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Abstract. Information spaces have emerged as a powerful concept for providing 
managed exchange of information between members of communities of interest 
(COIs), including information brokering and dissemination by publish-subscribe-
query middleware. To support COIs with real-time or critical information exchange 
requirements, information spaces require quality of service (QoS) management algo-
rithms that consider the complex system dynamics within information spaces, that 
allocate multiple resources, and that scale to information spaces of reasonable size. 
This paper presents two algorithms for multi-resource QoS allocation within infor-
mation spaces. The first algorithm always provides an optimal allocation and in-
cludes optimizations that enable it to scale to information spaces of moderate size. 
The second algorithm is an approximation algorithm that provides near optimal solu-
tions in most situations and scales to much larger information spaces. The paper also 
presents analyses and experimental results of the effectiveness and efficiency of the 
algorithms. 
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1 Introduction  

The concept of information spaces has emerged to support information exchange within 
communities of interest (COIs), collections of users that are related by shared interests or 
participation in a common mission [23]. Information spaces consist of the following: 

• Middleware services for brokering and managing information exchange 
• A collection of information producing and consuming clients 
• The clients’ shared vocabulary 
• The set of managed information objects (MIOs) that clients exchange [2]. 
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In the information space model [12], clients are information publishers and consumers, 
communicating anonymously with other clients via an information management system 
(IMS) [2] with managers that monitor and control the information space. Information pub-
lished into the information space is in the form of typed managed information objects 
(MIOs) consisting of payload and metadata. Consumers make requests for future (sub-
scriptions) or past (query) information using predicates over MIO types and metadata val-
ues. Information spaces provide topic-based information exchange, brokering, discovery, 
and shared understanding [12]. Clients do not need to be aware of one another, the source 
of information they consume, or the consumers of information they publish.  

The IMS that we utilize in this work, Apollo [24], builds upon work in distributed ob-
ject, component, and service oriented middleware. It provides a set of services that allow 
the registration of subscription predicates (specified using XQuery [26]), matching of me-
tadata for published MIOs (specified using XML [27]), and delivering matched MIOs to 
clients using the Java Message Service [20]. Client-side distribution middleware exposes 
publication, subscription, and query interfaces conforming to the Joint Battlespace Infos-
phere Common API (CAPI) [10] using SOAP messages over HTTP or HTTPS. 

We have developed quality of service (QoS) management middleware for information 
spaces with dynamic interoperability and real-time requirements. Our QoS management 
capability extends existing IMS middleware to manage the production, delivery, and con-
sumption of information that meets client needs within available resources, to mediate 
competing demands for resources, and to adjust to dynamic conditions. Our QoS Man-
agement System (QMS) middleware, illustrated in Figure 1, builds upon our previous work 
in QoS management for distributed object and component systems [7, 15, 16, 17, 18, 19, 
28]. The QMS is multi-layered middleware, described in more detail in [14], with an in-
formation space QoS manager (ISQM)1 that provides aggregate QoS allocations and poli-
cy for clients and operations throughout an information space. The ISQM is collocated 
with the information brokering service and provides policy to local QoS managers 

                                                           
1 The ISQM is called a System Resource Manager (SRM) in [14], a historical term that is not as ac-

curate with regard to its function. Likewise, the LQM element is referred to as a local resource 
manager (LRM) in that document. 

Fig. 1. The QMS layered architecture provides QoS management for an information space IMS. 
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(LQM), each of which enforce the policy at a local control point, making local decisions 
as necessary to achieve and maintain the desired QoS. The QMS also includes QoS me-
chanisms that control and monitor resource usage and shape information elements under 
control of an LQM. The QMS manages QoS in dynamic information spaces with clients 
that come and go, and goals, roles, and priorities that change with time and circumstances. 

One of the challenges of providing QMS middleware is the development of algorithms 
for allocating QoS levels and their associated resources among the varying numbers of 
clients, operations, and applications using an information space. These Multi-Resource 
QoS (MRQ) allocation algorithms must consider the complex system dynamics of infor-
mation spaces, be efficient enough to be used in real-time QoS management, and scale to 
the sizes of envisioned information spaces. Multi-resource QoS allocation is NP-hard2, 
partially because of the following characteristics: 

• There are complex system dynamics among the QoS needs within an information 
space. That is, how one resource is allocated can impact the demand positively or nega-
tively for other resources. For example, a client who is interested in compressing in-
formation to lower bandwidth usage may require a higher amount of CPU. 

• There is frequently no direct correlation between how important an application is and 
the amount of resources it needs. 

• The relative ordering of QoS levels does not necessarily reflect the relative amount of 
resources that each level uses. That is, a higher QoS level (e.g., with higher precision, 
rate, or accuracy of information exchange) does not imply more resource usage than a 
lower QoS level and, in fact, might use more of some resources and fewer of others. 

• Resource bottlenecks can change dynamically. That is, addressing a bottleneck caused 
by a highly constrained resource can result in a bottleneck in another resource. 

