type;

b. collect the average utilizatiolls, ., .

For each monitoring window:

a. select the tog< most popular transaction types;

b. collect the transaction mix in the system,
i.e., the percentage; of the transactions for type
foralll <i< K;

c. collect the average think timg,,.

2. Regression-based solver:
For each serves:
Compute the cost functiofi; s for each transaction
typet as described in Section 3, where< ¢ < K.

3. Analytical model:

For each monitoring window:

a. approximate the service timte, for each serves as
Ss = Z;K:l pi - Cis,

b. compute the maximum number of cliem$AX,, can
be handled with average response time less fhan
using MVA algorithm.

Build the profile with entry agw, M AX..).

Find the minimalM AX,, value X.

X is the number of concurrent customers the system can support
with the average transaction response time less fhan

Fig. 17: The R-Capriccio Framework.

0.18 T T
serverl ——
0.16

server 2
0.14
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0 5 10 15 20 25 30 35

Time (days)

Service time (sec)

Fig. 18: Approximated service time using the CPU cost of tpe0 transaction types.

average service time, and the number of concurrent cligvdsapply the MVA model
at each time interval for each server.

Fig. 19(a) shows the validation results by comparing theughput of the analytic
model and the measured transaction throughput of servérelaialytic model captures
the real system behavior well, i.e., 90% of the relative mrare below 18.7%. Cop-
marisons of the throughput of the analytic model and the oreassession throughput
of server 2 are of similar accuracy.
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Fig. 19: Server 1. Measurements versus analytic model: ejuffmput of transactions; b) CPU
utilization.

Fig. 19(b) compares the average measured utilization awerwith the utilization
results provided by the analytic model. We observe a neastfept match between
the measured and analytic results. Except for the utibragpikes observed in the real
system measurements over weekends that are due to spewiaistthtion-related tasks
as discussed in Sections 2.4 and 3.3. Our method predictslalower CPU utilization
using the observed transaction mix for these time periolds presents an additional
functionality of R-Capriccio that can help in generatingafan” conditions when pre-
dicted utilization for processing the existing workloadrsficantly deviates from the
system measurements. The analytic results for server 2 shewilar performance
trends and are not presented here for brevity.

Fig. 20 and Fig. 21 illustrate the CDF of the maximum numbeliehts that can be
supported by server 1 and server 2 under the changing OV8&Bairtion mix over time,
where the transaction response time is limited/lyyequal to 1, 3, 6 and 10 seconds
respectively. These results are computed using the saniettiie and service time as
in the above experiments.

100 = 100
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80 / i 80
0 [ 0
g 60 14 g 60
L 50 [ w50
8 40 I - 8 40
30 IER ;é A 30
20 rRZg . 20 :
i R /.
10 A Tr=10 ] 10
0 g h : 0
0 500 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 3500 4000
Maximum number of clients Maximum number of clients

Fig. 20: Server 1: CDF of the maximurfrig. 21: Server 2: CDF of the maximum
number of clients under different thresholdumber of clients under different threshold
I'r of the average response time. I'r of the average response time.

The summary of results are shown in Table 2. As expectedes@rhas a much
higher capacity than server 1. Higher values in threstigjallow for a larger number
of clients to be supported by the system.

The capacity of the entire application server composedexdhwo heterogeneous
servers is determined by the load balancing policy as well.dxample, if the SLA
defines that the average transaction response time is riartigan 1 second, the stud-
ied application server can handle 1821 concurrent cliemt®bly if the load balancer
is aware of the heterogeneous capacity of these two sermér&an split the load
proportionally to server capacity. If the load balancertiians transactions equally,



Table 2: Maximum number of clients under differdrt

[I'r(sec]Server IServer 2Total|

1 472 | 1349 |1821
3 528 | 1478 |2004
6 565 | 1534 |2099
10 608 | 1580 |2188

capacity reduces to 944, just half of the previous one. Suuig difference indicates
the significant impact of a load balancing policy on systemacity as heterogeneous
CPU speeds must be taken into account.

5 Related Work

Performance evaluation and capacity planning of softwacklreardware systems is a
critical part of the system design process [8]. There is abemof capacity planning
techniques proposed for different popular applications.