This paper describes a set of multi-resource QoS allocation algorithms that we have de-
veloped for use within our prototype QMS. The MRQ algorithms are used by the informa-
tion space QoS manager to select aggregate QoS allocations that are then enforced and 
maintained by the local QoS managers. The ISQM runs the algorithms and selects new 
QoS allocations when there are significant changes in the information space situation 
(e.g., change in the number of clients, missions, or resource availability) or when the 
LQM cannot locally keep the QoS behaviors within the constraints indicated by the 
ISQM. The ISQM’s MRQ algorithms select QoS levels for clients in information spaces 
based on a benefit/cost ratio, i.e., the amount each choice increases the overall utility of 
the information space (the benefit) compared to the number and amount of resources that 
it uses (the cost). The algorithms described in this paper consider discrete QoS levels for 
each control point or application (terms that we use interchangeably), attempting to max-
imize utility across the entire information space within the available resources.  

Because multi-resource QoS allocation is NP-hard, there is a tension between optimali-
ty and timeliness in the algorithms. Optimality refers to the ability of an algorithm to pro-
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duce the highest utility QoS allocation possible within the available resources. Timeliness 
refers to the amount of time needed to determine a QoS allocation. For the class of MRQ 
problems, one can arrive at an optimal solution by examining a search space of all combi-
nations of the applications and all the QoS levels in which they can operate, but examin-
ing this search space can take exponential time.  

In this paper, we describe two algorithms for multi-resource QoS allocation in informa-
tion spaces that manage the tradeoff between optimality and timeliness in different ways: 

• Optimizing Brute-Force always provides an optimal solution but potentially runs in ex-
ponential time. The algorithm includes two optimizations that can prune the search 
space and reduce the runtime significantly in some situations.  

• Greedy Approximation is an approximation algorithm based on 0-1 integer program-
ming. The algorithm produces a near optimal allocation in many scenarios and runs in 
polynomial time. 

We evaluate each algorithm’s efficacy (how close to optimal the allocations computed by 
the algorithms are) and efficiency (how quickly the algorithms can produce an allocation).  

The rest of this paper is organized as follows. First, we describe the MRQ algorithms, 
including an analysis of their efficiency. We then present our efficacy and efficiency ex-
periments, including the experimental setup and metrics. Following this, we present some 
related work. Finally, we summarize our results. 

2 Information Space QoS Allocation Algorithms  

The MRQ algorithms that we present in this section select an allocation of QoS levels for 
all control points in the information space. Each control point represents a logical set of 
related points at which QoS can be affected, such as the information consumption, 
processing, and production for a single application3. The algorithms consider the resources 
needed by each QoS level at each control point4, and attempt to maximize a measure of 
overall benefit (i.e., a utility function) defined for an information space within the availa-
ble resources. One can determine an optimal solution by examining a search space of all 
possible allocations, but this is an exponential search in general and  infeasible for all but 

                                                           
3 Although each of these (consumption, processing, and production) can be controlled separately, 

choices made at each will affect the others. Thus they require a consistent logical QoS level, e.g., 
the rate and format of data inputs (consumption) must take into account the speed of information 
processing and production.  

4 The algorithms need the list of applications, their QoS levels, and their resource usage as input. 
The QoS levels should be defined to represent the QoS characteristics of most importance to the 
end user, from the most desirable level of QoS to the least acceptable level of QoS. The resource 
usage can be determined by off- or on-line profiling, or by analysis in some cases (e.g., bandwidth 
used by a periodic publisher can be calculated by multiplying the number of information objects 
per second that are published times the size of each object). 



  

modestly sized information spaces. Therefore, we took two simultaneous approaches: (1) 
developing optimizations that can reduce the search space, and (2) developing an approx-
imation algorithm that runs in less than exponential time in the worst case. This results in 
an Optimizing Brute-Force algorithm that produces optimal solutions and a Greedy Ap-
proximation algorithm that produces approximate solutions but runs in polynomial time. 

The goal of each MRQ algorithm is to select an allocation of QoS levels for applica-
tions that simultaneously: 

• Is feasible, i.e., fits within the resources available in the information space. An infeasi-
ble allocation cannot be deployed and hence is not an acceptable solution. 

• Maximizes information space utility, i.e., allocates the applications of most importance 
to the overall COI goals and provides higher QoS where it is most useful to the COI. 

The utility for any given client corresponds to a higher perceived user perception, which 
generally increases as throughput and information quality (e.g., resolution, precision) in-
crease and as latency and jitter decrease. However, when tradeoffs must be made, particu-
lar QoS attributes will be more desirable than others and these tradeoffs are captured in 
the sets of QoS levels for each client. For example, a user that is watching video is willing 
to sacrifice some initial latency (for buffering) for a significant decrease in jitter. The QoS 
levels for that user would attach a much higher utility value to a level that introduced 
some delay but maintained a steady rate than to one with lower delay but greater variance 
in the rate.  For the overall information space, the utility function must combine the utili-
ties for the levels of each of the information space, but also attach a greater weight to the 
more important users. That is, just as the least important attributes for a given user should 
be degraded when necessary, the ISQM should degrade QoS for the least important users 
when necessary. While the best utility function to use can vary for given situations, goals, 
or domains, a reasonable utility function to use for information spaces is one that calcu-
lates utility based on the criticality of the applications that are run and the QoS level at 
which they are run. That is, the utility is increased by any of the following factors: (1) 
running more applications (i.e., servicing more clients), (2) running higher priority appli-
cations, and (3) running any application at a higher QoS level. For an information space 
with A applications, we define utility as follows: 
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where: 

• Ci (>= 0) is the relative criticality of application i compared to other applications. 
• Qi (>= 0) is the relative quality of QoS level i compared to other QoS levels for the 

same application or control point. 
• wc and wq are weighting factors (to control the tradeoff of running more applications or 

applications at higher QoS levels). 



 

The feasible allocation with the highest utility is considered the optimal allocation. Notice 
that there could be multiple allocations with equal utilities, so there could be multiple op-
timal solutions. For the experiments described in Section 3, we use a scenario generator 
that generates utility measures for each combination of application and QoS level, simu-
lating in one value the criticality, QoS level value, and relative weights of these terms.  

The above utility function and our experiments do not explicitly consider resource effi-
ciency, so that two allocations could have equal utilities even if one uses fewer resources 
than the other5. However, keeping resources in reserve could lead to more effective QoS 
management in dynamic information spaces because wholesale reconfigurations will be 
reduced if there are resources available to handle overload situations or the addition of 
new applications. We accomplish this by adding a reserve factor to the utility function, 
i.e., a numerical measure of the benefit for having resources available, as follows: 
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where R is a measure of the resources available, and wr is a (non-negative) weighting fac-
tor to control the tradeoff of using available resources now to run more applications (or 
higher QoS levels) or keeping the resources in reserve. 

2.1 The Optimizing Brute-Force Algorithm 

The Optimizing Brute-Force algorithm searches a combinatorial decision tree built from 
the control points and their QoS levels. As depicted in Figure 2, each level of the decision 
tree represents a control point (e.g., CP-a, CP-b, CP-c, etc.) and each branch represents a 
QoS level choice at its parent’s control point (e.g., CP-a has QoS level choices 1 and 2, 
CP-b has QoS level choices 3 and 4, and so forth). Each non-leaf node represents an allo-
cation of control points and QoS levels for the nodes above it in the graph (e.g., CP-b0 
represents an allocation of QoS level 1 to CP-a, while CP-c2 represents an allocation of 
QoS level 2 to CP-a and QoS level 3 to CP-b). The leaf nodes represent combinations of 
an entire set of control points and QoS levels (i.e., the complete set of potential alloca-
tions) in an information space.  

Without optimizations, a brute-force search would traverse the tree recursively and ex-
amine each leaf node for feasibility and utility. If a node is feasible, its utility is compared 
with the highest utility of previously evaluated feasible solutions. If the utility of the node 
is higher, then it becomes the new best solution. The best solution after evaluating all the 
leaf nodes is the optimal allocation, i.e., the feasible solution with the highest utility. 

                                                           
5 However, resource efficiency is considered by the Greedy Approximation algorithm’s effective 

gradient computation, described in Section 2.2. 



  

The brute-force search with no optimizations runs in Θ(qa) where q is the number of 
QoS levels for each control point6, and a is the number of control points7. For the Opti-
mizing Brute-Force algorithm, we use the following optimizations to prune the search 
space, significantly in some cases.  

Pruning Using an Infeasibility Check. This optimization utilizes the fact that as the 
algorithm traverses down from the root node to leaf nodes, the number of applications and 
QoS levels represented in the nodes increases. Consequently if the partial allocation 
represented by any non-leaf node is not feasible (i.e., it requests more resources than are 
available), then all the nodes in the subtree under the non-leaf node are also infeasible 
(because each will add applications to the already infeasible partial allocation). The entire 
subtree can be bypassed. This optimization works well (i.e., it leads to significant pruning) 
when many of the leaf nodes represent infeasible allocations.  

Pruning Using a Utility Check. This optimization utilizes the fact that as the algorithm 
traverses down from the root node to leaf nodes (increase in depth of a tree), the utility as-
sociated with each node will be more than that of its parent node. At each point in the tra-
versal of the tree, the algorithm walks the path of highest utility first (essentially following 
the branches of highest QoS levels whether they are feasible or not). If the leaf node 
reached is lower utility than the best solution reached so far, the entire subtree can be 
pruned, since all other paths would lead to even lower utility. This optimization works 
well when the algorithm finds a high utility feasible solution early, enabling pruning of 
many subtrees with lesser utility.  

                                                           
6 Assuming the same number of discrete QoS levels for each application. 
7 Θ notation is a tight upper and lower bound on the algorithm execution, i.e., the algorithm will 

check every node of the tree, i.e., exactly qa nodes. 

Service Level Choice Application / Control Point

Complete set of choices (Every combination of application and service levels);
Only some of these will be feasible, i.e., fit within available resources

CP-c

CP-b

CP-a

Complete set of choices (Every combination of application and service levels);
Only some of these will be feasible, i.e., fit within available resources

CP-c

CP-b

CP-a

 
Fig. 2. Decision tree that the Brute-Force algorithm creates and traverses to allocate resources. 