Among these techniques, queuing theory is a widely usedadetbgy for model-
ing a system behavior and answering capacity questiond gl6Modeling of a single-
tier system, such as a simple HTTP server, has been studiedsésely. Even for a
multi-tier structure which is employed ubiquitously for stgervers, the system is usu-
ally abstracted as the most bottle-necked tier only: in,[d6]y the application tier for
the e-commerce systems are modeled by a M/GI/1/PS quelkgréirin [19] the appli-
cation tier with N node cluster is modeled by a G/G/N queue. Recently B. Urgaonk
et al. proposed analytic models for both open and closedi-tedtsystems [17, 18].
These models are validated by synthetic workloads runmirrgal systems. However
the expense of accurately estimating model parametersseevice times and visit
ratios, from each server log makes this model difficult tolgpp production envi-
ronments. Direct measurements in [18] do not characterdrnsactions as we do in this
paper. Moreover, existing capacity planning methods asedban evaluating the system
capacity for a fixed set of typical user behaviors. Once theicetime is estimated, it
is consistent throughout the planning procedure. Thisagidr does not consider the
fact that a changing workload for the same system has diffservice times and may
result in different system capacity. Our experiments sh@t such techniques as those
in [18] may fail to model a real system because of its dynarataire.

In this paper, we use a similar closed multi-tier model asli@),[but in contrast
to [18] or other examples in the existing literature of cafyaglanning, we propose a
methodology that does not need a controlled environmenariatytic model param-
eterization. Instead of characterizing the overall serntime of every server, we use
a statistical regression method to approximate the seoose of individual transac-
tions. This CPU cost function together with the transactioxhelp to approximate the
system service time that varies with the changing transactiix.

The use of statistical methods in capacity planning has pesmosed in the early
80’s [9, 8], but the focus was on a single machine/cluster ihanuch simpler than
current large-scaled multi-tiered systems. Recentlyssizal methods are getting more
attention in computer performance analysis and systenopaance prediction. In [20]
the authors use multiple linear regression techniquesdimating the mean service
times of applications in a single-threaded software sefiMsese service times are cor-



related with the Application Response Measurement packadB#) data to predict
system future performance. In [21],[23] the authors focndransaction mix perfor-
mance models. Based on the assumption that transactioongsspimes mostly consist
of service times rather than queueing times they use thedcdion response time
to approximate the transaction service demand. The autlerdinear regression to
identify performance anomalies in past workloads and tatstee their causes. We
do not use measured transaction response times to derivet@R&hction demands
(this approach is not applicable to the transactions thenielves might represent a
collection of smaller objects). One of their basic assuandis that the transaction mix
consists of a small number of transaction types.

We have introduced a statistical regression-based apprfoache CPU demand
approximation of different transaction in our earlier paj2®], where we evaluated this
approach by using a testbed of a multi-tier e-commercelsitesimulates the operation
of an on-line bookstore, according to the classic TPC-W berark [24]. Using the
TPC-W benchmark, we demonstrated that the use of lineagssigm provides promis-
ing results. However, TPC-W operates using only 14 tramsatgpes. In this work, we
continue applying the linear regression technique for exiprating the CPU transac-
tion cost as was introduced in [25] but in a much more challemgnvironment. Here,
we applied and validated this technique with real, live vioakls that exhibit much
more complex and diverse behavior than the synthetic TPGeli¢imark. Among the
contribution of the current paper is a novel approach thagtilates how the regression-
based technique can be applied to the production sitesavije ket of transaction types.
By applying the regression to a set of popular, so-calledéttransactions (that are
responsible for 90% - 96% of the site traffic) we are able taiolihe accurate estimates
of transaction CPU cost that can be used for a variety of pmdace anomaly detection
cases and capacity planning tasks in the production sitissreal, live workloads.

6 Conclusion

In this paper, we preseR-Capriccig a hew capacity planning framework which pro-
vides a practical, flexible and accurate toolbox for answgedapacity planning and
anomaly detection questions for multi-tier productionteyss with real workloads.
More importantly, it can be used for explaining large-sclstem behavior and pre-
dicting future system performance.

We used the access logs from the OVSD application serversnmwudstrate and
validate the three key components of R-Capriccio: the vaattlprofiler, the regression-
based solver, and the analytic model. In our capacity ptapframework, we identify
the set of most populaoretransactions and sessions for building a site profile, caenpu
transaction cost, and size the future system under the @&lead. In order to derive
the resource cost of each core transaction (i.e., CPU tipained for corresponding
transaction processing), we observe a number of differ@m tansactions over fixed
length time intervals and correlate these observations miasured server utilization
for the same time interval. Usingreon-negative least-squares regressimethod we
approximate the resource cost of each core transactiorstatistical regression works
very well for estimating the CPU demands of transactionstttenselves might repre-
sent a collection of smaller objects and where the directsoresnent methods are not
feasible.

While this paper concentrates on evaluating the CPU capasjuired for support
of a given workload, we believe that regression methods esefficiently applied for



evaluating other shared system resources. We plan to éxpiavenue in our future
work.
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