 

The Optimizing Brute-Force algorithm uses both of the above optimizations together, 
along with ordering the tree to maximize the pruning possible. However, in the worst 
case, the algorithm finds many feasible nodes and relatively low utility solutions, resulting 
in little or no pruning. In these cases, the algorithm may still end up examining nearly the 
entire tree. Therefore, the Optimizing Brute-Force algorithm is O(qa). 

2.2 The Greedy Approximation QoS Management Algorithm 

Our Greedy Approximation algorithm is based on a 0-1 integer programming algorithm in 
[21]. 0-1 integer programming tries to maximize the objective function: 
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for j = 1, 2, …, n, where: 

• Each xi is an application at a particular QoS level 
• pi is the priority of the application  
• Hij is the resource usage of xi  
• Lj is the vector of the capacity of the resources 
• m is the number of applications and n is the number of resources. 

Our Greedy Approximation algorithm greedily allocates QoS levels to applications con-
tending for resources using an effective gradient measure, a ratio of the benefit that each 
application provides and the cost that it incurs. The algorithm measures the benefit of an 
application as the value it contributes to the objective function above. It measures the cost 
of an application at a particular QoS level as the amount of resources requested. The algo-
rithm aggregates the resources into a single dimension and assigns a penalty to increase 
the cost associated with requesting a highly contended resource (i.e., a resource for which 
a significant amount has already been allocated to other applications).  

Our algorithm extends the algorithm in [21] in the following ways: 

1. We have two variable dimensions that need to be considered. Each application can 
have multiple QoS levels from which to choose. In the algorithm in [21], each applica-
tion has one service level. Our algorithm treats each combination of application and 
QoS level as a separate viable choice, while ensuring that only one QoS level can be 
chosen for each application. 



  

2. We compute an initial penalty vector for resource usage. The algorithm in [21] only 
computes penalties as the algorithm progresses, which can lead to significantly subop-
timal allocation. That is, it treats all resources equally and completely available at the 
beginning. In reality, some resources are more likely to become bottlenecks (e.g., be-
cause more applications request them or applications request higher amounts of them) 
than others. Our algorithm performs an initial pass and assigns an initial penalty to re-
sources, making it cost more to request highly contended resources. 

3. We guarantee a solution by including a starvation choice at each level, i.e., a QoS level 
that uses no resources and provides no benefit and represents starving a particular ap-
plication if there are not enough resources to run it at any level. 

After computing the initial penalty, the greedy approximation algorithm computes the to-
tal number of application-QoS level combinations as described in 1 above. It iterates over 
the following steps until either all the applications have been assigned a QoS level or there 
are no more resources left to allocate to any remaining choices: 

1. It computes the effective gradient for each application-QoS level combination as the ra-
tio of benefit divided by cost. The benefit is the utility that a given application at a giv-
en QoS level provides. The cost is the resources requested adjusted by the penalty.  

2. It selects the application and QoS level combination with the highest effective gradient 
and eliminates further consideration of the other QoS levels for this application. 

3. It allocates the resources needed by the application and QoS level combination selected 
in step 2, removing those resources from the available resources. 

4. It prunes the list of application-QoS level combinations of any infeasible choices. 

2.2.1 Analysis of the runtime of Greedy Approximation. 
 

Pseudocode for the Greedy Approximation algorithm follows: 

1:  initializeList(CP-QoSLevelList) 
2:  while (CP-QoSLevelList not empty) { 
3:    next = find_max_gradient(CP-QoSLevelList); 
4:    addToUsedResources(next.resourceUsage) 
5:    removeChosenCP's Other Service Levels 
6:    removeInfeasible(CP-QoSLevelList) 
7:  } 

Step 1 is the creation of the initial penalty vector. It makes a single pass through the list of 
every control point and QoS level choice, CP-QoSLevelList, i.e., a*q elements where a is 
the number of control points and q is the number of QoS levels. The loop bounded by 
steps 2 and 7 is executed at most a times, since step 5 removes at least q-1 elements from 
the list each time. Step 6 could remove more, so the actual number of times through the 
loop could be fewer than a times. Steps 3 and 4 are linear time operations on the current 
list of control points × QoS levels and resources, respectively. 



 

Therefore, the worst case runtime is equal to (aq) + a(arq), or O(a2qr + aq), where: 

• a is the number of applications, 
• q is the number of QoS levels, and 
• r is the number of resources 

Furthermore, notice that the operation in step 6 affects the runtime of future iterations. 
If step 6 prunes a significant number of infeasible allocations from the CP-QoSLevelList, 
then the number of times through the loop is significantly reduced. In scenarios where 
100% of solutions are feasible, step 6 will never remove anything and the algorithm will 
run in worst case time. In scenarios where step 6 removes most of the elements because 
many allocations are infeasible, the algorithm will run much faster. Regardless, in worst 
case its runtime is polynomial or, more precisely, quadratic in the number of applications. 

2.3 Applying the QoS Management Algorithms to Dynamic Information Spaces 

As illustrated in Fig. 1, the algorithms described above are used by the ISQM layer of a 
multi-layered QoS management architecture. The ISQM uses the allocation algorithms to 
select a set of QoS levels to apply at the control points throughout an information space. 
The QoS levels are enforced at local control points by LQMs, which control the rate, size, 
processing, and other controllable attributes of information through the system. 

The multi-layered approach also allows for QoS enforcement at different granularities 
of time. At the lowest layers, QoS mechanisms and LQMs maintain QoS levels by adjust-
ing parameters like rate, compression level, and scaling factor as frequently as they need 
to, with feedback control to avoid thrashing. The execution of the QoS allocation algo-
rithms and subsequent distribution of new QoS levels is expected to be much less frequent 
in general and associated with discrete events affecting the entire information space, such 
as changes in information space makeup (new clients or clients leaving), resource availa-
bility, or goals and priorities. In cases where the effects of changes can be limited, running 
the allocation algorithms and distributing new policies might be avoided altogether. For 
example, a new client that is relatively lower importance than other existing clients need 
not lead to recalculation of QoS levels for other clients. Likewise, if a client leaves, the re-
sources that it is using can be kept in reserve rather than reallocating the information 
space, unless there is a critical need for higher QoS somewhere.  

This motivates an important area for future research, namely that of limiting the effects 
of changes in allocations. That is, if a change to state occurs requiring the ISQM to run the 
QoS allocation algorithms to choose an allocation of QoS levels across the information 
space, it is desirable for the selected allocation to require as few changes at individual 
control points as possible. This means the ISQM needs to evaluate possible allocations not 
only in terms of their feasibility and utility values, but also in terms of their differences 
from the last deployed allocation. This is an area that we have not investigated fully yet. 



  

3 Experimental Evaluation of the QoS Allocation Algorithms  

We conducted a set of experiments to evaluate the relative performance of the algorithms, 
in terms of quality of the solution produced and the speed of execution to reach a solution. 
This section describes these experiments and their results.  

3.1 Experimental Setup  

We executed the experiments on a personal computer with a 2.80 GHz Intel® Pentium®-4 
CPU with 512 MB RAM, running the Linux (Fedora Core Release 6) operating system. 

We developed a scenario generator that randomly generates scenarios used as input to 
a simulator that we developed to execute the algorithms on the scenarios. Each scenario 
consists of a set of applications, a set of QoS levels for each application, a utility value for 
each QoS level, and a set of resources and amount used by each QoS level. The generator 
accepts the following arguments: the number of applications (control points) in the scena-
rio, the number of QoS levels for each application, the total number of resources in an in-
formation space, and the number of resources (to be chosen from the total number of re-
sources) for each QoS level. The generator produces a random value for utility for each 
combination of application and QoS level, randomly chooses the resources to use for each 
QoS level from among those available, and selects a random amount of each resource that 
is requested for each QoS level, generating a discrete uniform distribution of scenarios. 

The simulator takes as input a set of scenarios, runs the MRQ algorithms on each sce-
nario, and produces the solution allocation, the utility of the solution, the runtime of the 
algorithm, and values for the metrics described in Section 3.2.  

In general, for each of the experiments described in this report, we use the scenario ge-
nerator to generate a sizable set of scenarios with the following parameters: 3 QoS levels, 
6 resources per QoS level, and 110 total resources. We varied the number of applications. 
For each application set, we generated 100 scenarios. For other experiments, we will de-
scribe the specific experiment design as we describe the experimental results. 

3.2 Experimental Metrics  

Algorithm Metrics. We collected the following metrics to compute the efficacy and the ef-
ficiency of the QMS algorithms: 

• Percent of Optimality: The optimal solution is the feasible solution with the highest 
utility. For the solution returned by any algorithm, we compute its percent of optimality 
by dividing its utility by the utility of the optimal solution. For any given scenario, we 
use the utility reported by the Optimizing Brute-Force algorithm as the baseline against 
which the optimality of all the algorithms are compared. 



 

• Runtime: We use the simulator to measure how fast each algorithm executes in our ex-
periments. Although the absolute runtime depends on the hardware on which the algo-
rithm is executed, the relative runtimes of various algorithms are comparable because 
we ran all our experiments on the same machine. 

Contention Metrics. As part of our experiments, we evaluated the effect of contention on 
our algorithms, i.e., how resource rich or resource scarce the scenario is, and collected 
contention metrics to support this. We use the following contention metric in the experi-
ments described in this paper: 

• Percent of infeasible solutions measures the total number of infeasible solutions out of 
the total number of possible solutions (leaf nodes in the search tree created by the Op-
timizing Brute-Force algorithm). For example, the total number of possible solutions 
(i.e., possible allocations) for 10 applications and 3 QoS levels is 59,049 solutions. If 
only 200 solutions are feasible, we compute the percent of infeasibility as (59049-
200)/59049. The percent of infeasibility is directly proportional to the level of conten-
tion, i.e., the higher the percentage of infeasible solutions, the higher the contention for 
resources in the scenario.  

3.3 Percent of Optimality and Runtime of the Optimizing Brute-Force Algorithm  

The Optimizing Brute-Force algorithm always produces an optimal solution (i.e., 100% 
optimality). Hence, we use this as the baseline algorithm for measuring the effectiveness 
of the other algorithms. 

However, in the worst case Opti-
mizing Brute-Force runs in exponen-
tial time. Furthermore, the runtime 
grows exponentially as either the 
number of applications or the num-
ber of QoS levels increase. Figure 3 
shows boxplots of the results for an 
experiment in which we generated 
scenarios with the number of appli-
cations varying from 10 to 110 by 
steps of 10, with 100 scenarios at 
each step. Each application had 3 
QoS levels, and each QoS level used 
6 resources selected randomly from 
a total of 110 resources.  

Boxplots [22] are a visual means 
of examining and comparing sets of 
data, regardless of their distributions, 
that readily indicates their medians, 

 
Fig. 3. Impact of varying the number of applications on 
the runtime of the Optimizing Brute-Force algorithm. 



  

variance, and skew. As shown in Figure 3, the box of each dataset displays the interquar-
tile range (IQR), i.e., the range from the first to the third quartile in which the middle 50% 
of data values lie. The thick black line in the middle of the box represents the median. 
Vertical lines extending out from the box and ending in horizontal bars, called whiskers, 
represent the extent of the (non-outlier) observed values. Circles beyond the whiskers 
represent outliers, i.e., values above 1.5 × IQR + the upper quartile value or less than -1.5 
× IQR below the lower quartile value. 

As Figure 3 indicates, the runtime is good (near one second) until about 40-50 applica-
tions, after which the median runtime and the variance in runtime increase dramatically. 
The median runtime increases to about 70 seconds at 110 applications, with a worst case 
runtime of 150 seconds and best case of about 30 seconds. The increased variance is due 
to the difference in pruning possible from scenario to scenario. The scenarios with the 
highest runtime allow little pruning, causing the Optimizing Brute-Force algorithm to 
search nearly the entire space. In contrast, the best measured runtime (about 25 seconds 
for 110 applications, 6× faster than the worst case time) are for scenarios that allow signif-
icant pruning (i.e., many infeasible solutions and/or quickly found high-utility solutions). 

Figure 4 depicts the runtime of Optimizing Brute-Force when either the number of QoS 
levels or the number of applications increases. For this experiment, we generated scena-
rios that varied the number 
of QoS levels from 1 to 20 
for each number of applica-
tions and that varied the 
number of applications from 
1 to 20 for each number of 
QoS levels. The runtime is 
acceptable up to about 10 of 
either, then increases dra-
matically. 

3.4 Percent of 
Optimality and Runtime of 
the Greedy Approximation 
Algorithm  

Our experiments indicate 
that the Greedy Approxima-
tion algorithm produces so-
lutions that are close to op-
timal, with a significant 
improvement in runtime 
over the Optimizing Brute-
Force baseline. The boxplot 

 
Fig. 4.  The impact of simultaneously varying number of applica-
tions for a given QoS level and number of QoS levels for a given 
application when running the Optimizing Brute-Force. 



 

in Figure 5 represents an experiment in 
which we ran the Greedy Approxima-
tion algorithm on 50,000 scenarios, 
with 10 applications8, 3 QoS levels for 
each application, 3 resources per QoS 
level, and 30, 70, 110, 150, and 190 to-
tal resources (10,000 scenarios for each 
level of total resources). The median 
solution is 96% of optimal (the thick 
black line near the top of the boxplot), 
and 75% of the solutions are over 90% 
of optimal or better (the grey box and 
above), with all but the outliers produc-
ing solutions 80% optimal or better. 
The worst solution is 40% of optimal. 

In experiments designed to identify 
the source of the low optimality out-
liers, we determined that contention ad-
versely impacts the effectiveness of 
Greedy Approximation. Specifically, 
we observed the median optimality de-
cline to 75% as the level of contention 
increases significantly. Figure 6 illu-
strates experiments run with the number 
of applications varying from 10 to 110, 
3 QoS levels, 6 resources per QoS lev-
el, and 20 total resources. In these expe-
riments, the median percent of optimali-
ty varied between only 75-85%, 
although the worst case percent opti-
mality is approximately the same as the 
experiment in Figure 5. 

The difference in the number of re-
sources being used by each application 
and the number of resources available 
causes the experiments depicted in Fig-
ures 5 and 6 to exhibit different conten-
tion characteristics. The experiments 
depicted in Figure 5 (selecting 3 re-

                                                           
8 We had to generate scenarios with a modest number of applications in order to have an optimality 

baseline against which to compare, since we have to run the Optimizing Brute-Force algorithm on 
each of the 50,000 scenarios to get the optimal solution. 

 
Fig. 5. Optimality of the Greedy Approximation al-
gorithm on 50,000 scenarios with 10 applications, 3 
QoS levels per application, 3 resources per QoS lev-
el, and 30, 70, 110, 150, and 190 total resources 
(10,000 scenarios each). 

 
Fig. 6. Optimality of Greedy Approximation on 
50,000 scenarios with a varying number of applica-
tions, 3 QoS levels per application, 6 resources per 
QoS level, and 20 total resources. 



  

sources from 30, 70, 110, 150, or 190 resources) had scenarios with the percentage of 
feasible solutions ranging from under 10% to 100%, whereas in the experiments depicted 
in Figure 6 (selecting 6 resources from 20 available), all of the scenarios had fewer than 
0.5% feasible allocations. This provides evidence that the level of contention affects the 
optimality of the Greedy Approximation algorithm. 

Effectiveness of the initial penalty optimizing factor. As described in Section 2.2, our 
Greedy Approximation algorithm uses an initial penalty vector. We introduced the initial 
penalty vector to handle a set of scenarios (that we dubbed Greedy Achilles’ Heel scena-
rios) that produced sub-optimal solutions in the base algorithm (without the initial penal-
ty). These scenarios have one or more high utility applications that request a significant 
amount of a highly contended resource. Since the algorithm without an initial penalty 
treated all resources equally and completely available at the beginning, these applications 
would be greedily assigned resources and potentially starve a large number of other appli-
cations resulting in a significantly suboptimal solution. To prevent this, we enhanced the 
algorithm to perform an initial pass and assign an initial penalty to highly contended re-
sources, making it cost more to request these resources.  

We conducted experiments to evaluate the effectiveness of the initial penalty enhance-
ment. For this experiment, we generated Greedy Achilles’ Heel scenarios with a varying 
number of applications, 3 QoS levels for each application, and 6 resources selected ran-
domly from 110 resources for each QoS level. We varied the number of applications from 
10 to 40 in steps of 10 (again, the upper bound of 40 allows us to run the Optimizing 
Brute-Force algorithm to get the optimal solution against which to compare). For each 
number of applications, we had 100 scenarios on which we ran the Greedy Approximation 
algorithm both with and without the initial penalty. The results show that the initial penal-
ty improves the percent of optimality significantly for this class of scenarios. Without the 
initial penalty, Greedy Approximation 
provides a low median percent of opti-
mality ranging from approximately 30% to 
approximately 42% (Figure 7). When we 
add the initial penalty to Greedy Approx-
imation, the median percent of optimality 
on the same set of scenarios improved to a 
range of 75% to 85% (Figure 8). Notice 
that the percent of optimality declines as 
the number of applications increase in 
both cases, due to an increase in conten-
tion (more applications competing for the 
same number of resources).  

The effect of the number of applications 
and the number of resources on the run-
time of Greedy Approximation. We also 
ran experiments that varied the number of 
applications and the number of resources, 

 

Fig. 7. Percentage of optimality of Greedy Ap-
proximation for Greedy Achilles’ Heel scena-
rios without the initial penalty optimization. 



 

the two scenario attributes that we 
believed might scale to large num-
bers in realistic scenarios. From the 
analysis in Section 2.2.1, we ex-
pected varying the number of appli-
cations to affect the runtime quadrat-
ically and varying the number of 
resources to affect the runtime ap-
proximately linearly. 

For the experiment varying the 
number of applications, we in-
creased the applications from 10 to 
300 in steps of 10, with 100 scena-
rios for each discrete number of ap-
plications. Each application had 3 
QoS levels, and each QoS level used 
6 resources selected randomly from 
a total of 110 resources.  

As expected from the analysis 
above, we observed that the runtime 
of Greedy Approximation increases 
polynomially with the increase in 
the number of applications (Figure 
9). As comparison, executing the 
Greedy Approximation algorithm on 
a randomly generated scenario with 
110 apps took less than 0.10 seconds 
versus 60 seconds for the Optimiz-
ing Brute-Force algorithm. We ob-
served subsecond runtimes for up to 
hundreds of applications (0.6 
seconds for 300 applications). 

Figure 10 illustrates the results of 
an experiment to evaluate the effects 
of varying the number of resources. 
In this experiment, we randomly 
generated scenarios with 100 appli-
cations, 3 QoS levels per application, 3 resources per QoS level, and total resources vary-
ing from 30 to 180, in steps of 10. We generated 100 scenarios for each discrete number 
of resources. Our results indicate that the runtime of Greedy Approximation grows ap-
proximately linearly as the number of resources increases, as shown in Figure 10, con-
firming what we expected from the analysis in Section 2.2.1. 

 

Fig. 8. Percentage of optimality of Greedy Approxima-
tion for Greedy Achilles’ Heel scenarios with the initial 
penalty optimization. 

 

Fig. 9. Runtime of the Greedy Approximation algo-
rithm as the number of applications increase.  



  

4 Related Work 

The information spaces concept has 
grown out of the Joint Battlespace 
Infosphere (JBI) [2, 10], a US Air 
Force initiative supporting network 
centric warfare concepts. It is related 
to other network centric warfare in-
itiatives, including the Global In-
formation Grid (GIG) and Net-
Centric Enterprise Systems (NCES). 
The GIG will provide the communi-
cation, networking, and processing 
capability to enable the interconnec-
tion of warfighters, command per-
sonnel, and policymakers [4]. NCES 
is a set of services (based on Web 
Services [25]) enabling access to 
and use of the GIG in warfighting operations [3]. The JBI, as exemplified by the Apollo 
reference implementation, enables information exchange and management between tactic-
al and enterprise users and is intended to interact with and use NCES services and the GIG 
as concrete instances emerge.  

Dynamic programming [6] is another approach to solving multi-resource QoS alloca-
tion problems, treating them as 0-1 knapsack problems. In general, the runtime of this 
class of algorithms is pseudo-polynomial, or technically an exponential function of their 
input sizes [9]. This presents a quantization challenge for solving the problem using dy-
namic programming. A way to develop a polynomial time dynamic programming algo-
rithm is to limit the sizes of the resources by normalizing them and choosing a quantiza-
tion, i.e., a discrete unit of allocation for each resource. This results in resources being 
allocated in discrete units (e.g., tenths, hundredths, or thousandths). While this makes the 
algorithm run much faster, it reduces its effectiveness. For example, a quantization of 0.1 
allocates resources in tenths of their total amount available (an application requesting 3% 
of a resource would get either 0% or 10%). The quantization also places a limit on the 
number of applications that can share a resource, e.g., a 0.1 quantization means that at 
most ten applications can share any resource. A finer grain quantization should improve 
the optimality of the solutions but will increase the runtime significantly. For example, a 
quantization of 0.01 will allow up to 100 applications to share each resource and will allo-
cate resources in hundredths, but would increase the execution time of the algorithm by at 
least 10× over that for a 0.1 quantization. For some resources, this would still be a gross 
quantization. For example, a 100 Mbps link would be allocated in units of 1 Mbps and a 1 
Gbps network link would be allocated in units of 10 Mbps. Our experiments showed sig-
nificantly better efficacy and performance from the Greedy Approximation algorithm. 

 
Fig. 10. Runtime of the Greedy Approximation algo-
rithm as the number of resources increases. 



 

Einbu provides a method for solving the multi-resource allocation problem by mapping 
it to the Transportation Problem [5]. The method requires a strictly concave return func-
tion, i.e., a utility function in which the additional gain in utility from each additional 
amount of resources used becomes smaller as the number of resources used increases. 
While this might be true in many scenarios, it is a limitation that our algorithms do not re-
quire. The algorithm is guaranteed to terminate and produce an optimal solution. Howev-
er, the paper does not analyze the computational complexity of the algorithm. 

Xu et al present an algorithm for reserving multiple resources as service requests are 
made [29]. The algorithm creates a graph for each service request at runtime, with nodes 
representing QoS levels and edges representing feasible resource requirements. It then 
runs Dijkstra’s shortest path algorithm to determine the suitable resource reservation. The 
algorithm can run in polynomial time on graphs with no cycles. To handle the more gen-
eral case, which is NP-complete, the paper presents a two-pass algorithm with heuristics 
specific to the resource reservation domain. Gopalan and Chiueh present another heuristic 
algorithm based on tasks with time ordered use of resources [8]. While it is difficult to ful-
ly compare just based on the papers, these appear to be viable alternatives to the algo-
rithms we present in this paper. 

As an alternative to algorithms based on mathematical foundations or heuristics, Liu et 
al use a genetic algorithm approach to resource allocation [13]. This approach is based on 
task scheduling and produces an optimal allocation, but relies on sequential tasks and does 
not evaluate its runtime performance and suitability to run in-line in a dynamic system.  

The work reported in this paper builds upon the authors’ previous work in QoS for dis-
tributed object and component based middleware [14, 17, 19, 28] and previous work in re-
source management, such as the Darwin project at CMU [1]. 

5 Conclusions 

For publish-subscribe information spaces to be useful for real-time and critical informa-
tion exchange, they must include quality of service capabilities. However, traditional QoS 
mechanisms for resource allocation and differentiated services are not sufficient, unless 
they include algorithmic means to mediate the conflicting demands for QoS and aggregate 
QoS control over all the clients and operations of an information space.  

In this paper, we have advanced the state of the art in middleware-based multi-resource 
QoS allocation by defining, evaluating, and prototyping a set of algorithms that allocate 
QoS levels and resources across large numbers of applications and control points within 
information spaces. The Optimizing Brute-Force algorithm provides optimal allocations in 
reasonable execution time for modest numbers of applications (subsecond response up to 
40-50 applications in our experiments). The Greedy Approximation algorithm provides 
approximate solutions, but scales well, with a median of 96% optimality and demonstrated 
fast execution times to hundreds of applications with subsecond response in our experi-
ments. Greedy Approximation has the fastest runtime, but farther from optimal solutions 



  

in highly contentious scenarios (defined by the number of feasible allocations). Converse-
ly, it produces closer to optimal solutions, but takes more time to do so, when contention 
is low (i.e., there are many feasible solutions). 

Under an ongoing effort with the US Air Force Research Laboratory, we are currently 
prototyping these algorithms as part of a practical application of multi-layered QoS man-
agement middleware for information spaces, which will give us the opportunity to eva-
luate these algorithms in the context of realistic scenarios. 
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